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Boltzmann entropy equation is gained according to the statistical mechanics directly 
and general dependence between entropy and probability is obtained. Based on the 
second law of thermodynamics with a glance at the Boltzmann entropy equation, it can 
be deduced that physical processes are done in a direction that the probability of the 
system and total entropy increase. In fact, the possible process performing states and 
their entropy variations will be determined at a specific energy level. In this paper, an 
entropy equation is gained by using a new quasi-statistical approach to the physical 
processes as well as a novel energy conservation principle. The variation of the "energy 
structure equation”, as an equation to formulate the performed process using activated 
energy components of the system and their dependence, is studied in different possible 
paths by using the energy conservation principle directly. Despite the classical 
mechanics that all particles are studied, in the novel approach, "particular processes" 
as all processes that have the same active independent energy components are studied 
at "various conditions"; in other words, all conditions that same energy amount is 
applied to the system. One of the advantages of this novel approach is that the volume 
of the needed calculations will be decreased mainly in comparison with the Boltzmann 
entropy equation. Dependence of the entropy and rate of the energy components is 
gained from the novel energy conservation principle. The gained relation, expressed by 
energy components of the system, is considered with no constraints on the structure 
of the system but has a common basis with the Boltzmann entropy equation. In fact, by 
using a novel macroscopic-statistical approach, the entropy variation of a physical 
system is studied. 
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1. Introduction 
 

The principles of mechanics express the connection between forces and motion of bodies. These 
principles bring an essential conclusion by considering energy exchange with the system, i.e. sum of 
kinetic and potential energies of a body is always constant, and if work is also done on the system 
from the environment around, the sum of the changes in potential and kinetic energies equal to the 
work had done [1]. The principle of energy conservation is known as a unifying principle in physics 

 
* Corresponding author. 
E-mail address: s.shahsavari@me.iut.ac.ir 
 
https://doi.org/10.37934/arfmts.101.2.99110 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 2 (2023) 99-110 

 

100 
 

[2]. Based on this principle, it can be concluded that energy can change the state of the system. When 
it comes to a rigid body, the work transforms entirely into the kinetic energy of the body. Based on 
the energy conservation principle, to the extent that the work is done on the system by 
environmental bodies, kinetic energy increases equally, but if it comes to an elastic body, the sum of 
elastic strain energy and kinetic energy changes are equal to the work carried out. This issue can also 
be expressed in the field of thermodynamics as well [1]. Clausius developed two thermodynamic laws 
in 1865 [3]. The first law is the result of the energy conservation principle for thermal cycles while 
considering the heat and work as two conventional notions of energy, states that in a closed cycle, 
the sum of the heat and the work exchanged will be equal. The second law of thermodynamics 
examines the feasibility of carrying out processes in agreement with the first law. Clausius [3], 
introduces the concept of entropy and states that the second law of thermodynamics is equivalent 
to saying that the entropy of the universe is increasing and considers the phrase entropy rising to be 
a summary of the basic principles of science [3]. The use of the above expression in scientific theories 
is not easy as we know that Isaac Newton does not pay attention to entropy in compiling the 
principles of mechanics. In other words, classical mechanics is written reversibly [4]. There are 
different ideas for applying the second law of thermodynamics on the mechanic and thermodynamic 
coupling problems at a macroscopic scale [5]. The second law of thermodynamics has attracted many 
scholars and has not lost its credibility, even with the advent of advanced scientific theories [6,7]. 
Various mathematical models are proposed for the second law of thermodynamics [8,9]. Second law 
of thermodynamics has also been proven in various ways [10]. Some of these methods are based on 
statistical mechanics and some on quantum mechanics [11]. In statistical mechanics, entropy is 
considered only when depending on the modes available under particular system conditions [12]. 
Available states are determined at different energy levels by using statistical and probability theory 
[12]. Boltzmann obtained the entropy relation based on the assumptions of statistical mechanics 
[13]. This relation is used to calculate the absolute value of entropy, and it is also in the same line 
with the second law of thermodynamics. Boltzmann entropy relationship also gains entropy 
dependence on the available energy levels, and also can be used to study the entropy in the particle 
systems. When processes are reversed, particles can always move in the opposite direction and 
revert backward. Finally, if the processes are not reversible, based on the second law of 
thermodynamics, the problem of dissipation of energy arises. In a particle system, the dissipation of 
energy can be studied by investigating the dynamics of the particles and their paths [14-17].   

Today, entropy has an important role in the relevant analysis of many new subjects of science 
that some of which can be seen in the references [18-22]. Therefore, the establishment, as well as 
development of suitable models, methods, and practical entropy definitions are the most important 
challenges for this matter [20-22]. Because of the ability of the Boltzmann entropy equation to 
calculate the absolute value of the entropy in different physical systems, some researchers tried to 
develop it as a practical method for calculating entropy in configurationally systems, named 
configurational entropy [23-25]. Therefore, low needed calculating, generality, accuracy, 
convergence, and etc. must be considered seriously in presented models and formulations [26-27]. 
Using the kinematic theory of dissipated energy concepts, Shahsavari et al., studied the entropy 
production in physical processes, and established a practical relation to the irreversibility as well as 
its components [28].      

In this paper, by presenting a new model of energy structure for physical systems, and by studying 
the variation of the novel energy structure equation for the same energy applying to the system in 
different conditions, a novel energy conservation principle is obtained. Also, a quasi-statistical 
relation to the entropy is extracted by considering the rate of the energy components of the system 
in this innovative energy conservation equation. In fact, one of the advantages of this novel approach 
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is that a particular process in various conditions is studied instead of studying the particles of the 
system which is common in statistical physics that can decrease the volume of the needed 
calculations mainly.  
 
2. The Physical Significance of the Entropy 
 

Classical thermodynamics examines entropy changes in a physical process based on a 
macroscopic perspective [29-30]. Whereas statistical mechanics calculates the absolute value of 
entropy by using a microscopic approach as well as the statistical perspective. According to Planck's 
theorem, the entropy of a physical system in a particular state depends on the probability of its 
occurring [31]. Also, there are relevant papers in the same line with the entropy significance and 
dissipated energy in the different physical systems [32-35]. So 

 
𝑆 = 𝑓(𝑊)                                                                                                                                                            (1) 
 

That 𝑆 is entropy and 𝑊 is the probability of the particular state occurring. The second law of 
thermodynamics indicates that the total entropy of a particular state of the system is the sum of the 
entropy of its sub-systems, while according to the statistical and probability theory, the probability 
of a particular state of a physical system is equal to the product of probabilities of its sub-systems. So 
function 𝑓 must satisfies the following conditions [31] 

 
𝑆 = 𝑆1 + 𝑆2                                                                                                                                                         (2)  
   
𝑓((𝑊1.𝑊2) = 𝑓(𝑊1) + 𝑓(𝑊2)                                                                                                                       (3)     
 
where 𝑊1 and 𝑊2 are probabilities of sub-systems 1 and 2. Therefore, entropy is calculated as follows 
 
𝑆 = 𝑘𝑙𝑛(𝑊) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                                                                                 (4)    
 

That 𝑘 is a universal constant. Based on the Eq. (4), the general dependence between entropy 
and probability is determined. In fact, Eq. (4) analyses the macroscopic state of the system based on 
its microscopic states in its energy level. In other words, it can be calculated that the probability of a 
physical system depends on the all states that are available at a particular energy level. Entropy is 
qualified by irregularity. For example, in accordance with theory of electro-magnetic radiation, this 
irregularity is based on monochromatic vibrations of any resonator if although it remains in a stable 
stationary field of radiation. By non-regularity, the amplitude and phase of vibration change 
permanently, [31]. Plank [13] determined the entropy equation as a function of its energy distortion 
at a particular level of energy 

 
𝑆 = 𝑘[(𝑁 + 𝑃) ln(𝑁 + 𝑃) − 𝑁𝑙𝑛(𝑁) − 𝑃𝑙𝑛(𝑃)]                                                                                        (5)  
 
where 𝑁 is resonators, and 𝑃 is an integer. Also, 𝑊 is a function of the number of particles of the 
system, and a weighting factor of energy levels for particle systems [13]. As an example, Fermi-Dirac 
established Eq. (6) as follows 
 

𝑊 = ∏
𝑔𝑗!

(𝑔𝑗 − 1)!𝑁𝑗!𝑗

                                                                                                                                       (6) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 2 (2023) 99-110 

 

102 
 

                                                                                                                 
That 𝑁𝑗 is the particles number of the system with the 𝑔𝑗 as the weighting factor of energy level. 

As can be seen, statistical mechanics, directly, uses examining each particle energy state to examine 
the states of a system. In other words, the Boltzmann entropy equation can be applied to the particle 
systems to calculate entropy. Applying the Boltzmann entropy equation to the systems where 
particles do not have much freedom due to various constraints, as may be known as configurational 
systems [25-27], is more difficult from other systems with interacting particles. 

In this paper, by presenting a novel model for the structure of energy in physical systems, the 
principle of energy conservation is directly applied to extract a quasi-statistical equation related to 
entropy. In this novel approach, the independent energy components of the system are examined 
without any constraint on the structure of the system. In other words, in place of investigating all 
particles of the system, a particular process in various conditions is studied. Therefore, a practical 
approach is established to the systems with a high number of particles such as configurational 
systems.  
       
3. Energy Structure in Physical Systems 
 

The second law of thermodynamics establishes a time direction to the physical processes. In fact, 
the second law of thermodynamics classifies physical processes into reversible and irreversible 
processes. When energy is applied to the system in a zero rate, performed process can be done in its 
reversible state, but in a non-zero rate of energy applying, performed process will be done in its 
irreversible state. And in fact, more value of the applied energy will be converted to the heat in 
comparison with the reversible state [5,8,12]. 

In a system, a momentary reversal of the motion of any moving particle causes the system to 
move backward, each particle remaining along its old path at the same speed and in the same 
position as before. In physical dynamics, this simple and complete reversibility is lost due to the forces 
related to the friction of solids. For example, Incomplete fluidity of liquids; incomplete stretching of 
solids; Inequality of temperature and as a result conduction of heat produced by stress in solids and 
fluids; Imperfect magnetic retention; Residual electrical polarization of dielectrics; Heat generation 
by electric currents caused by motion; Diffusion of liquids, solution of solids in liquids and other 
chemical changes and absorption of heat and radiant light are some of them. In fact, energy 
dissipation can be studied by studying particle dynamics [14-17]. In fact, to a general study of the 
irreversibility in physical processes, we need to consider its effects on the final state of the system 
when some energy is applied to the system. This needs that we focus on the energy components of 
the system and their dependence in different conditions of energy applying [28]. In this paper, the 
paths of various energy changes of the particle system are the base of this study. Instead of 
investigating a special particle, a physical system at a particular process in various conditions is 
studied. Figure 1 shows a physical system with its energy distribution components, and in the 
exchange of energy with the environment. 
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Fig. 1. Scheme of a physical 
system with energy 
distribution 

 
It is assumed that the whole energy of a physical system consists of some independent 

components as well as dependent components and remaining unchanged ones. The dependent 
components are function of the amounts and rate of independent components as follows 

 
𝑈𝑇 = (𝑢1 + 𝑢2 + ⋯+ 𝑢𝑚) + [𝑔1 + ⋯+ 𝑔𝑘] + [ℎ1 + ⋯ + ℎ𝑛] + 𝑈𝑇0

                                                    (7) 

 
where 
 
𝑔𝑗 = 𝑔𝑗(𝑢1, 𝑢2, … , 𝑢𝑚)                                                                                                                                      (8) 

 
ℎ𝑝 = ℎ𝑝(𝑢̇1, … , 𝑢̇𝑚)                                                                                                                                           (9) 

 
That 𝑈𝑇 is the whole energy, 𝑔𝑗 and ℎ𝑝 are the independent components of energy, and also 𝑈𝑇0

 

is sum of the all components that don’t change during performed process. 
When a “particular process”, as all processes that have the same active independent 

components, is performed, some of the components (𝑚 components of 𝑢𝑖) change independently 
and form the performed process. Changes in other components involved in the process, will depend 
on the amounts and rate of independent components. Since components ℎ𝑝 depend on the rate of 

independent components, they will be effective in only non-statically paths, and can be used for 
showing dissipation energy and irreversibility. Therefore, these components are directly depended 
on process conditions and how the energy is applied to the system. Eq. (7) shows the general form 
of process energy structure which describe all processes that can be done with 𝑚 active components 
as independent energy components. By using of this equation, it isn’t need to know the state of all 
particles, and only a particular process in various conditions will be investigated. 
 
4. A Novel Energy Conservation Principle 
 

In the classical thermodynamics, the first and final states assumed to be fixed and the heat and 
work transformed between these states are studied. Therefore, in different paths, according to the 
energy conservation principle, the internal energy change is constant but the work and heat changes 
in different paths are not equal [29-30] 
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Fig. 2. System behavior in 
different paths with fixed first 
and final states  

 
In the novel approach, as shown in Figure 2, the energy applying to the system in different paths 

are constant, and the variation of the independent components are studied: 
 

 
Fig. 3. System behavior by 
applying the equal energy in 
different paths 

 
That 𝛿𝑢𝑗 is the variation of the 𝑢𝑗  when 𝑢̇𝑗 ≠  0 as the value of energy 𝛿𝑈𝑇 is given to the system, 

and 𝛿𝑢′
𝑗 is the variation of the 𝑢𝑗  when 𝑢̇𝑗 ≅ 0 as the value of energy 𝛿𝑈𝑇 is given to the system. In 

path 1-2, performed process is quasi-static, although in other paths the process performs in general. 
Each path has a specific constant 𝑢̇𝑗  as the rate of the component 𝑢𝑗 . Path 1-2 has the least energy 

diffusion when the equal energy is applied to the system at different paths. This path is used as a 
reference path to show energy diffusion differences between this path and other paths. The more 
energy diffusion shows the more irreversibility in the process performed. It should be noted that the 
variation of 𝑢̇𝑗  is calculated from reference path to general paths. 

Therefore, according to the Eq. (7), the following equation must be satisfied between these paths 
 

∑(𝛿𝑢𝑖 ) + ∑ ∑( 
𝜕𝑔𝑞

𝜕𝑢𝑖
𝛿𝑢𝑖 )

𝑚

𝑖=1

𝑘

𝑞=1

+ ∑ ∑( 
𝜕ℎ𝑝

𝜕𝑢̇𝑖
𝛿𝑢̇𝑖  )

𝑚

𝑖=1

𝑛

𝑝=1

𝑚

𝑖=1

= ∑𝛿𝑢′
𝑖

𝑚

𝑖=1

+ ∑ ∑( 
𝜕𝑔𝑞

𝜕𝑢𝑖
𝛿𝑢′

𝑖 )

𝑚

𝑖=1

𝑘

𝑞=1

           (10) 

                                                                                                                                                           
Eq. (10) should be satisfied in general. Therefore, the Eq. (11) must be governed on each 

independent component. For example, for component 𝑢𝑗  

 

𝛿𝑢𝑗 + ∑( 
𝜕𝑔𝑖

𝜕𝑢𝑗
𝛿𝑢𝑗  ) + ∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
𝛿𝑢̇𝑗  )

𝑛

𝑝=1

𝑘

𝑖=1

= 𝛿𝑢′
𝑗 + ∑( 

𝜕𝑔𝑖

𝜕𝑢𝑗
𝛿𝑢′

𝑗  )

𝑘

𝑖=1

                                                   (11) 

                                
Or 
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(1 + ∑( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )

𝑘

𝑖=1

) (𝛿𝑢𝑗 − 𝛿𝑢′
𝑗) = −(∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
 )

𝑛

𝑝=1

)𝛿𝑢̇𝑗                                                                        (12) 

                                                                 
Eq. (12) relates general paths to the path 1-2 as a reference path. Therefore 
 

−

[
 
 
 (∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
 )𝑛

𝑝=1 )

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )𝑘

𝑖=1 )
]
 
 
 

=
(𝛿𝑢𝑗 − 𝛿𝑢′

𝑗)

𝛿𝑢̇𝑗
                                                                                                      (13) 

 

−

[
 
 
 (∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
 )𝑛

𝑝=1 )

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )𝑘

𝑖=1 )
]
 
 
 

(
𝛿𝑢𝑗 − 𝛿𝑢′

𝑗

𝑢̇𝑗
) =

(𝛿𝑢𝑗 − 𝛿𝑢′
𝑗)

𝛿𝑢̇𝑗
(
𝛿𝑢𝑗 − 𝛿𝑢′

𝑗

𝑢̇𝑗
)                                                  (14) 

                                                                              

[
 
 
 (∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
 )𝑛

𝑝=1 )

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )𝑘

𝑖=1 )
]
 
 
 

(
𝛿𝑢𝑗 − 𝛿𝑢′

𝑗

𝑢̇𝑗
) = −

(𝛿𝑢𝑗 − 𝛿𝑢′
𝑗)

2

𝑢̇𝑗𝛿𝑢̇𝑗
= −2

(𝛿𝑢𝑗 − 𝛿𝑢′
𝑗)

2

𝛿(𝑢̇𝑗
2)

                                   (15) 

                                                                
Because the quasi-static path is used as the reference path, therefore 
 

[
 
 
 (∑ ( 

𝜕ℎ𝑝

𝜕𝑢̇𝑗
 )𝑛

𝑝=1 )

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )𝑘

𝑖=1 )
]
 
 
 

(
𝛿𝑢𝑗 − 𝛿𝑢′

𝑗

𝑢̇𝑗
) ≤ 0                                                                                                      (16) 

                                                                                                                  
And by assuming following variable change 
 

𝛿𝑈𝑗 = 𝛿𝑢𝑗 − 𝛿𝑢′
𝑗                                                                                                                                             (17) 

 
Therefore, relation (16) can be rewritten as follows 

       

[
 
 
 
 (∑ ( 

𝜕ℎ𝑝

𝜕𝑈̇𝑗
 )𝑛

𝑝=1 )

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑈𝑗
 )𝑘

𝑖=1 )
]
 
 
 
 

(
𝛿𝑈𝑗

𝑈̇𝑗

) ≤ 0                                                                                                                   (18) 

 
Or 
 

[
 
 
 
 (1 + ∑ ( 

𝜕𝑔𝑖

𝜕𝑈𝑗
 )𝑘

𝑖=1 )

(∑ ( 
𝜕ℎ𝑝

𝜕𝑈̇𝑗
 )𝑛

𝑝=1 )
]
 
 
 
 

(
𝛿𝑈𝑗

𝑈̇𝑗

) ≤ 0                                                                                                                   (19) 
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Although relation (19) is an inequality, gained directly from the energy conservation principle, 
and should be satisfied in all processes performed by the system. This relation is also a confirmation 
of Eq. (7) because it actually indicates the orientation of this equation that it considers physical 
processes to be time-dependent as well as in the same line with the second law of thermodynamics.  

This relation is combined of four terms 
 

The term of (𝟏 + ∑ ( 
𝝏𝒈𝒊

𝝏𝑼𝒋
 )𝒌

𝒊=𝟏 ): By using of ∑ 𝑔𝑖
𝑘
𝑖=1 = 𝐺, this term can be rewritten in form (1 + 𝐺,𝑗). 

This term directly depends on the inner structure of the system, and not performed process. It also 
shows the effect of the variation of independent component on the change of 𝐺 as independent 
component. This term also shows that to increase independent component, how more energy must 
be applied to the system. 
 

The term of (∑ ( 
𝝏𝒉𝒑

𝝏𝑼̇𝒋
 )𝒏

𝒑=𝟏 ): By using of ∑ ℎ𝑖
𝑘
𝑖=1 = 𝐻, this term can be rewritten in form (1 + 𝐻,𝑗) 

that depend on the internal structure of the system. Also 𝐻,𝑗 is a quantity that shows the stiffness of 

the system against the rate of the independent components changes. 
 
The term of 𝜹𝑼𝒋: This term also is the variation of the difference of 𝑢𝑗  and 𝑢′

𝑗, and shows the amount 

of energy variation needed to transfer from quasi-static state to a general one. 
 

 
Fig. 4. Difference between 
two different paths  

 

The term of 𝑼̇𝒋: This term means the rate of difference between 𝑢𝑗  and 𝑢′
𝑗 which relates the transfer 

rates between quasi-static and general state. 
Relation (19) consists of terms relating to the inner structure of the system, gained by applying 

the principle of energy conservation to the Eq. (7). By considering the energy conservation principle, 
Eq. (7) and Eq. (19) are equivalent. Therefore, a novel energy conservation principle is presented as 
follows 

According to the energy conservation principle, the states are feasible for a system that relation 
(19) be satisfied and vice versa. 

The above statement can also be taken as an expression of the principle of energy conservation, 
which, of course is general. By using this novel energy conservation principle, a novel approach is 
possible to investigate the physical process directional as well as entropy variation as a function of 
energy components in Macro-State similar to Boltzmann entropy equation. 
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5. A Novel Approach to the Boltzmann Entropy Equation 
 

By using variable change (17), and rewriting Eq. (12) 
 

(1 + ∑( 
𝜕𝑔𝑖

𝜕𝑈𝑗
 )

𝑘

𝑖=1

) (𝛿𝑈𝑗) = −(∑ ( 
𝜕ℎ𝑝

𝜕𝑈̇𝑗

 )

𝑛

𝑝=1

)(𝛿𝑈̇𝑗)                                                                               (20) 

                                                                     
By replacing Eq. (20) in the relation (19) 

 

(−
𝛿𝑈̇𝑗

𝑈̇𝑗

) ≤ 0                                                                                                                                                      (21) 

 
Or 
 

𝛿[ln(𝑈̇𝑗)] ≥ 0                                                                                                                                                   (22) 

 
Relationship (22) is expressed in terms of changes in the energy component of the system, and in 

fact, represents the direction of the changes. This relation can be used as a criterion for examining 
the feasibility of a physical process, although directly derived from the energy conservation principle. 
On this basis, both the history of the system as well as feasible paths to reach from current situation 
can be studied.  

Given that all of the independent components are applied to relation (22), therefore 
 

𝛿 [ln(𝑈̇1)] + 𝛿[ln(𝑈̇2)] + ⋯+ 𝛿 [ln(𝑈̇𝑚)] ≥ 0                                                                                        (23) 

 

𝛿[ln(∏ 𝑈̇𝑗
𝑚
𝑗=1 )] ≥ 0                                                                                                                                         (24) 

 

By using of 𝑤𝑢𝑗
= 𝑈̇𝑗, and also 𝑊𝑢 = ∏ 𝑤𝑢𝑗

𝑚
𝑗=1 , Eq. (24) can be rewriting as follows   

 

𝛿[ln(𝑊𝑢)] = 𝛿 [ln (∏ 𝑤𝑢𝑗

𝑚
𝑗=1 )] = ∑ 𝛿ln (𝑤𝑢𝑗

)𝑚
𝑗=1 ≥ 0                                                                           (25) 

 
Relation (25) is equivalent to relation (22). These relations are extracted from studying a 

particular process in various conditions, and not all particles of the system. As shown in Figure 5, in 
the novel approach for a physical system, particles are classified into energy components. Therefore, 
in systems such as configurational systems where particles do not have a high degree of freedom [25-
27], the new perspective can significantly reduce the needed volume of calculations. 
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Fig. 5. Energy Component’s approach 

 

The expression (∏ 𝑈̇𝑗
𝑚
𝑗=1 ) denotes the multiplication of the rate of all independent energy 

components. It shows all the ways in which we can apply the equal energy to the system so that 𝑚 
specific independent components are activated in the process. Therefore, Eq. (25) is a quasi-
statistical equation, and also gained directly from principle of energy conservation. Although Eq. (25) 
is a function of the rate of energy components, has common basis with the Boltzmann entropy 
equation which indicates entropy increasing due to increasing available Micro-States in a physical 
process. 

Similar to the Boltzmann entropy equation, it seems that relation (25) can be used for definition 
a novel quasi-statistical equation of entropy. This definition can be as follows 

 
𝛿𝑠 = 𝐾𝑀𝑆 𝛿[ln(𝑊𝑢)]                                                                                                                                       (26) 
 
where 𝐾𝑀𝑆 is a universal constant that refers to the Macro-States energy components of the system. 
This coefficient should be calculated by experiments or other methods.  
 
6. Conclusions 
 

The first law deals with the balance of energy in physical processes. The second law of 
thermodynamics, while formulating the concept of entropy, examines the direction of physical 
processes. According to the second law of thermodynamics, real processes are always performed in 
a direction to increase entropy. Classical thermodynamics is able to calculate relative entropy 
changes with its macroscopic attitude. In classical thermodynamics, by considering zero value for 
entropy at absolute zero, absolute value of entropy could be calculated. But statistical 
thermodynamics calculates the absolute amount of entropy by examining the sub-structures of the 
system's particles. According to Boltzmann's hypothesis, entropy in a physical system depends on the 
number of available states at the desired energy level. Accordingly, the Boltzmann logarithmic 
relation is proposed for calculating entropy. The number of available states is also calculated by 
examining the possible energy levels for the particles, thus entropy can be calculated. 

In this paper, innovative Eq. (7) is proposed to consider the total energy for a physical system in 
a particular process. In fact, a hypothetical process is examined under different conditions, not just 
individual system particles.  

In the novel quasi-statistical perspective, possible processes are investigated under conditions of 
applying the same amount of energy to the system. In this case, relation (19) is obtained as a 
condition governing the processes. This relationship is a confirmation of Eq. (7), and on the other 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 2 (2023) 99-110 

 

109 
 

hand, gives a novel expression for the principle of energy conservation. The novel presented 
approach is quasi-statistical in the sense that both macroscopic energy components are used, and all 
possible processes are examined. 

By using of the expression given for the principle of energy conservation as well as the statistical 
point of view, the relation (22) is extracted, and from that relation (24) can be deduced which relates 
the second law of thermodynamics to the statistical concept proposed by Boltzmann. In fact, this 
relationship argues on the basis of all possible modes of energy consumption in the same way that 
certain components appear as independent components. Although to apply the Boltzmann entropy 
equation is very difficult at the systems with interacting particles with no much freedom, the novel 
presented approach has not this problem since it is written using the macroscopic components 
energy of the system, as shown in Figure 5. 

Eq. (26) has the same base with the Boltzmann entropy equation, and can establish a novel quasi-
static definition of entropy. Energy components of the system are the basis of this novel definition, 
and therefore, can mainly decrease the volume of the needed calculations in comparison with the 
Boltzmann entropy equation, in particular in configurationally systems. Finally, 𝐾𝑀𝑆 is a universal 
coefficient, and can be determined from experiments or other methods. 
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