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In this article, the steady two‐dimensional axis metric flow of an incompressible viscous 
fluid in a porous medium under the influence of a uniform transverse magnetic field with 
slip boundary condition is analyzed and solved by using perturbation iteration algorithm 
(PIA) and optimal perturbation Iteration Algorithm. The optimal perturbation iteration 
algorithm (OPIA) has been used to obtain the approximate analytical solution by varying 
the pertinent flow parameters. The influence of different parameters on the present flow 
solution is shown through graphs with a discussion. These graphs refer to the fact that 
increasing numbers of Reynolds and Hartmann give the attribute of decreasing velocity, 
with the addition that with an increase in Hartmann number and decrease in Reynolds 
number the streamlines are stretched towards the x‐axis. Finally, the optimal perturbation 
iteration algorithm is effective and highly able to obtain excellent results. 
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1. Introduction 
 

Squeezing flows occur when normal stresses or vertical velocities are applied from the outside by 
the mobile boundary [1]. Squeezing flow under the influence of a magnetic field has many 
applications in chemical engineering, as studied by many researchers. Precise applications have 
begun to study groundwater flow, Irrigation problems, crude petroleum recovery, heat‐storage beds, 
thermal and insulating engineering, chromatography, and chemical catalytic reactors. The study of 
thin Newtonian liquid films squeezed between plates is investigated by Grimm [2]. For the first time 
Navier has been the general boundary conditions, which shows the fluid slip at the surface [3]. Near 
the boundary, a molecule shows slips at the boundary when the molecular weight is high. According 
to Navier, the difference between fluid velocities and the boundary is proportional to shear stress at 
that boundary. The constant of proportionality is called the slip parameter. The slip condition is 
significant when a fluid with elastic character is considered. In medical sciences, particularly in 
polishing artificial heart valves and internal cavities, the slip condition is highly considered [4,5]. The 
most practical examples of squeezing flows are polymer processing, compression, and injection 
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modeling. The Newtonian squeezing fluid flow between two parallel plates is studied by Ran et al., 
[6]. The effects of slip boundary conditions are investigated by Hayat and Abelman [7] Newtonian 
fluid was considered by Ebaid [8] to study the effects of a magnetic field and wall slip boundary 
conditions on the peristaltic transport in an asymmetric channel. The same model with the extension 
of the porous medium is argued by Abelman et al., [9]. Ullah et al., [10] studied squeezing fluid flow 
between the two infinite parallel plates in a porous medium channel. Hayat et al., [11] examined the 
hydromagnetic three‐dimensional flow induced by a stretched surface and thermal slip boundary 
conditions. Shafiq et al., [12] have investigated the squeezed flow of a third‐grade fluid between two 
parallel disks and heat transfer in the flow is characterized by the Cattaneo‐Christov theory 
electrically conductive flow through the porous mentioned has gained exceptional rank and was the 
point of interest of many scientific studies. There are many applications of magnetohydrodynamics 
(MHD) of an electrically conducting fluid in geophysics astrophysics, engineering, and other industrial 
areas. More to the point, the flows of electrically conducting fluid problems through porous medium 
have acquired exceptional rank and have been the spotlight of interest of many researchers [13-18]. 
And others have studied this method [19-23]. However, there is a limited number of these problems, 
and most of them do not have an exact solution. Therefore, several semi-analytical methods are used 
to solve the governing equations of fluid flow problems.  Among the widely used analytical methods 
are turbulence methods that were used to determine the effect of physical parameters on the 
velocity profile, and One method was used in this research, namely  using perturbation Iteration 
Algorithm. The current study aims to find the optimal approximate analytical solution through an 
optimal perturbation Iteration Algorithm and test the accuracy of the solution by studying the effect 
of physical parameters on the velocity profile, testing the convergence of these solutions, and 
comparing the outcome and the numerical solution obtained by BVP4C with other methods. The 
organization of this paper is as follows: The governing equations are derived in section 3. Details of 
the derivation of the perturbation Iteration Algorithm and optimal perturbation Iteration Algorithm 
have been written as steps in section 2. The performance of the perturbation Iteration Algorithm for 
first-grade MHD squeezing fluid flow with OPIA is applied in section 4. In section 5 the convergence 
analysis is presented. Results and discussions are given in section 6. 
 
2. Perturbation Iteration Algorithm 
 

Perturbation is an important class of iterative methods of analytical techniques, that are used to 
find approximate solutions of differential equations, integral-differential equations, and nonlinear 
algebraic equations [1]. These techniques are useful in clarifying, predicting, and characterizing 
phenomena caused by nonlinear processes in vibratory systems. Mathematical techniques for 
estimating differential equations are referred to as approximate solution by starting with the exact 
solution of the simpler equations which can be defined as perturbation methods. When a problem 
lacks a known precise solution but can be described as a minor modification to a known solvable 
problem, perturbation is frequently utilized. Perturbation iteration is used in a wide range of Physical 
fields. To explain the idea of the standard perturbation iteration algorithm PIA (1,1), consider the 
nonlinear ordinary differential equation as a form [29]; 
 

𝐷 (𝑧, 𝐴(𝑧),
𝑑𝐴

𝑑𝑧
,

𝑑2𝐴

𝑑𝑧2 ,
𝑑3𝐴

𝑑𝑧3 , … ,
𝑑𝑛−1𝐴

𝑑𝑧𝑛−1 ,
𝑑𝑛𝐴

𝑑𝑧𝑛) = 0,         (1) 

 
where 𝐷 is a function of 𝐴 and its derivatives, 𝐴 is an unknown function and denotes 𝑧 spatial 
dependent variable. In Eq. (1), the auxiliary perturbation parameter can be add as shown in the 
following equation: 
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 𝐷 (𝑧, 𝐴(𝑧),
𝑑𝐴

𝑑𝑧
,

𝑑2𝐴

𝑑𝑧2 ,
𝑑3𝐴

𝑑𝑧3 , … ,
𝑑𝑛−1𝐴

𝑑𝑧𝑛−1 ,
𝑑𝑛𝐴

𝑑𝑧𝑛 , 𝜀) = 0 ,        (2) 

 
Now, rearranging the writing of Eq. (1) as follows: 
 

𝐷 (𝑧, 𝐴𝑚+1(𝑧),
𝑑𝐴𝑚+1

𝑑𝑧
 ,

𝑑2𝐴𝑚+1

𝑑𝑧2 ,
𝑑3𝐴𝑚+!

𝑑𝑧3 , … ,
𝑑(n−1)𝐴𝑚+1

𝑑𝑧𝑛−1 ,
𝑑𝑛𝐴𝑚+1

𝑑𝑧𝑛 , 𝜀) = 0 ,      (3) 

 
𝑚 represents the 𝑚𝑡ℎ iteration with defined perturbation expansions with correction term for 𝑚 =
0,1,2, … as follows: 
 
𝐴1 = 𝐴0 + 𝜀(𝐴𝑐)0 ,
𝐴2 = 𝐴1 + 𝜀(𝐴𝑐)1 ,
𝐴3 = 𝐴2 + 𝜀(𝐴𝑐)2 ,
⋮

𝐴𝑚+1 = 𝐴𝑚 + ε(A𝑐) 𝑚 ,

            (4) 

 
where 𝜀 is a small perturbation parameter and 𝐴𝑐 is the correction term in the perturbation 
expansion. Furthermore, substituting Eq. (4) in Eq. (3), give 
 
𝐷(𝑧, 𝐴𝑚(𝑧) + 𝜀(𝐴𝑐)𝑛, 𝐴′

𝑚(𝑧) + 𝜀(Ac)′𝑚, 𝐴𝑚 
′′ (𝑧) + 𝜀(Ac)′′

𝑚, 𝐴𝑚
′′′(𝑧) + 𝜀(Ac)′′′

𝑚, … ., 𝐴𝑚
𝑛−1 (𝑧) +

𝜀(𝐴𝑐
(𝑛−1)

)
𝑚 

, 𝐴𝑛(𝑧) + 𝜀(𝐴𝑐
(𝑛)

)
𝑚

, 𝜀) = 0,          (5) 

 
in the next step, we take the Taylor series expansion for the first order derivative in the 
neighbourhood of 𝜀 = 0, yields 
 

𝐷 (𝑧, 𝐴𝑚+1 (𝑧),
𝑑𝐴𝑚+1

𝑑𝑧
,
𝑑2𝐴𝑚

𝑑𝑧2
,
𝑑3𝐴𝑚+1 

𝑑𝑧3
, … ,

𝑑(𝑛−1)𝐴𝑚+1 

𝑑𝑧(𝑛−1)
,
𝑑𝑛𝐴𝑚+1 

𝑑𝑧𝑛
 , 𝜀) +  

 

 𝜀
𝑑𝐷

𝑑𝐴𝑚
. (𝐴𝑐)𝑚 + 𝜀

𝑑𝐷

𝑑𝐴𝑚
′ (𝐴𝑐)′

𝑚
+ 𝜀

𝑑𝐷

𝑑𝐴′′
𝑚

. (𝐴𝑐)′′𝑚 + ⋯ + 𝜀
𝑑𝐷

𝑑𝐴𝑛−1 . (𝐴𝑐)𝑛−1
𝑚

  

 

+𝜀
𝑑𝐷

𝑑𝐴𝑛 . (𝐴𝑐)𝑚
𝑛 + 𝜀 = 0,            (6) 

 

(𝐴𝑐)𝑚
(𝑛)

=
𝐷

𝜀.
𝑑𝐷

𝑑𝐴𝑚
(𝑛)

−

𝑑𝐷

𝑑𝐴𝑚
𝑑𝐷

𝑑𝐴𝑚
(𝑛)

. (𝐴𝑐)𝑚 −

𝑑𝐷

𝑑𝐴′
𝑚

𝑑𝐷

𝑑𝐴𝑚
(𝑛)

. ( 𝐴𝑐)′𝑚 − ⋯ −

𝑑𝐷

𝑑𝐴𝑚
(𝑛−1)

𝑑𝐷

𝑑𝐴𝑚
(𝑛)

. (𝐴𝑐)𝑚
(𝑛−1 ) −

𝑑𝐷

𝑑𝜀
𝑑𝐷

𝑑𝐴𝑚
(𝑛)

.    (7) 

 
Now, all calculations in Eq. (7) are performed at 𝜀 = 0 and result in the ordinary differential 

equation. This ordinary differential equation is solved to obtain(𝐴𝑐)𝑚(𝑧). To find the first correction 
term, substitute 𝐴0 into Eq. (7). Where 𝐴0 is a trial function satisfying the initial condition. The first 
correction can be introduced as follows: 
 

(𝐴𝑐)0
(𝑛)

=
−𝐷

𝜀
𝑑𝐷

𝑑𝐴0
(𝑛)

−

𝑑𝐷

𝑑𝐴0
𝑑𝐷

𝑑𝐴0
(𝑛)

. (𝐴𝑐)0 −

𝑑𝐷

𝑑𝐴′
0

𝑑𝐷

𝑑𝐴′
0
(𝑛)

. (𝐴𝑐)′0 − ⋯ −

𝑑𝐷

𝑑𝐴0
𝑛−1

𝑑𝐷

𝑑𝐴0
(𝑛)

. (𝐴𝑐)𝑚
𝑛−1 −

𝑑𝐷

𝑑𝜀
𝑑𝐷

𝑑𝐴0
𝑛

    (8) 
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To obtain a more effective and better approximation, it can give a basic idea about the optimal 
iterative perturbation method [25]. The proposed approach to perturbation is iterative based on the 
idea of the Homotopy analysis method. The new construction includes convergence parameters that 
are symbolized by 𝛽0, 𝛽1, 𝛽2, …. These parameters can be entered into Eq. (4) to obtain new 
components. These components have been described by 
 
𝐴1(𝑧, 𝛽0) = 𝐴0 + 𝛽0(𝐴𝑐)0 ,
𝐴2(𝑧, 𝛽1) = 𝐴1 + 𝛽1(𝐴𝑐)1 ,
𝐴3(𝑧, 𝛽2) = 𝐴2 + 𝛽2(𝐴𝑐)2 ,
⋮

𝐴𝑚(z, 𝛽𝑚−1) = 𝐴𝑚−1 + 𝛽𝑚−1(A𝑐) 𝑚−1 ,

          (9) 

 
To obtain optimal values of these parameters, replace the approximate analytical solution in Eq. 

(1). The residual functional can be defined by formulation as follow: 
 

�̃�(𝑧, 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑚−1) = 𝐷(𝐴𝑚
(𝑛)

, 𝐴𝑚
(𝑛−1)

, … . , 𝐴𝑚
′′′′, 𝐴𝑚

′′′, 𝐴𝑚
′′ , 𝐴𝑚),                 (10) 

 
To obtain the optimum values of theses parameters, substituting the approximate analytical 

solution in Eq. (1) The case can be clarified, when �̃�(𝑧, 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑚+1) = 0, then the 
approximation 𝐴𝑚 is the exact solution of the problems. Normally, such a situation does not occur in 
nonlinear equations, but one can minimize the functional 
 

𝐽(𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑚−1) = ∫ �̃�2(𝑧, 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑚−1)𝑑𝑧,
𝑏

𝑎
                  (11) 

 
where 𝑎 and 𝑏 are selected from the domain of the problem. The optimum values of 𝛽0, 𝛽1, 𝛽2, … can 
be optimally defined based from the conditions 
 
𝑑𝐽

𝑑𝛽0
=

𝑑𝐽

𝑑𝛽1
= ⋯ =

𝑑𝐽

𝑑𝛽𝑚−1
= 0.                      (12) 

 
3. The Formulation of the Problem 
 

Here, the squeezing flow of an incompressible Newtonian fluid under consideration with constant 
density 𝜌 and viscosity 𝜇 between two large planar parallel plates approaching each other at a low 

constant velocity �̌� in the presence of a magnetic field. The plates are separated by a small distance 
of 2𝐿 can be seen in Figure 1. The flow is assumed to be quasi-steady [3,10]. The flow is controlled 
by the Navier-Stokes equations when inertial terms are retained. These equations, which can be 
derived from the conservation equations, which represent the continuity equations and the 
momentum equation, can be presented in the Cartesian form as follows: 
 

∇. �̌� = 0,                       (13) 
 

𝜌 [
𝜕𝑈

𝜕
+ (∇. �̌�). �̌�] = ∇. 𝒘 + (�̌� × 𝑯) × 𝑯,                    (14) 

 
where, 𝛻 denotes the derivative of material time and 𝒘 is the Cauchy stress tensor can be defined 
by 
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𝒘 = −𝑝𝐼 + 𝜇(𝛻𝑢 + (𝛻𝑢)𝑇),                      (15) 
 

𝑯 is the total magnetic field given by 𝑯 = 𝑯𝟎 + 𝑏. 𝑏 and 𝑯𝟎 are the induced and imposed 
magnetic fields, respectively. The Maxwell equation and modified Ohm’s law in the absence of 
displacement currents, are 
 

𝑁 = 𝛿[𝐸 + �̌� × 𝑯],             𝛻 ⋅ 𝑯 = 0,                    (16) 

 

𝛻 × 𝑯 = 𝜇𝑝𝑁,               𝑐𝑢𝑟𝑙 𝐸 =  
𝜕𝑯

𝜕𝑡
 .                    (17) 

 
In this case, 𝑁 is the density of electric current, δ represents electrical conductivity, 𝐸  is the 

electric field, and 𝜇𝑝 is the magnetic permeability. 

 
If 𝜌, and 𝛿 are constant, the force of MHD can be expressed as follows: 

i. 𝑏 is insignificant in relation to 𝐵0. 

ii. 𝐵 is perpendicular to �̌� such that the Reynold number is minimal. 
iii. There is no electric field in the fluid flow zone. 

 
which of the above points fulfills the following equation? 
 

𝑁 × 𝑯 = −𝛿𝑯𝟎
𝟐𝑈,̌                         (18) 

 
The plates are non-conductive, and the magnetic field is applied along the 𝑧-axis. The gap distance 

2𝐿 between the two plates changes slowly with time t for small values of velocity so that it can be 

considered constant. An axisymmetric flow in cylindrical coordinates (𝑟, 𝜃, 𝑧) with �̌� the axis 

perpendicular to plates and 𝑧 = ±𝐿 at the plates. Furthermore, axial symmetry, �̌� is represented by 

�̌� =  (�̌�𝑟 , 0,  �̌�𝑧). Due to the negligible body forces with no tangential velocity, the Navier-Stokes 

equation in the cylindrical coordinates can be presented in the form of a mathematical model as 
follows [1,10,24]: 
 
𝜕p

𝜕𝑟
 – 𝜌Λ �̌�𝑧 = −𝜇

𝜕Λ

𝜕𝑧
− 𝛿𝐻0

2�̌�𝑟 ,                     (19) 

 
𝜕p

𝜕𝑧
 + 𝜌Λ�̌�𝑟 =

𝜇

𝑟
 

𝜕

𝜕𝑟
 (𝑟Λ),                      (20) 

 
where, 
 

Λ(𝑟, 𝑧) =
𝜕 𝑈𝑧

𝜕𝑟
 −

𝜕𝑈𝑟

𝜕𝑧
                      (21) 

 
the definition of the stream function 𝜉(𝑟, 𝑧) canbe introduce by 
 

�̌�𝑟 =
1

𝑟
 
𝜕𝜉

𝜕𝑟
, �̌�𝑧 = −

1

𝑟
 
𝜕𝜉

𝜕𝑟
 ,                      (22) 

 
The pressure can be eliminated by deriving Eq. (19) with respect to 𝑧 and Eq. (20) with respect to 

𝑟 and then subtracting the two resulting equations, become 
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𝜌 [ 
𝜕(𝜉, 𝐸2.

𝜉

𝑟2)

𝜕(𝑟,𝑧)
 ] = −

𝜇

𝑟
𝑁4𝜉 + 𝛿

𝑯𝟎
𝟐

𝑟

𝜕2

𝜕𝑧2,                    (23) 

 
where 
 

𝑁2 =
𝜕2

𝜕𝑟2
−  

1

𝑟

𝜕

𝜕𝑟
 +

𝜕2

𝜕𝑧2
,                      (24) 

 
Using the appropriate transformation it can be written in the following form 
 
𝜉(𝑟, 𝑧) = 𝑟2 𝑎(𝑧),                       (25) 
 
Using the appropriate transformation it can be written in the following form 
 
𝜉(𝑟, 𝑧) = 𝑟2 𝑎(𝑧) ,                       (25) 
 
by substituting an Eq. (25) into Eq. (23), the following arrangement is the result 
 

𝑎′′′′ (𝑧) −
𝛿𝐻0 

2

𝜇
 𝑎′′(z)+2

ρ

μ
 𝑎(z)𝑎′′′ (𝑧) = 0,                   (26) 

 
The initial and slip boundary conditions are 
 

𝑎(0) = 0,     𝑎′′(0) = 0,    𝑎(𝐿) =  
𝛾

2
,    𝑎′ (𝐿) = 𝜋𝑎′′ (𝐿),                  (27) 

 
Non-dimensional parameters can be described as: 
 

𝐴∗ =

𝑎

𝛾

2
, 𝑧∗ =

𝑧

𝐿
,    𝑅𝑒 =

𝜌𝐿

𝜇

𝛾
, 𝑀 =

𝐻0𝐿√𝛿

𝜇
.                    (28) 

 
After putting Eq. (28) into Eq. (26) and Eq. (27) and removing ∗, becomes 
 
𝑑4𝐴(𝑧)

𝑑𝑧4
− 𝑀2 𝑑2𝐴(𝑧)

𝑑𝑧2
+ 𝑅𝑒𝐴(𝑧)

𝑑3𝐴(𝑧)

𝑑𝑧3
= 0,                    (29) 

 

𝐴(0) = 0 ,
𝑑2𝐴(0)

𝑑𝑧2 = 0, 𝐴(1) = 1,
𝑑𝐴(1)

𝑑𝑧
= 𝑌

𝑑2𝐴(1)

𝑑𝑧2 ,                   (30) 

 

The symbols of non-dimensional are 𝑌 =
𝜋

𝐿
 representing the slip parameter, 𝑅𝑒 is the Reynolds 

number and 𝑀 is the Hartmann number. 
i. Reynolds Number: is a dimensionless number used in fluid mechanics to describe the flow 

behavior .it determines whether the flow is laminar or turbulent. 
ii. Hartmann Number: is a dimensionless number used in Magnetohydrodynamics (MHD)to 

measure the effect of a magnetic field on the behavior of conducting fluid. 
Summary 

iii. Reynolds Number is used to determine the type of flow. 
iv. Hartmann Number is used to measure the effect of the magnetic field on conduction fluids. 
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Fig. 1. A steady squeezing axisymmetric fluid flow between two parallel plates 

 
4. The Application of PIM and OPIM for the Problem 
 

The PIA and OPIM apply several steps to the nonlinear differential Eq. (29) to find an analytical 
approximation solution. The problem of the auxiliary perturbation parameter 𝜀 are 
 

𝐷 (𝐴(𝑧),
𝑑2𝐴

𝑑𝑧2 ,
𝑑3𝐴

𝑑𝑧3 ,
𝑑4𝐴

𝑑𝑧4 , 𝜀) =
𝑑4𝐴

𝑑𝑧4 − 𝑀2𝜀
𝑑2𝐴

𝑑𝑧2 + 𝑅𝑒𝜀𝐴(𝑧)
𝑑3𝐴

𝑑𝑧3 ,                 (31) 

 
perturbation expansions with only one correction term are given as follows: 
 
𝐴𝑚+1 = 𝐴𝑚 + 𝜀(𝐴𝑐)𝑚 ,                      (32) 
 
substituting Eq. (32) into Eq. (31), the Taylor series with first-order derivative terms about 𝜀 = 0, 
yields 
 
𝐷(𝐴𝑚, 𝐴𝑚

′′ , 𝐴𝑚
′′′, 𝐴′′′′

𝑚0) + 𝜀[𝐷𝐴𝑚
(𝐴𝑐)𝑚 + 𝐷𝐴′′

𝑚
(𝐴𝑐)′′𝑚 + 𝐷𝐴′′′

𝑚
(𝐴𝑐)′′′𝑚 + 𝐷𝐴′′′′

𝑚
(𝐴𝑐)′′′′𝑚 +

𝐷𝜀] = 0,                        (33) 
 
the following derivatives 
 

𝐷𝐴𝑚
= 𝑅𝑒𝜀

𝑑3𝐴𝑚(𝑧)

𝑑𝑧3
, 

𝐷𝐴′′
𝑚

= −𝑀2𝜀, 

𝐷𝐴′′′
𝑚

= 𝑅𝑒𝜀𝐴𝑚(𝑧), 

𝐷𝐴′′′′
𝑚

= 1, 

𝐷𝜀 = −𝑀2 𝑑2𝐴

𝑑𝑧2 + +𝑅𝑒𝐴𝑚(𝑧)
𝑑3𝐴𝑚(𝑧)

𝑑𝑧3 , 

𝐷(𝐴𝑚(𝑧), 𝐴𝑚
′′ (𝑧), 𝐴𝑚

′′′(𝑧), 𝐴𝑚
′′′′(𝑧), 0) =

𝑑4𝐴𝑚(𝑧)

𝑑𝑧4  ,                   (34) 

 
calculating all derivatives at 𝜀 = 0 and substituting the results into (33) yields the following linear 
ordinary differential equations: 
 

(𝐴𝑐)′′′′𝑚 =
−1

𝜀
𝐴′′′′

𝑚(𝑧) + 𝑀2𝐴𝑚
′′ (𝑧) − 𝑅𝑒𝐴𝑚(𝑧)𝐴𝑚

′′′(𝑧),                  (35) 
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assume that the initial condition, 
 

𝐴0(𝑧) = 𝛼0 + 𝛼1𝑧 +
𝛼2

2
𝑧2 +

𝛼3

3!
𝑧3,                     (36) 

 
where, 
 

𝐴(0) = 𝛼0  ,        
𝑑𝐴(0)

𝑑𝑧
= 𝛼1  ,      

𝑑2𝐴(0)

𝑑𝑧2 = 𝛼2  ,    
𝑑3𝐴(0)

𝑑𝑧3 = 𝛼3,  

 
from the boundary condition (30), become 
 

𝐴0(𝑧) = 𝛼1𝑧 +
𝛼3

6
𝑧3,                       (37) 

 
Nevertheless, there are two cases for the solving of Eq. (29). Firstly, the solution results from PIM 

that contains 𝛼2 and 𝛼3 is unknown. These values can be extracted with the help of boundary 
conditions. The approximate analytical solutions to Eq. (29) resulting from PIM are as follows: 
 

𝐴1 = 𝛼1𝑧 +
1

6
𝛼3𝑧3 − 0.20000000000(0.04166666667𝑅𝑒𝛼2𝛼3 − 0.04166666667𝑀2𝛼3)𝑧5 −

0.0001984126984𝑅𝑒𝛼3
2𝑧7 ,                      (38) 

 

𝐴2 = 𝛼1𝑧 +
1

6
𝛼3𝑧3 + (−0.0833333333𝑅𝑒𝛼2𝛼3 + 0.083333333𝑀2𝛼3)𝑧5 + (0.00198412698𝑅𝑒 

𝛼3
2 + 0.001190476191𝑀2(−0.16666666666𝑅𝑒𝛼2𝛼3 + 0.166666666𝑀2𝛼3) − 0.00119047619  

𝑅𝑒𝛼1(−0.5000000000𝑅𝑒𝛼2𝛼3 + 0.5000000000𝑀2𝛼3))𝑧7 + (−0.000002755731924𝑀2𝑅𝑒𝛼3
2 + 

0.0000137785962𝑅𝑒2𝛼1𝛼3
2 − 0.0000551463848𝑅𝑒𝛼3(−0.50000000000𝑅𝑒𝛼2𝛼3 + 0.5000000 

𝑀2𝛼3) − 0.0003306848𝑅𝑒(−0.0083333333334𝑅𝑒𝛼2𝛼3 + 0.008333333334𝑀2𝛼3)𝛼3)𝑧9 + (9.0 
187508181 10−7𝑅𝑒2𝛼3

2 − 0.000126262626𝑅𝑒(−0.0083333333334𝑅𝑒𝛼2𝛼3 + 0.003333333𝑀2 
𝛼3)(0.50000000𝑅𝑒𝛼2𝛼3 + 0.50000000𝑀2𝛼3))𝑧11 + (0.00002428127428𝑅𝑒2(−0.008333333 
𝑅𝑒𝛼2𝛼3 + 0.00833333334𝑀2𝛼3)𝛼3

2 + 1.1562511556 10−8𝑅𝑒2𝛼3
2(−0.5000000000𝑅𝑒𝛼2𝛼3 +  

0.500000000𝑀2𝛼3))𝑧13 − 2.523564031 10−10𝑅𝑒3𝛼3
4𝑧14 ,                 (39) 

⋮ 
 

Second, the solution result from OPIM that contains 𝛼1, 𝛼3, 𝛽0 and 𝛽1 are unknown. The values 
of 𝛼1 and 𝛼3 can be extracted with the help of boundary conditions and the values of 𝛽0 and 𝛽1  can 
be extracted by finding the residual and then applying the basic condition for minimize functional. 
The approximate analytical solutions to Eq. (29) resulting from OPIM are as follow: 
 

𝐴1 = 𝛼1𝑧 +
1

6
𝛼3𝑧3 − (0.200000000(0.04166666667𝛼1𝛼3 − 0.0416666667 𝛼3𝑧5 +

𝛽0(−0.000198412684𝛼3
2)𝑧7 ,                     (40) 

 

𝐴2 = 𝛼1𝑧 +
1

6
𝛼3𝑧3 + ((−0.00833333330𝛽0(−1. 𝑅𝑒𝛼2𝛼3 + 𝑀2𝛼3) + 0.008333333330𝑀2𝛼3 −

0.008333333330𝑅𝑒𝛼2𝛼3)𝛽1 + (0.00833333333𝑅𝑒 𝛼2𝛼3 +0.00833333333𝑀2𝛼3))𝑧5 +
+((0.000198412698309𝑅𝑒𝛽0𝛼3

2 + 0.001190476191𝑀2𝛽0(−0.16666666667𝑅𝑒𝛼2𝛼3 +   
0.16666666667𝑀2𝛼3 − 0.00119476191𝑅𝑒𝛼1𝛽0(−0.5000000000𝑅𝑒𝛼2𝛼3 +
0.5000000000𝑀2𝛼3) − 0.00019841269𝑅𝑒𝛼3

2)𝛽1 − 0.000198412684𝛽0𝑅𝑒𝛼3
2) 𝑧7 +

(−0.00002755731923 
𝑀2𝑅𝑒𝛼3

2 + 0.00001377865962𝑅𝑒𝛼1𝛼3
2𝛽0 − 0.00005511463848𝑅𝑒𝛼3𝛽0(−0.5000000000𝑅𝑒  
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𝛼2𝛼3 + 0.5000000000𝑀2𝛼3) − 0.0003306878309𝑅𝑒𝛽0(−0.008333333334𝑅𝑒𝛼1𝛼3 + 0.0083  
33333334𝑀2𝛼3)𝛼3)𝛽1𝑧9 + (9.018759018 0−7𝑅𝑒2𝛼3

2𝛽0 − 0.001262626263𝑅𝑒𝛽0
2(−0.008333  

33334𝑅𝑒𝛼1𝛼3 + 0.08333333334𝑀2𝛼3)(−0.5000000000𝑅𝑒𝛼2𝛼2𝛼3 + 0.5000000000𝑀2𝛼3)) 
𝛽1𝑧11 + (0.000002428127428𝑅𝑒2𝛽0

2(−0.008333333334𝑅𝑒𝛼2𝛼3 + 0.008333333334𝑀2𝛼3)   
𝛼3

2 + 1.156251156 10−8𝑅𝑒2𝛼3
2𝛽0

2(−0.5000000000𝑅𝑒𝛼2𝛼3 + 0.500000000𝑀2𝛼3)𝛽0𝑧13 − 
2.5235640311 10−10𝑅𝑒3𝛽0

2𝛼3
4𝛽1𝑧15 ,                    (41) 

⋮ 
 

Now, superseding the second approximate in Eq. (10) to extract the residual �̃�, which becomes 
 

�̃�(𝑧, 𝛽0, 𝛽1) = 𝐷 (
𝑑4𝐴𝑚(𝑧)

𝑑𝑧4
,

𝑑3𝐴𝑚(𝑧)

𝑑𝑧3
,

𝑑2𝐴𝑚(𝑧)

𝑑𝑧2
, 𝐴𝑚),  

                        =
𝑑4𝐴2(𝑧)

𝑑𝑧4
− 𝑀2 𝑑2𝐴2(𝑧)

𝑑𝑧2
+ 𝑅𝑒𝐴2(𝑧)

𝑑3𝐴𝑚(𝑧)

𝑑𝑧3
 ,                  (42) 

 
by using Eq. (11) and Eq. (12) to find the values of 𝛽0 and 𝛽1 as follow: 
 

𝐽(𝛽0, 𝛽1) = ∫ �̃�2(𝑧, 𝛽0, 𝛽1) 𝑑𝑧
1

0
 ,                     (43) 

 
For example, when take parameters 𝑅𝑒 = 1 , 𝑀 = 1 , Y=1 the values of the constant are 
 
𝛽0 = 0.8741438062        𝛽1 = 0.8754891051,      𝛼1 = 1.523846385,      and         𝛼3 =
−3.210078888. 
 
5. The Analysis of the Convergence 
 

The convergence of the approximate analytical solutions resulting from applying OPTM to solve 
the non-linear equations is studied with the aid of the convergence theorem and the convergence 
condition. Firstly, these solutions obtained by OPTM can be viewed in a different way as follows: 
 
𝐴0=𝜑0 , (𝐴𝑐)𝑚 = 𝜑𝑚+1 ,                      (44) 
 
Sequentially, other solutions can be determined in the following iterations: 
 
𝐴0 = 𝜑0 ,
𝐴1 = 𝐴0 + 𝛽0(𝐴𝑐)0 = 𝜑0 + 𝜑1 ,
𝐴2 = 𝐴1 + 𝛽1(𝐴𝑐)1 = 𝜑0 + 𝜑1 + 𝜑2,
⋮

𝐴𝑚+1 = 𝐴𝑚 + 𝛽𝑚(𝐴𝑐)𝑚 = 𝜑0 + 𝜑1 + 𝜑2 + ⋯ + 𝜑𝑚+1 = ∑ 𝜑𝑖
𝑚+1
𝑖=0 .

                (45) 

 
Consequently, the values of 𝛽𝑚 𝑖𝑠 substituted in Eq. (45) to obtain 𝐴𝑚+1(𝑧). The approximate 

analytical solution required in the form of the power series can be represented as: 
 
𝐴(𝑧)=𝑙𝑖𝑚𝑚→∞ 𝐴𝑚+1=∑ 𝛽𝑖

∞
𝑖=0 .                      (46) 

 
Theorem 5.1: Let 𝐹 be a Banach space denoted with a suitable norm ‖. ‖ over which the series 
∑ 𝜑𝑖

𝑚
𝑖=0  is defind with assume that initial guess 𝐴0= 𝜑0 remains inside the ball of the solution 𝐴(𝑧). 

The series solution ∑ 𝜑𝑖
∞
𝑖=0  converges if there is a 𝑆 such that ‖𝜑𝑚+1‖ ≤ 𝑆‖𝜑𝑚‖. 
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Proof: To prove the given theorem, we must prove {𝐴𝑚}𝑖=0
∞  is a Cauchy sequence in 𝐹 it depending 

on the sequence of solutions in the Eq. (45). In order to fulfil this condition, we take into consideration 
the following 
 
‖𝐴𝑚+1 − 𝐴𝑚‖ = ‖𝜑𝑚+1‖ ≤ 𝑆‖𝜑𝑚‖ ≤ 𝑆2‖𝜑𝑚−1‖ ≤ ⋯ ≤ 𝑆𝑚+1 ‖𝜑0‖, 
 
For every 𝑚, 𝑘 ∈ 𝑁, 𝑚 ≥ 𝑘, obtain 
 
‖𝐴𝑚 − 𝐴𝑘‖ = ‖(𝐴𝑚 − 𝐴𝑚−1) + (𝐴𝑚−1 − 𝐴𝑚−2) + ⋯ + (𝐴𝑘+1 − 𝐴𝑘)‖,  
                      ≤ ‖𝐴𝑚 − 𝐴𝑚−1‖ + ‖𝐴𝑚−1 − 𝐴𝑚−2‖ + ⋯ + ‖𝐴𝑘+1 − 𝐴𝑘‖,                                               
                              ≤ 𝑆𝑚‖𝜑0‖ + 𝑆𝑚−1‖𝜑0‖ + ⋯ + 𝑆𝑘−1‖𝜑0‖ 

=
1 − 𝑆𝑚−𝑘

1 − 𝑆
𝑆𝑘+1‖𝜑0‖.                                       

 
Since it is common knowledge  0 < 𝑆 < 1 , One can get results from Eq. (46) 
 

lim
𝑚,𝑘→∞

‖𝐴𝑚 − 𝐴𝑘‖ = 0.  

 
Finally, {𝐴}𝑚=0

∞  is a Cauchy sequence in 𝐹 and this means that the solution of the series (45) is 
convergent. The proof is complete. 

From Theorem 5.1, we can derive the necessary condition for convergence of the solutions 
obtained by the method as follows: 
 
Definition 5.2: Let  φ be the solution extracted from OPIM. The basic condition for convergence can 
be represented in the following form 
 

£𝑖 =
‖𝜑𝑚+1‖

‖𝜑𝑚‖
,       𝑖 = 1,2,3, ….  

 
If 0 < £, £1, £2, … < 1 can be said that the series ∑ 𝜑∞

𝑖=0  is converges to 𝐴(𝑧). The definition of 
condition convergence is implemented to test convergence. The values of £ (PIM) can be summarized 
in Table 1 to Table 4 while the values of £ (OPIM) recorded in Table 5 to Table 8 for first-grade 
magnetohydrodynamics squeezing fluid flow with slip boundary condition. From these tables can be 
seen that £ is between zero and one, meaning the resulting approximate solutions are converged 
from both methods. 
 

Table 1 

The value of £𝑖 for 𝑅𝑒 = 21, 𝑀 = 10, 𝑌 = 0.7, 𝛼2 = 0.9319414460, 𝛼3 =
0.04537104490 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.02905150632 0.02905150632 0.02905150632 
£2 0.00807902604 0.00708104107 0.00161580520 
£3 0.00005633023 0.00001831562 0.00003237017 
⋮ ⋮ ⋮ ⋮ 
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Table 2 

The value of £𝑖 for 𝑅𝑒 = 1.5, 𝑀 = 1, 𝑌 = 0.8, 𝛼2 = 0.6342185038, 𝛼3 =
2.197705146 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.06691496020  0.06691496020 0.06691496020 
£2 0.00945767811 0.00472883905 0.00305720248 
£3 0.00040583207 0.00023910611 0.00009483210 
⋮ ⋮ ⋮ ⋮ 

 
Table 3 

The value of £𝑖 for 𝑅𝑒 = 4.5, 𝑀 = 3, 𝑌 = 0.6, 𝛼2 = 0.6491103561, 𝛼3 =
1.632123077 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.01974775649 0.01974775649 0.01974775649 
£2 0.00624684273 0.00312342136 0.00163374267 
£3 0.00003375265 0.00002663601 0.00000138312 
⋮ ⋮ ⋮ ⋮ 

 
Table 4 

The value of £𝑖 for 𝑅𝑒 = 2, 𝑀 = 1, 𝑌 = 0.5, 𝛼2 = 0.03176712451, 𝛼3 =
5.624017006 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.01419964565 0.01419964565 0.01419964565 
£2 0.00181637408 0.00090818701 0.00008042671 
£3 0.00000743810 0.00000482033 0.00000142679 
⋮ ⋮ ⋮ ⋮ 

 
Table 5 

The value of £𝑖 for 𝑅𝑒 = 21, 𝑀 = 10, 𝑌 = 0.7, 𝛽0 = 1.150455909, 𝛽1 =
0.8169371596 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 1.121702686 1.121702686 1.121702686 
£2 0.212688404 0.142317022 0.1063442021 
£3 0.004568261 0.002890644 0.001265190 
⋮ ⋮ ⋮ ⋮ 

 
Table 6 

The value of £𝑖 for 𝑅𝑒 = 1.5, 𝑀 = 1, 𝑌 = 0.8, 𝛽0 = 0.9072339986, 𝛽1 =
0.9071861920 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.07726085585  0.07726085585 0.07726085585 
£2 0.00492639704 0.03463198521  0.00252164003 
£3 0.00062934210 0.00049355134 0.00021536421  
⋮ ⋮ ⋮ ⋮ 

 
Table 7 

The value of £𝑖 for 𝑅𝑒 = 4.5, 𝑀 = 3, 𝑌 = 0.6, 𝛽0 = 0.7618213763, 𝛽1 =
0.9052688660 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.01610006889 0.01610006889 0.01610006889 
£2 0.00457960808 0.00314331342 0.00228980404  
£3 0.00009956385 0.00007480125 0.00004003589 
⋮ ⋮ ⋮ ⋮ 
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Table 8 

The value of £𝑖 for 𝑅𝑒 = 2, 𝑀 = 1, 𝑌 = 0.5, 𝛽0 = 0.8887362278, 𝛽1 =
0.8866710640 
 ‖. ‖1 ‖. ‖2 ‖. ‖∞ 

£1 0.01250779220 0.01250779220 0.01250779220 
£2 0.00135380669 0.00067691533 0.00032785841 
£3 0.00005907146 0.00003922049 0.00001032009  
⋮ ⋮ ⋮ ⋮ 

 
6. Tabular Discussion 
 

Tabular analysis of the effect of a physical parameter such as slip parameter (Y), Hartmman 
number (M) and Reynolds (Re) on the velocity profile of magnetohydrodynamic squeezing fluid flow 
between two parallel plates in a porous medium with slip boundary conditions. The convergence of 

values 
𝑑𝐴(0)

𝑑𝑧
 and 

𝑑3𝐴(0)

𝑑𝑧3  are explained in Table 9 to Table 13 and can see that the values are fixed for 

the third order. From Table 14 to Table 17 can be observed that the computed error by 𝐿1-norm, 𝐿2-
norm, and 𝐿∞-norm. These tables showed that the error obtained from OPIA is more accurate than 
the error of PIA. The comparison of the solutions of the differential transformation method, optimal 
homotopy analysis method, OPIA, and BVP4C are indicated in Table 18 [10]. From this table can be 
said that the results of OPIA converged to the numerical solution of BVP4C. The current solutions for 
PIA, OPIA, and BVP4C that appear in Table 19 to Table 21 are close to the numerical solutions. The 
current solutions for PIA, OPIA BVP4c that appear in Table 19 to Table 21 are close to the numerical 
solutions. 
 

Table 9 
The convergence of the values 𝛼1, 𝛼3 for 𝑅𝑒 = 1 , 𝑀 = 1 , 𝑌 = 0.01 
Approximation order 𝛼1 𝛼3 

First order 1.525118943 -3.229696700   
Second order 1.523678671 -3.208608669 
Third order 1.528346385 -3.210078888 
Fourth order 1.528346385 -3.210078888 
Fifth order 1.528346385 -3.210078888 

 
Table 10 
The convergence of the values 𝛼1, 𝛼3 for 𝑅𝑒 = 0.9 , 𝑀 = 0.2 , 𝑌 = 0.02 
Approximation order 𝛼1 𝛼3 

First order 1.565687692 -3.628406435 
Second order 1.559603616 -3.566942528 
Third order 1.560311541 -3.573358287 
Fourth order 1.560311541 -3.573358287 
Fifth order 1.560311541 -3.573358287 

 
Table 11 
The convergence of the values 𝛼1, 𝛼3 for 𝑅𝑒 = 0.8 , 𝑀 = 0.4 , 𝑌 = 0.05 
Approximation order 𝛼1 𝛼3 

First order 1.613116582 -3.883867683 
Second order 1.609606516 -3.844640960 
Third order 1.609934506 -3.847987778 
Fourth order 1.609934506 -3.847987778 
Fifth order 1.609934506 -3.847987778 
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Table 12 
The convergence of the values 𝛼1, 𝛼3 for 𝑅𝑒 = 0.9 , 𝑀 = 0.2 , 𝑌 = 0.01 
Approximation order 𝛼1 𝛼3 

First order 1.549420157 -3.521738276 
Second order 1.543212343 -3.460544103 
Third order 1.543945314 -3.467017436 
Fourth order 1.543945314 -3.467017436 
Fifth order 1.543945314 -3.467017436 

 
Table 13 
The convergence of the values 𝛼1, 𝛼3 for 𝑅𝑒 = 1.5 , 𝑀 = 0.3 , 𝑌 = 0.02 
Approximation order 𝛼1 𝛼3 

First order 1.429871557 -1.915960307 
Second order 1.419633269 -1.835144308 
Third order 1.419760999 -1.831638289 
Fourth order 1.419760999 -1.831638289 
Fifth order 1.419760999 -1.831638289 

 
Table 14 
Comparison of computed error of 𝐴(𝑧) between PIA and OPIA for 𝑅𝑒 =
1, 𝑀 = 1, 𝑌 = 0.01 
Error PIA OPIA 

𝐿1 6.6181317 × 10−10 5.41644× 10−10 
𝐿2 0.0000248 0.0000233 
𝐿∞ 0.000069 0.0000495324 

 
Table 15 
Comparison of computed error of 𝐴(𝑧) between PIA and OPIA for 𝑅𝑒 =
0.9, 𝑀 = 0.2, 𝑌 = 0.02 
Error PIA OPIA 

𝐿1 1.041580163× 10−8 1.449265700 × 10−9 
𝐿2 0.0001020578347 0.00003806924612 
𝐿∞ 0.000285260 0.0000679459 

 
Table 16 
Comparison of computed error of 𝐴(𝑧) between PIA and OPIA for 𝑅𝑒 =
0.8, 𝑀 = 0.4, 𝑌 = 0.05 
Error PIA OPIA 

𝐿1 4.984347087 × 10−9 8.593095684 × 10−10 
𝐿2 0.00007059990855 0.00002931398247 
𝐿∞ 0.0001971298 0.0000517828 

 
Table 17 
Comparison of computed error of 𝐴(𝑧) between PIA and OPIA for 𝑅𝑒 =
0.9, 𝑀 = 0.2, 𝑌 = 0.01 
Error PIA OPIA 

𝐿1 9.358293928× 10−9 1.330580272× 10−10 
𝐿2 0.00009673827540 0.0003647711984 
𝐿∞ 0.0002704401 0.0000650920 
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Table 18 
Comparison between OPIA, DIM, OHAM, and BVp4c for 𝐴(𝑧) 
Z OPIA DIM [10] OHAM [10] BVP4c 

0.0 0.000000 0.000000 0.000000 0.000000 
0.1 0.077993 0.075739 0.075739 0.077993 
0.2 0.176009 0.152935 0.152935 0.176009 
0.3 0.264103 0.233046 0.233046 0.264103 
0.4 0.352423 0.317540 0.317540 0.352423 
0.5 0.441350 0.407893 0.407893 0.441350 
0.6 0.531781 0.505591 0.505591 0.531781 
0.7 0.625672 0.612134 0.612134 0.625672 
0.8 0.797006 0.729034 0.729034 0.797006 
0.9 0.893402 0.875813 0.875813 0.893402 
1.0 1.000000 1.000000 1.000000 1.000000 

 
Table 19 
Comparison between PIA and OPIA for 𝑅𝑒 = 1, 𝑀 = 1, 𝑌 = 0.01 
z PIA BVP4c OPIA 

0.00 0.0000000000 0.0000000000 0.0000000000 
0.10 0.1518332387 0.1518482588 0.1518492465 
0.20 0.3004620288 0.3004907271 0.3004949625 
0.30 0.4426918877 0.4427378936 0.4428977211 
0.40 0.5753844867 0.5754312410 0.5754827289 
0.50 0.6954063055 0.6954549842 0.6954617248 
0.60 0.7996990284 0.7997436881 0.7997898816 
0.70 0.8852502669 0.8852849587 0.8853058586 
0.80 0.9490463636 0.9491167417 0.9491793503 
0.90 0.9883129961 0.9883190359 0.9883227693 
1.00 0.9999999994 1.0000000000 1.0000169310 

 
Table 20 
Comparison between PIA and OPIA for 𝑅𝑒 = 0.9, 𝑀 = 0.2, 𝑌 = 0.02 
z PIA BVP4c OPIA 

0.00 0.0000000000 0.0000000000 0.0000000000 
0.10 0.1553662759 0.1554297968 0.1554662701 
0.20 0.3071769040 0.3072988807 0.3072775139 
0.30 0.4519269766 0.4520942380 0.4521857492 
0.40 0.5861989863 0.5863952290 0.5864944640 
0.50 0.7067093171 0.7069125713 0.7069967996 
0.60 0.8103346810 0.8105196107 0.8105438011 
0.70 0.8943331910 0.8942746775 0.8944060485 
0.80 0.9553545691 0.9559341767 0.9559696330 
0.90 0.9914375689 0.9914568227 0.9914843469 
1.00 0.9999999999 1.0000000000 1.000209706 
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Table 21 
Comparison between PIA and OPIA for 𝑅𝑒 = 0.9, 𝑀 = 0.2, 𝑌 = 0.01 
z PIA BVP4c OPIA 

0.00 0.0000000000 0.0000000000 0.0000000000 
0.10 0.1538170845 0.1538105612 0.1538170790 
0.20 0.3041787738 0.3041662766 0.3041786059 
0.30 0.4476754689 0.4476580252 0.4476743777 
0.40 0.5809862457 0.5809656802 0.5809822442 
0.50 0.7009161282 0.7008949591 0.7009061999 
0.60 0.8044255048 0.8044083188 0.8044175122 
0.70 0.8886500525 0.8886463488 0.8886676219 
0.80 0.9509102999 0.9509407326 0.9509818305 
0.90 0.9887107773 0.9888187384 0.9897635606 
1.00 0.9999729598 1.0000000000 0.9999995837 

 
7. Graph Discussion 
 

Figure 2(a) and Figure 2(b) display the impact of increasing 𝑀 and 𝑅𝑒 with fixed 𝑌. These figures 
lead to a decrease in the velocity. Figure 2(c) explains the effect of 𝑌 on the velocity profile 
𝐴(𝑧) which though this figure displays the increment of the velocity profile. Figure 3(a) illustrates the 
impact of the non-slip boundary when the Reynolds number and Hartmann number are equal. This 
figure shows a decrease in the velocity of the fluid. The consequences of decreasing the slip 
parameter Y and increasing the Reynolds number and Hartmann number with M     < Re and M > Re are 
shown in Figure 3(b) and Figure 3(c). These resulted in a reduction in velocity. 
 

  
(a) (b) 

 
(c) 

Fig. 2. The curves of the A(z) for different values of (a) Re=1, Y=0; (b) M=1, Y=0; (c) Re=1, M=0 
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(a) (b) 

 
(c) 

Fig. 3. The curves of the A(z) for different values when (a) Re=M and Y=0; (b) slip parameter when 𝑀 <
𝑅𝑒 ; (c) slip parameter when 𝑀 > 𝑅𝑒 

 
Figure 4 displayed the behavior of the streamlines for various Hartmann numbers with the fixed 

slip parameter and Reynolds number. Figure 5 indicates the effect of the change in Reynolds number 
with the fixed slip parameter and Hartmann number. From these figures can be determined that the 
form of the flow function is curves that do not intersect. It can be seen from this table that the 
behavior of the curves is similar when the values of the physical parameters are small. 
 

  
(a) (b) 
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(c) 

Fig. 4. The manner of the streamlines, (a) =  10, 𝑅𝑒 = 4, 𝑌 =  1 ; (b) 𝑀 = 20, 𝑅𝑒 = 4, 𝑌 =
1 ; (c) 𝑀 = 30, 𝑅𝑒 = 4, 𝑌 = 1 

 

  
(a) (b) 

 
(c) 

Fig. 5. The manner of the streamlines, (a) = 3, 𝑅𝑒 = 4, 𝑌 =  0.8 ; (b) 𝑀 = 3, 𝑅𝑒 = 10, 𝑌 = 0.8 ; (c) 
𝑀 = 3, 𝑅𝑒 = 15, 𝑌 = 0.8 
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From Figure 6 the behaviour of the curvatures of the streamline far from the 𝑧-axis and 𝑟-axis can 
be seen. In Figure 7 the streamline is extended in the direction of the 𝑧-axis and the 𝑟-axis when the 
Hartmann number increases. In fluid mechanics, a flow function can determine the path of imaginary 
particles suspended and carried along with a fluid. In continuous flow, the streamlines are stationary 
but the fluid is moving. Physically, the fluid velocity is relatively high, and the flow is combined. While 
they are opened when the fluid is relatively still. 
 

  

(a) (b) 

 
 (c) 

Fig. 6. The manner of the streamlines, (a) =  10, 𝑅𝑒 = 50, 𝑌 =  0.5 ; (b) 𝑀 = 10, 𝑅𝑒 = 400, 𝑌 =
0.3; (c) 𝑀 = 10, 𝑅𝑒 = 1000, 𝑌 = 0.8 

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 128, Issue 2 (2025) 226-246 

244 
 

  
(a) (b) 

 
 (c) 

Fig. 7. The manner of the streamlines, (a) = 10, 𝑅𝑒 = 20, 𝑌 =  0.6 ; (b) 𝑀 = 40, 𝑅𝑒 =
20, 𝑌 = 0.2; (c) 𝑀 = 100, 𝑅𝑒 = 20, 𝑌 = 0.7 

 
Physically, an increase in the magnetic parameter causes the Lorentz force to be promoted along 

the vertical direction, increasing resistance to fluid flow motion and lowering the velocity 
distribution. In this instance, the magnetic field is the parameter of flow applied perpendicularly to 
produce force. The magnetic field is utilized to control the fluid's movement because this force has 
the potential to decrease it. The velocity field is affected by the Reynolds number traveling from close 
to the cylinder too far away resulting in a discernible reduction in velocity. Eventually, it disappears 
completely from the surface. The high Reynolds number, which lowers friction between the liquid 
and the surface, is the cause of this disappearance. 
 
8. Conclusions 
 

In this study, the perturbation iteration algorithm and optimal perturbation iteration algorithm 
to find the Approximate of the first-grade MHD squeezing fluid flow with boundary conditions are 
discussed. These approaches have been used to determine the series solution of the velocity profile. 
The effect of all physical parameters on the behavior of approximate analytical solutions was also 
studied, which has many applications. One of the applications is the polymer process. Polymers play 
a key role in everyday use because of their unique properties. However, adding polymers to the water 
will change the friction coefficient of the pipes in the case of turbulent flow. They are also practical 
means of reducing hydraulic resistance or friction losses, which have been important for a long time 
in light of developments in the fields of industry, agriculture, transport of oil and its derivatives, and 
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the widespread use of water for irrigation. Agriculture and power plants. Especially thermal plants 
have become less resistant. The most important scientific and technological topics are hydraulic 
components and increased fluid flow velocity. Conclusions deduced from the current results that are 
extracted from solving this problem are as follows: 

i. The perturbation iteration algorithm and optimal perturbation iteration algorithm are 
efficient and successful approaches for solving the first-grade MHD squeezing fluid flow with 
boundary conditions. 

ii. The optimal perturbation iteration algorithm results demonstrate a high degree of agreement 
with the numerical values by BVP4C. 

iii. The numerical solution obtained by BVP4C is used to validate the varying order of the 
approximate solution obtained using the perturbation Iteration Algorithm and optimal 
perturbation iteration algorithm. This work shows full compatibility when comparing with 
perturbation iteration algorithm and optimal perturbation iteration algorithm by looking at 
the results obtained in the tables and figures when controlling the values of physical 
parameters. As well as it can be said that these approaches are important for work to solve 
the turbulent flow problem. The presented tables show good agreement and excellent flow 
results in both divergent and convergent channels, that is good viscosity and a certain density 
show good flow. The future study of this method is done by expanding the horizons of working 
on nanofluid by taking fluid with higher densities. Expanding the application of the PIA to 
winder classes of fluid problems such as the five-dimensional. Application of PIA for solving 
fractional fluid flow problems. 
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