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The flow between bounded surfaces is known as internal flow. The internal flow 
between disks has many significant applications, such as gas turbine rotors, rotating 
machinery, food processing technology, and air cleaning machines. In the current study, 
the nanofluid flow between two disks, nonpermeable and stationary, and the other 
permeable, rotating and shrinking, is analysed. The governing partial differential 
equations and boundary conditions are proposed with the inclusion of radiation and 
heat generation effects. Then, similarity transformations are utilised in deriving the 
nonlinear ordinary differential equations and boundary conditions for computation 
using the bvp4c solver. Multiple solutions are obtained, and only the first solution is 
stable. The combination Mn-ZnFe2O4/C2H6O2 nanofluid is found to produce the lowest 
magnitude of skin friction coefficient and the highest heat transfer rate. 
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1. Introduction 
 

Choi and Eastman [1] proposed nanofluid, which is composed of nanometer-sized particles (e.g., 
metallic nanoparticles, metallic oxide nanoparticles, and nanotubes) suspended in a base fluid (i.e., 
conventional heat transfer fluid such as water, ethylene glycol, and engine oil). Following the 
pioneering work by Maxwell [2], this study was done to find a better heat transfer fluid with high 
thermal conductivity. Applications of nanofluid range from manufacturing processes to biomedical 
applications, such as in heat exchangers, as a coolant in nuclear systems and automobiles, drug 
delivery systems, medicine, nanorefrigerants, sunscreen products, magnetic sealing, and building 
heating systems [3-6]. Researchers conducted various studies on the external and internal flows of 
the nanofluids to identify the flow behaviour and thermophysical properties of this fluid [7-16].  

External flow is unbounded flow over a surface, while internal flow is a flow between bounded 
surfaces, for example, through a pipe, duct, or channel with confining walls. Fluid flow between 

 
* Corresponding author. 
E-mail address: rusyairyanti@gmail.com 
 
https://doi.org/10.37934/arfmts.101.1.3744 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 1 (2023) 37-44 

 

38 
 

rotating disks was initially studied by Batchelor [17]. In this work, it was predicted that a boundary 
layer would form on both disks, and the main body of the fluid would rotate. However, Stewartson 
[18] found that the boundary layer only forms on the rotating disk, with the main body of fluid being 
essentially stationary when the disks rotate in a different direction or one of the disks is static. Later, 
Mellor et al., [19] presented a theoretical and experimental study on the flow between a stationary 
and a rotating disk. Then, Narayana and Rudraiah [20] extended this study by considering a uniform 
suction on the static disk. Next, Lopez [21] considered a corotating cylinder surrounding the 
stationary and rotating disk and studied the fluid flow in this geometry. Kavenuke et al., [22] then 
produced approximate solutions for flow between an impermeable stationary disk and a porous 
rotating disk. Further extension of this study was conducted by Upadhya et al., [23] by considering 
nanofluid, as the working fluid, in the presence of a magnetic field and internal heating. Numerical 
solutions were generated in this study. Bilal et al., [24] recently expanded this study with a nanofluid 
containing gyrotactic microorganisms and magnetic nanoparticles. The radial wall friction along the 
gyrating disk was found to be elevated by heat generation. Meanwhile, the augmentation of the 
chemical reaction boosted the mass transfer rate in the internal flow of the nanofluid.   

The present study will analyse the nanofluid flow between two disks, with one disk stationary 
while the other is rotating and shrinking. This study is extended from Kavenuke et al., [22] and 
Upadhya et al., [23] to the case of a nanofluid and shrinking disk. Partial differential equations and 
boundary conditions that govern this flow problem will be simplified and solved numerically in 
MATLAB. The results, represented by tables and graphs, will be scrutinised and discussed. 
 
2. Mathematical Formulation  
 

Consider a steady nanofluid flow between a stationary nonpermeable disk (lower disk) and a 
permeable rotating shrinking disk (upper disk). The stationary and rotating disks are separated by a 
distance 𝑙, as shown in Figure 1, where (𝑟, 𝜑, 𝑧) are cylindrical coordinates with 𝑟 − axis measured in 
the vertical direction and 𝑧 − axis measured in the horizontal direction. However, the angle 𝜑 will 
not appear in the mathematical formulation due to rotational symmetry, and the distance 𝑙 is very 
small compared to the radii of the disks [22]. Meanwhile, the upper permeable disk rotates about 
the 𝑧 − axis with a velocity Ω 𝜀, where Ω is the angular velocity and 𝜀 (0 < 𝜀 ≤ 1) is a regulator which 
controls the rotation of the disk. The rotation occurs when 𝜀 > 0 and is at rest for 𝜀 = 0. Here, 𝑤0 is 
the constant mass flux velocity with 𝑤0 > 0 for suction and 𝑤0 < 0 for injection. Thermal radiation 
and internal heating effects are considered in the heat transfer analysis. 
 

 
Fig. 1. Physical model and coordinate system 

 
Under these assumptions, the following set of boundary layer equations governing the flow of 

water (H2O) and ethylene glycol (C2H6O2) suspended by cobalt ferrite (CoFe2O4) and Mn-Zn ferrite 
(Mn-ZnFe2O4) nanoparticles can be expressed as [23]                              
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along with the boundary conditions given by 
 

• he nonpermeable stationary disk at  𝑧 = 0  
 

𝑢(𝑟, 0) = 0, 𝑣(𝑟, 0) = 0 , 𝑤(𝑟, 0) = 0,         𝑇(𝑟, 0) =  𝑇1.                                                         (6) 
 

• The permeable rotating shrinking disk at 𝑧 = 𝑙 
 

𝑢(𝑟, 𝑙) = 0,       𝑣(𝑟, 𝑙) = 𝑟 Ω λ,        w(𝑟, 𝑙) =  𝜀 𝑤0,        𝑇(𝑟, 𝑙) =  𝑇2.                                                    (7) 
 

In the above equations, 𝑢, 𝑣, and 𝑤  are the velocity components along the 𝑟−, 𝜑 −
and 𝑧 −directions, respectively. The nanofluid temperature is given by 𝑇, while the temperature of 
the lower and upper disks is 𝑇1  and 𝑇2 , respectively. Meanwhile, 
𝑄0 is the heat generation/absorption coefficient, 𝑝 is the pressure, 𝑞𝑟 is the radiation heat flux, and 
𝜆(< 0) is the shrinking parameter. 

Further, 𝜇 is the dynamic viscosity, 𝜌 is the density, 𝑘 is the thermal conductivity, and 𝜌𝐶𝑝 is the 

effective heat capacity with 𝐶𝑝 as the heat capacity at constant pressure 
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.                                                                                              (8) 

 
Here, the suffixes 𝑛, s, and f represent the nanofluid, nanoparticles, and base fluid, respectively. 

Table 1 contains the thermophysical properties of the base fluids and nanoparticles. Meanwhile, the 
nanoparticle volume fraction is 𝜙.  
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Table 1 
Thermophysical properties of water, ethylene glycol, CoFe2O4 and Mn-ZnFe2O4 
nanoparticles [25] 
Properties Water  Ethylene glycol  CoFe2O4 Mn-ZnFe2O4 

Thermal conductivity, 𝑘 [W/m K] 0.613 0.349 3.7 5 
Heat capacity, 𝐶𝑝 [J/kg K] 4 179 2 382 700 800 

Density, 𝜌 [kg/m3] 997.1 1 116.6 4 907 4 900 
Prandtl number, 𝑃𝑟 6.96 204 - - 

 
From the Rosseland approximation, the radiative heat flux, 𝑞𝑟 can be expressed as follows 
 

𝑞𝑟 = − 
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,                                                                                                                                                (9) 

 
with 𝜎∗ and 𝑘∗ denote the constant of Stefan-Boltzmann and the coefficient of mean absorption, 
respectively. Using the Taylor series and ignoring higher-order terms, 𝑇4 is expanded about 𝑇∞ to 
obtain 𝑇4 ≈ 4𝑇∞
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4 . Then, Eq. (5) can be written as 
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It is suitable to introduce the following similarity variables [23] 
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where the prime denotes differentiation with respect to 𝜂  and 𝐴  is an arbitrary constant, and 
substituting (11) into Eqs. (2) to (4), and (10), we obtain the following ordinary (similarity) differential 
equations 
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subject to the boundary conditions 
 
𝑓(0) = 0,   𝑓′(0) = 0 ,   𝑔(0) = 0, 𝜃(0) = 1,

𝜃(1) = 0,   𝑓′(1) = 0, 𝑔(1) = 𝜆, 𝑓(1) = −𝜀/2 .         
}.                                                                        (16)     
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Here, 𝑃𝑟 is the Prandtl number, 𝑅𝑒 is the Reynolds number, 𝑅𝑑 is the radiation parameter, and 
𝑄 is the heat generation/absorption parameter, which are given by 

 

𝑃𝑟 =  
(𝜇𝐶𝑝)𝑓 

𝑘𝑓
,   𝑅𝑒 =

𝑤0
2

Ω 𝜈𝑓
,   𝑅𝑑 =

4 𝜎∗ 𝑇2
3

𝑘𝑓 𝑘∗
,    𝑄 =

𝑄0
Ω (ρ𝐶𝑝)𝑓

,                                                             (17) 

          
 
where 𝜈 = 𝜇/𝜌 is the kinematic viscosity. 
  
4. Results and Discussion 
 

In the present study, water- and ethylene glycol-based nanofluids containing cobalt ferrite 
(CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) nanoparticles are considered. Only the first solution is 
determined to be stable and physically significant, based on the stability analysis of multiple solutions 
carried out in the prior studies [26–28]. The physical quantities of interest for these nanofluids are 
tabulated in Table 2. As noted in Table 2, the CoFe2O4/H2O nanofluid produces the largest magnitude 
of skin friction coefficient, followed by the Mn-ZnFe2O4/H2O, CoFe2O4/C2H6O2, and Mn-
ZnFe2O4/C2H6O2 nanofluids. Based on these observations, the combination of Mn-ZnFe2O4 
nanoparticle with C2H6O2 produces the most efficient nanofluid for this flow problem, as it has the 
lowest magnitude of skin friction coefficient and the highest heat transfer rate. Next, the axial 
velocity profile in Figure 2a shows that the Mn-ZnFe2O4/C2H6O2 nanofluid has the highest velocity 
near the stationary impermeable disk. However, near the permeable rotating disk, CoFe2O4/H2O 
nanofluid exhibits the highest axial velocity compared to the other nanofluids. Meanwhile, the Mn-
ZnFe2O4/C2H6O2 and CoFe2O4/C2H6O2 nanofluids have the highest radial velocities near the stationary 
and rotating disks, respectively, as shown in Figure 2b. At the same time, in Figure 2c, the Mn-
ZnFe2O4/C2H6O2 nanofluid shows the highest tangential velocity near the stationary and rotating 
disks. From Figure 2d, the CoFe2O4/C2H6O2 and Mn-ZnFe2O4/H2O nanofluids have the highest and 
lowest temperature profiles, respectively. 
 
Table 2 
Coefficients of skin friction (radial and tangential directions) at the lower and upper disks when 𝜙 = 0.2, 𝜆 =
−1, 𝜀 = 1, 𝑅𝑒 = 9, 𝑅𝑑 = 0.3, and 𝑄 = 0.1 

Nanofluid 

𝜇ℎ𝑛
𝜇𝑓

𝑓′′(0) 

(lower disk) 

𝜇ℎ𝑛
𝜇𝑓

𝑔′(0) 

(lower disk) 

𝜇ℎ𝑛
𝜇𝑓

𝑓′′(1) 

(lower disk) 

𝜇ℎ𝑛
𝜇𝑓

𝑔′(1) 

(upper disk)  
 First 

solution 
Second 
solution 

First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

First 
solution 

Second 
solution 

CoFe2O4/H2O -35.62302 -3.32474 -29.23075 1.58930 9.22210 13.75794 51.70404 -22.26607 
Mn − ZnFe2O4/H2O -35.47872 -3.32798 -29.11240 1.59553 9.11525 13.74935 51.56424 -22.28368 
CoFe2O4/C2H6O2 -21.53147 -3.67576 -17.68497 2.23249 2.94548 13.12263 37.10216 -24.34233 
Mn − ZnFe2O4/C2H6O2 -21.37439 -3.68210 -17.55654 2.24338 2.92835 13.11506 36.91246 -24.38100 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Profiles of (a) axial velocity, (b) radial velocity, (c) 
tangential velocity, and (d) temperature for various nanofluid 
when 𝜙 = 0.2, 𝜆 = −1, 𝜀 = 1, 𝑅𝑒 = 9, 𝑅𝑑 = 0.3 , and 𝑄 =
0.1 
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5. Conclusions 
 

The nanofluid flow between a nonpermeable stationary disk and a rotating permeable shrinking 
disk is scrutinised in this study. Various nanofluids such as the CoFe2O4/H2O, Mn-ZnFe2O4/H2O, 
CoFe2O4/C2H6O2, and Mn-ZnFe2O4/C2H6O2 are considered as the working fluid in this flow problem. 
Dual solutions are generated from numerical computation. The combination Mn-ZnFe2O4/C2H6O2 
nanofluid has the lowest magnitude of skin friction coefficient and the highest heat transfer rate. The 
temperature profile of the ethylene-glycol-based nanofluids (i.e., CoFe2O4/C2H6O2 and Mn-
ZnFe2O4/C2H6O2) rises with the addition of nanoparticle volume fraction, contrary to the water-based 
nanofluids (i.e., CoFe2O4/H2O and Mn-ZnFe2O4/H2O).   
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