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This study explores thermal conductivity enhancement in nanofluids for high-temperature 
applications (70–120°C), specifically targeting plastic injection molding. The research 
investigates two formulations: TiO2-3%/MEG-40 nanofluid, containing 3 vol% TiO2 
nanoparticles, and TiO2-3%F8/MEG-40 binary nanofluid, comprising TiO2 rutile and SiO2 
beta-quartz composite nanoparticles in a 92:8 ratio with a total volume fraction of 3 vol%. 
Both nanofluids were synthesized using the two-step method, with grain size confirmed 
via scanning and transmission electron microscopy. Thermal conductivity was measured 
using a TEMPOS Thermal Property Analyzer in a highly insulated heating chamber. Results 
demonstrated significant enhancements in comparison to the base fluid, with TiO2-
3%/MEG-40 nanofluid and TiO2-3%F8/MEG-40 binary nanofluid exhibiting an 18% and 
22% increase in thermal conductivity at approximately 95°C. Including SiO2 beta-quartz 
nanoparticles enhanced dispersion, and thermal conductivity, highlighting their critical 
role in optimizing performance. These findings demonstrate the potential of TiO2 rutile 
and SiO2 beta-quartz nanofluids to improve thermal management in industrial processes, 
advancing beyond existing literature by integrating nanoparticle stability with higher 
temperature thermal performance. 
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1. Introduction 
 

Plastic manufacturing utilizing plastic injection molding is a widely employed method in which the 
quality and productivity are significantly influenced by the cooling system, which regulates the mold 
temperature and prevents excessive heating. This mechanism is very important for regulating the 
mold temperature because it affects the productivity and quality of the product. However, 
conventional coolants have shortcomings in terms of their thermal stability and conductivity. 
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Therefore, researchers have focused on the use of nanofluids as efficient substitutes. Cooling systems 
in molding generally operate at high temperatures; therefore, cold fluids such as water are less 
effective because they have a low boiling point [1-4]. However, glycol-based coolants are limited in 
terms of heat transfer [5,6]. To improve effective heat transfer, nanofluids, which have higher heat 
transfer properties than traditional fluids, hold great promise for improving heat dissipation 
efficiency [7]. However, there is a significant research gap between general mold temperatures and 
published results on the thermal conductivity (TC) of nanofluids in the 30–80°C range. In plastic 
injection molding, the mold temperature generally ranges from 70 to 120°C, depending on the 
material used. Figure 1 shows a schematic representation of the potential applications of nanofluids 
in plastic injection manufacturing processes. 
 

 
Fig. 1. Potential nanofluid applications: (a) Schematic 
representation of a plastic injection molding machine, 
and (b) Utilization of nanofluids as mold coolants [8] 

 
Ideal control of the mold temperature is crucial for meeting the quality criteria of automotive 

plastic injection molding. Heat exchangers are commonly used to manage cooling, with the required 
temperature range varying according to the material: 20–70°C for polyvinyl chloride (PVC) and low-
density polyethylene (LDPE); 25–80°C for acrylonitrile butadiene styrene (ABS) and high-density 
polyethylene (HDPE), 70–120°C for polycarbonate (PC), and 80–120°C for liquid crystal polymers 
(LCP) [2,8-10]. Although suitable thermal management in plastic injection processes is vital, there is 
still a research gap in nanofluids at high temperatures, owing to the challenges of conducting high-
temperature analyses. The lack of sufficient data on the TC of nanofluids at elevated temperatures 
limits their potential for enhancing the performance of cooling systems in high-temperature 
applications. Bridging this information gap is essential for facilitating the use of nanofluids to enhance 
heat transfer efficiency in high-temperature applications, thus improving the plastic molding process 
[11]. 

Nanofluids are suspensions containing nanoparticles, generally less than 100 nm in grain size, 
dispersed in base fluids such as water or ethylene glycol [12-14]. These nanoparticles, including TiO2, 
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SiO2, Al2O2, and ZnO, substantially improved the TC of the working fluid, thereby improving the heat 
conveyance performance. This characteristic makes nanofluids particularly beneficial for mechanical 
processing in plastic injection molding applications. 

Several studies have investigated the TC of TiO2/EG-water nanofluids. Hamid et al., [15] observed 
a maximum TC enhancement of 15.35% with 50 nm TiO2 nanoparticles in an EG-40 blend (40% 
ethylene glycol and 60% water) at a 1.5% volume fraction over a temperature range of 30–80°C. 
Tertsinidou et al., [16] demonstrated up to a 40% enhancement in EG-based fluids containing 
nanoparticles ≥15 nm, while TiO2/water nanofluids with particle sizes of 30–50 nm exhibited an 8% 
increase. Pak and Cho [17] reported a 19.9% improvement using 27 nm TiO2 nanoparticles in water 
at 25°C, and Tseng and Lin [18] reported similar findings with 7–20 nm TiO2 nanoparticles at 5–12%. 
However, these studies predominantly focused on temperatures up to 80°C, limiting their 
applicability to high-temperature processes, such as plastic injection molding. 

Studies on nanofluids using TiO2 and SiO2 have primarily focused on temperatures ranging from 
to 25-80°C. However, most TC data for nanofluids are limited to 80°C, which is insufficient for cooling 
applications in plastic injection molding. Bridging this gap in the elevated-temperature TC data is 
essential for fulfilling the capacity of nanofluids in this area. This study examined the TC of TiO2 and 
SiO2 nanofluids in the temperature range–30-95°C, which is relevant to plastic injection molding. TiO2 
and SiO2 were selected because of their exceptional thermal properties and high-temperature 
stability, which make them suitable for industrial thermal management. Investigations utilized 30 nm 
TiO2 (rutile phase) and 15 nm SiO2 (beta-quartz) nanoparticles dispersed in a 40:60 mixture of 
monoethylene glycol/distilled water (MEG-40). In this study, two nanofluids were examined. The first 
was a TiO2-3%/MEG-40 nanofluid (NF) containing 3% TiO2 nanoparticles by volume. The second was 
a TiO2-3%F8/MEG-40 binary nanofluid (BNF) consisting of TiO2-SiO2 composite nanoparticles in a 92:8 
ratio, with a total volume fraction of 3%. The nanoparticle grain size analysis was conducted using 
scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was used to check the 
dispersion quality, which supported the stability and TC. A TEMPOS thermal property analyzer (TTPA) 
situated within a well-insulated heating chamber was used for the TC. The results show significant 
enhancements in the base fluid. The increased TC correlated directly with temperature, indicating 
that TiO2 and SiO2 nanofluids can enhance thermal management efficiency in plastic injection 
molding. 
 
2. Method 
2.1 Preparation of Nanofluids 
 

This study utilized TiO2 rutile and SiO2 beta-quartz nanoparticles from Hebei Suoyi New Material 
and Technology Co. Ltd., with a purity of 99.8% and average particle sizes of 30 nm for TiO2 and 15 
nm for SiO2. In white powder form and at a temperature of 27 °C, the nanoparticles exhibited a 
thermal conductivity of 8.4 W/m·K for TiO2 and 10.4 W/m·K for SiO2 [19]. PT Indochemical Citra Kimia 
supplied monoethylene glycol (MEG). Table 1 lists the specifications for the raw materials, including 
MEG, DW, TiO2, and SiO2. 
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Table 1 
Specifications of raw materials at room temperature 
Specification’s Symbol MEG-40 DW TiO2 SiO2 

Thermal conductivity. (W/m.oC) k 0.408 0.613 8.4 10.4 
Purity, (%) - 99.8 99.8 99.8 99.8 
Chemical formulae - C2H6O2 H2O TiO2 SiO2 
Phase - Liquid Liquid Rutile -quartz 
Viscosity, (mPa/s)  2.57 0.907 - - 
Density, (kg/m3) ρ 1050.62 997.0 4157 2650 
Grain size, (nm) D - - 30 15 

 
A two-step method (TSM) was employed to prepare TiO2-3%/MEG-40 NF and TiO2-3%F8/MEG-

40 BNF nanofluids for TC measurements by dispersing nanoparticles in EG-40 at 3% volume 
concentration, as outlined in Eq. (1) [20,21]. 
 

𝜙 =
𝑤𝑠 𝜌𝑓

𝑤𝑠𝜌𝑓+𝑤𝑓𝜌𝑠
              (1) 

 
where w denotes the mass in grams, ρ denotes the density in gram/cm3, and subscripts f and s 
indicate the base fluid (fluid) and nanoparticles (solid), respectively. The TSM used for preparing the 
TiO2-3%/MEG-40 NF and TiO2-3%F8/MEG-40 BNF are illustrated in Figure 2, and the matrix 
preparation for both samples is provided in Table 2. 
 

 
Fig. 2. Two-step method (TSM) for nanofluid preparation 

 
Table 2 
Matrix preparation for single and binary nanofluids 
Nanofluid Identifications NPS- vol. factions () TiO2: SiO2 (binary ratio) MEG:DW ratio 

TiO2-3%/MEG-40 3% 100:0 % 40:60 
TiO2-3%F+8/MEG-40 3% 92: 8% 40:60 

 
2.2 Electron Microscopy 
 

Scanning microscopy plays a crucial role in nanomaterial characterization because of its versatility 
and high spatial resolution. The grain size and morphology of the rutile TiO2 and SiO2 beta-quartz 
nanoparticles were examined using SEM prior to their incorporation into the base fluid. Images were 
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obtained using a JEOL JSM-IT710 SEM at an accelerating voltage of 5.0 kV. The microscope was set 
to an operating distance of 2.8 mm, and a magnification of 100,000 × was used to achieve the highest 
possible resolution. The ImageJ software was used to examine the SEM images and verify the grain 
size and structural phases. Furthermore, the distribution of the nanoparticles in the base fluid was 
examined using a JEOL/EO-JEM-1400 TEM instrument operating at 120V with a magnification of 
40,000 ×. This technique allows for detailed observations at a scale of 100 nm. The quality of 
nanoparticle dispersion is influenced by its uniformity of the nanoparticle dispersion, which typically 
has a direct effect on TC [15,22]. 
 
2.3 Thermal Conductivity Measurement 
 

In this study, TTPA was applied to assess the TC properties of TiO2-3%/MEG-40 NF and TiO2-
3%F8/MEG-40 BNF. A data logger was used to monitor the temperature inside the water tank 
insulation of the heating chamber. TTPA provides an exact and accurate technique for measuring TC. 
This study utilized a thermally insulated chamber with a capacity of 1000 mL to submerge the 
nanofluid for TC analysis with the aim of supporting cooling systems in plastic injection molding 
applications. The TC examination was conducted while maintaining the relative humidity at 
approximately 26°C and maintaining the room temperature at approximately 65%. A-50 mL of the 
TiO2-3%/MEG-40 NF and TiO2-3%F8/MEG-40 BNF were individually subjected to varying temperature 
gradients within this setup to evaluate their TC performance under different thermal loads. Real-time 
TTPA data capture during the experiments allowed the precise quantification and analysis of TC 
enhancement by the binary nanofluid composite. Figure 3 shows the schematic of the TTPA 
arrangement. 
 

 
Fig. 3. Thermal conductivity (TC) measurement 
using TTPA 

 
3. Results and Discussion 
3.1 Electron Microscopy Analysis 
 

The grain size and crystallite phase of the TiO2 rutile and SiO2 beta-quartz nanoparticles were 
analyzed using SEM, as shown in Figure 4. The structural phases of rutile TiO2 rutile and SiO2 quartz-
phase nanoparticles are presented in Figure 4(a) and Figure 4(b), respectively. The rutile phase of the 
TiO2 nanoparticles was tetragonal, which is consistent with our previous study in Sukarman et al., 
[20] and Ulhakim et al., [23] and is in line with the results reported by Fal et al., [24]. The structure 
of SiO2 beta-quartz exhibited a regular crystalline pattern in which silicon and oxygen atoms were 
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arranged periodically, which is consistent with the findings reported in Shiga et al., [25]. The average 
grain size of rutile-phase TiO2 is approximately 27.65 nm, as reported in previous studies, whereas 
SiO2 beta-quartz has an average grain size of approximately 18.5 nm, as shown in Figure 4(b) [20]. 

TEM images were evaluated to determine the homogeneity of the TiO2 dispersion in the base 
fluid. Figure 4(c) shows the distribution of TiO2 rutile nanoparticles in MEG-40 (TiO2-3%/MEG-40 NF), 
which is a critical factor for enhancing the TC of effective particulate heat transfer. This homogeneity 
suggests that the nanofluid preserves structural stability and decreases particle agglomeration, which 
is essential for maintaining TC. Figure 4(d) depicts an even more uniform distribution in MEG-40 
doped with SiO2 (TiO2-3%F8/MEG-40 BNF), where SiO2 acts as a stabilizer by adhering to TiO2 rutile 
nanoparticles. This interaction enhances dispersion and prevents agglomeration more effectively 
than TiO2 nanofluids. The SiO2–TiO2 composite exhibited an improved TC and long-term stability. This 
finding aligns with earlier studies that demonstrated that binary nanofluids, particularly those 
containing SiO2, enhance the particle dispersion and TC. It underscoring the importance of 
nanoparticle interactions in the overall performance of nanofluids [26,27]. 

The SEM analysis also revealed significant findings regarding the dispersal of nanoparticles in 
different nanofluid mixtures. The titania (TiO2) rutile nanoparticles showed a homogeneous 
distribution in MEG-40 (TiO2-3%/MEG-40 NF), which is essential for enhancing the TC and thermal 
dissipation. The addition of SiO2 to the nanofluid (TiO2-3%F8/MEG-40 BNF) resulted in a more 
homogeneous distribution, with SiO2 acting as a stabilizer by bonding rounding TiO2 rutile 
nanoparticles. This interaction improved the dispersion more effectively than the TiO2 nanofluids 
alone. The improved distribution and durability of the SiO2-TiO2 mixture led to a superior TC and long-
term reliability. This observation aligns with prior research showing that nanofluids containing SiO2 
improve the particle dispersion and TC [15,26,27]. These results emphasize the crucial role of 
nanoparticle interactions in determining the effectiveness of nanofluids and the potential of binary 
nanofluid systems in advanced heat-transfer applications. 
 

 
Fig. 4. Electron microscopy of nanofluids: (a) SEM image of TiO2 rutile-
phase, (b) SEM image of SiO2 beta-quartz, (c) TEM image of TiO2-3%/MEG-
40 NF, and (d) TEM image of TiO2-3%F8/MEG-40 BNF 
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3.2 Thermal Conductivity Analysis 
 

A comprehensive analysis of the TC of the nanofluids was conducted by comparing the results 
with established theoretical models and those of a previous study. Maxwell's Effective Medium 
Theory (EMT) serves as the fundamental theory for the development of TC in nanofluids, as shown 
in Eq. (2) [28,29]. 
 

𝑘𝑛𝑓

𝑘𝑓
= 1 +

3(
𝑘𝑠
𝑘𝑓

−1)∅

(
𝑘𝑠
𝑘𝑓

+1)−(
𝑘𝑠
𝑘𝑓

−1)∅

            (2) 

 
Hamilton-Crosser developed Maxwell's fundamental theory to determine the correlation 

between TC and the shape of nanoparticles. The correlation between TC and the shape of the 
nanoparticles dispersed in the base fluid is given by Eq. (3) [30]. 
 
𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠+(𝑛−1)𝑘𝑓−(𝑛−1)∅(𝑘𝑠−𝑘𝑓)

𝑘𝑠+(𝑛−1)𝑘𝑓+∅(𝑘𝑓−𝑘𝑠)
           (3) 

 
where k represents the TC ratio; ϕ denotes the nanoparticle volume fraction; and the subscripts nf, 
f, and s correspond to the nanofluid, base fluid, and nanoparticles (solid), respectively. The shape 
factor (dimensionless unit) is expressed as n=3/ψ, where ψ is sphericity (dimensionless). The shape 
factor varies depending on the particle shape: ψ=1 for spherical particles, ψ=0.75 for tetragonal 
nanoparticles, and ψ=0.5 for cylindrical particles [29,31,32]. As shown in Eq. (3), the Hamilton–
Crosser equation was used to compare the experimental results. Additionally, the TC results from 
this study were compared with the equations proposed by Hamid et al., [22], which established a 
correlation between the thermal conductivity, volume fraction, and temperature (T), as presented in 
Eq. (4). 
 
𝑘𝑛𝑓

𝑘𝑓
= (1 +

∅

100
)

7

(
𝑇

80
)

0.024

            (4) 

 
The experimental data in Figure 5 demonstrate a significant increase in TC over a temperature 

range of 30–95°C. Specifically, the TiO2-3%/MEG-40 NF and TiO2-3%F8/MEG-40 BNF exhibited 
enhancements of approximately 18% and 22%, respectively, compared to the MEG-40 base fluid. At 
a peak temperature of approximately 95°C, the TiO2-3%/MEG-40 NF exhibited TC enhancement of 
18.6%. In contrast, the TiO2-3%F8/MEG-40 BNF exhibited a significant improvement of 22.2% under 
the same conditions, indicating the effectiveness of the TiO2 nanoparticle composites and F8 
additives (8% SiO2 nanoparticles) in improving the TC when dispersed in MEG-40. The propensity of 
TC to increase with increasing temperature accentuates the potential of these nanofluids for high-
temperature applications. This enhancement is ascribed to the improved nanoparticle distribution 
and stability within the base fluid and synergistic effects in the binary nanofluid, facilitating a more 
efficient heat transfer in the industrial field, especially in plastic injection applications. 
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Fig. 5. Thermal conductivity: (a) TiO2-3%/MEG-40 NF, and (b) TiO2-3%F8/MEG-40 BNF 

 
The observed enhancement in TC was approximately 2% higher than that predicted by Hamilton 

and Crosser [30]. However, it remains lower than the predictions made using Eq. (3) [15,22]. The 
observed difference indicates that, while the Hamilton-Crosser model provides a conservative 
estimate, the actual performance of these nanofluids is enhanced by additional factors not fully 
considered in Hamilton's approach, such as nanoparticle interactions and stability effects. Although 
Hamid's formula may account for more complex interactions, potentially explaining its higher 
predicted values, it appears less applicable because of issues when used at 0°C. Furthermore, a 
previous study examined the effects of Brownian motion on the TC of nanofluids. The results of this 
study indicate that increasing Brownian movement improves the TC of nanofluids. The absence of 
Brownian motion particle effects in these models can explain the disparities between the 
experimental and theoretical outcomes [33]. This finding suggests that future models should 
incorporate Brownian motion to obtain more precise nanofluid TC predictions. 

Adding SiO2 beta-quartz at a concentration of F8 (F+), substituting 8% of the total 3% volume 
fraction of TiO2 rutile, significantly enhanced the TC of the nanofluid. Incorporating SiO2 beta-quartz 
into TiO2 nanofluids synergistically combines the TC and stability benefits of SiO2 beta-quartz, 
resulting in a more efficient heat transfer medium. This finding aligns with Bergman et al., [19], which 
demonstrated that SiO2 beta-quartz exhibits a higher TC than TiO2 rutile. The inclusion of SiO2 beta-
quartz nanoparticles improved the stability and dispersion of the nanofluid, reduced particle 
agglomeration, and enhanced heat transfer efficiency. However, in contrast to the findings of Hamid 
et al., [15], a higher TiO2 concentration contributed to a greater increase in TC. This discrepancy may 
be due to the inherently high TC of SiO2 beta-quartz nanoparticles, approximately 10.2 W/m·K, 
compared to TiO2, which has a TC of around 8.4 W/m·K, as reported in Bergman et al., [19]. Future 
studies should focus on refining the binary mixture to enhance its heat conduction properties and 
structural integrity. 
 
4. Conclusions 
 

This study effectively evaluated the efficacy of TiO2 nanofluid by itself against its integration with 
SiO2 nanoparticle doping as a binary nanofluid, offering an advanced thermal management approach 
for contemporary cooling systems in plastic injection molding processes. The key experimental 
results are summarized as follows: 

i. Electron microscopy analysis confirmed the presence of rutile TiO2 (27.65 nm) and beta-
quartz SiO2 (18.5 nm), which ensured the grain size of the nanoparticles for thermal 
enhancement.  
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ii. Analysis of the TEM images revealed that the binary nanofluid consisting of TiO2 nanoparticles 
combined with SiO2 exhibited an improved dispersion of TiO2 compared to the single TiO2 
nanofluid. 

iii. The binary nanofluid demonstrated a 22% increase in TC at 95.1°C, outperforming the 18% 
increase obtained with the TiO2 nanoparticles alone at 94.9°C. The superior performance of 
the SiO2-enhanced mixture underscores the potential of binary nanofluid fluids for heat-
transfer applications. The enhanced TC properties significantly benefit industrial settings, 
particularly in plastic injection molding, where efficient heat management is crucial. 

Future research will investigate TiO2 –SiO2 binary nanofluids in MEG-10 at a 90:80 ratio to 
enhance the industrial heat transfer, including energy-efficient plastic injection molding. Studies 
should assess the long-term stability and thermal conductivity under dynamic conditions to ensure 
practical and reliable real-world applications. 
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