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The current study emphasises a new approach to the peristaltic transport of Eyring-
Powell fluid through a uniform channel. The study is done while considering the 
influence of variable liquid properties and wall properties through a uniform inclined 
channel, and the flow problem is developed mathematically. The study uses low 
Reynolds number and long-wavelength approximations to simulate no-slip conditions 
on the channel walls. The solutions are derived using a traditional double perturbation 
technique, and the nonlinear governing equations are normalized by employing 
pertinent non-dimensional factors. Graphical representations of the impact of 
significant physical parameters, such as velocity, temperature, concentration, and 
streamlines, are depicted and discussed. It was noted that Eyring-Powell fluid 
parameters and variable liquid properties have major impact during the peristalsis. 
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1. Introduction 
 

Peristalsis is a natural mechanism in the human body that causes a gradual wave of regional 
muscular contractions and relaxations and is responsible for numerous biological processes such as 
food flow through the esophagus and ovum migration in the female uterine tube. Because of its use 
in biomedical and industrial purposes, peristaltic motion of non-Newtonian and viscous fluids has 
been researched in recent decades. Latham [1] initiated the study on peristaltic urine flow via the 
ureter and determine fluid flow velocity and pressure for various flow rates using Newtonian 
compressible fluid. The peristaltic mechanism was later studied by Shapiro et al., [2] under 
circumstances like long wavelength and low Reynolds number. The same conditions are being used 
to date. Raju and Devanathan [3] investigated the effect of applied pressure and non-Newtonian 
parameter on the velocity and streamlines of a power-law fluid under various conditions. Srivastava 
et al., [4] studied the peristalsis of physiological fluid, flowing in a non-uniform axisymmetric tube 
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with constant and variable viscosity. Usha and Ramachandran [5] explored the peristaltic transport 
of two-layered Power Law fluid. They studied the effect of shear thinning and shear thickening in the 
fluid's core and peripheral layer in an axisymmetric tube. Further, Vajravelu et al., [6] focused on 
studying the peristaltic motion of Hershel-Bulkley liquid in the channel, which warrants the study of 
fluid flow characteristics. 

In biofluid dynamics, the no-slip criterion for viscous fluids proposes the liquid always moves at a 
constant speed relative to the boundary of a solid wall. The fluid velocity equals the solid edge 
velocity at all fluid-solid interfaces. One could imagine the fluid's outermost molecules sticking to the 
surfaces it passes through. Driven by this application, Hayat et al., [7] investigated the Soret and 
Dufour effect on the peristaltic flow of Prandtl fluid. They considered compliant tube walls and no-
slip conditions were applied for equation of momentum, energy, and concentration. As a result, they 
concluded that the large Soret and Dufour number activates the temperature while reducing the 
concentration. In a further study conducted by Hayat et al., [8] on hyperbolic tangent nanofluid under 
similar conditions with MHD, it was noticed that temperature increases for higher Brownian 
movement and thermophoresis parameters. As of late Vaidya et al., [9] investigated the peristaltic 
motion of Rabinowitsch fluid in an inclined channel with compliant walls. The series perturbation 
technique is utilised to solve the non-dimensional governing equations, and the streamlines were 
analyzed.  

This research is crucial when it comes to an understanding of how heat moves through biological 
fluids. Conduction, radiation, convection, and evaporation all play a role in keeping the body's 
temperature stable. Sobh [10] investigated the interplay between peristaltic motion and heat 
transfer in viscous fluid flow by considering the impacts of heat transfer in a stable transverse 
magnetic field. During their research, it was noticed that the heat transfer coefficient at the channel 
walls varied depending on the kind of channel. According to the study, as the Hartmann number 
grows, so does the heat transmission rate. The heat transfer coefficient behaves the same for both 
non-uniform and uniform channels in heat transmission. Ali et al., [11] also investigated peristaltic 
transport in a curved channel. The heat transmission rate is slower in a curved channel than in a 
straight channel. Prandtl fluid peristalsis in the presence of MHD flow was studied by Alsaedi et al., 
[12]. The perturbation approach is used to get series solutions for physical parameters such as 
velocity and temperature. The Hartmann number was shown to be a decreasing function of heat 
transport. Through slip effects, Bhatti and Zeeshan [13] examine how heat and mass transfer affect 
particle-fluid suspension produced by peristaltic transit. For the embedded particles in Casson fluid 
model, the non-dimensional governing equations of the fluid and particulate phase are interpreted 
on the premise of a long-wavelength approximation and disregarding inertial forces. The study's 
findings warrant an inquiry into various types of non-Newtonian and Newtonian fluids. According to 
Vaidya et al., [14], the MHD peristalsis of Bingham fluid via a uniform channel is affected by 
wavelength and Reynolds number. It is shown that the temperature profile becomes more consistent 
as the value of variable thermal conductivity rises, even while considering heat transmission and wall 
features. Manjunath et al., [15] investigated how thermal conductivity and heat transfer influenced 
Jeffery fluid peristaltic flow in an inclined elastic tube with porous walls. It is clear from the data that 
lowering the Biot number lowers the temperature. The main goal of the study by Sandhya Rani et al., 
[16] is to address mass and heat transfer across electro-hydrodynamics by considering Cattaneo-
Christov model. When a blood-based hybrid nanofluid flows over a vertical stretchy area, the Lorentz 
force is applied. The Cattaneo-Christov model theories were examined using thermal radiation that 
can generate heat.  

In a porous medium, researchers Kodantapani and Srinivas [17] looked at the impact of wall 
characteristics on MHD peristalsis and heat transport. The increase in rigidity and stiffness 
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parameters was seen to increase velocity and temperature. At the same time, the damping 
properties of the wall are decreasing. Hayat and Hina [18] studied the impact of MHD and compliant 
walls on Maxwell fluid peristalsis. The effect of wall compliance on Burgers' fluid peristalsis was 
studied by Mariyam et al., [19]. Increases in wall tension, rigidity, and stiffness increase velocity, 
whereas increases in wall damping lead to an increase in speed in a non-uniform channel with wall 
characteristics and heat transfer. The peristaltic wave propagation of non-Newtonian Casson liquid 
was studied by Devaki et al., [20]. According to these studies, the larger the flow pattern and the 
greater the number of boluses, the more rigid and stiff the wall becomes. Using a non-uniform 
inclined tube with a long wavelength and a short Reynold's number, Manjunath et al., [21] investigate 
the effects of slip and wall qualities on the peristaltic transport of Rabinowitsch fluid. Newtonian and 
pseudoplastic liquid models have been proposed. When the rigidity and stiffness parameter values 
rise, the volume of trapped bolus grows; however, when the viscous damping force parameter values 
increase, the volume decreases, as they discovered in their research. 

The processes influencing blood flow in tiny arteries and ducts, lymphatic vessels, and the 
intestines have not been studied in studies on physiological fluids with continuous liquid properties. 
Most older studies used constant heat conductivity and viscosity as their guiding principles. The 
viscosity and heat conductivity have a considerable impact on biological fluids. Casson fluid peristaltic 
movement in a convectively heated inclined porous tube was studied by Rajashekhar et al., [22] using 
changing viscosity and thermal conductivity. Thermal conductivity and viscosity were considered in 
their investigation. Analysis of the impact of factors on physiological variables was done by plotting 
graphs. Velocity profiles may be improved by altering the viscosity of the fluid. Under the impact of 
varying fluid characteristics and convective heat transmission, the peristaltic process of Rabinowitsch 
liquid in a small porous channel is examined by Vaidya et al.,[23]. Further, the peristalsis of 
Rabinowitsch fluid via a nonuniform tube is studied by Vaidya et al., [24] in relation to variations in 
viscosity and thermal conductivity. Consideration is given to the wall characteristics and convective 
surface conditions. Long wavelength and low Reynolds number approximations are used to solve the 
dimensionless governing equations of motion, momentum, and energy. Jeffery fluid peristaltic flow 
in a channel with variable fluid properties is the subject of research by Manjunatha et al., [25]. 
Coefficient of variable viscosity increases velocity, Nusselt number, and temperature fields in the 
study but has the opposite effect on concentration profiles, according to the results. MHD peristalsis 
flow across a porous channel with varying liquid characteristics and convective circumstances was 
studied by Vaidya et al., [26]. The analyses by Divya et al., [27] take into account the mass and heat 
transport characteristics of the Casson fluid, using convective boundary conditions and taking into 
account how the thermal conductivity changes with fluid temperature. Ree-Eyring fluids may be 
peristaltic flow through a homogeneous compliant tube with varying viscosity and thermal 
conductivity, according to Rajashekhar et al., [28]. According to the findings, a Newtonian fluid has a 
higher velocity than a non-Newtonian fluid. Vaidya et al., [29] studied the peristaltic motion of Ree-
Eyring in an inclined permeable channel, where both homogeneous and heterogeneous chemical 
reactions were observed. Tiny artery convective and wall features were considered in the research, 
which concentrated on simulating blood flow in small arteries. Karem Mahmoud Ewis [30] 
investigates and discusses the impact of porosity, varying thermal conductivity, and the Grashof 
number on the heat transmission and natural convection of viscoelastic fluid flow. 

A novel mathematical model of the impact of mass and heat transfer on the peristaltic transport 
of Eyring–Powell fluid was recently created by Akbar et al., [31]. When Noreen and Qasim [32] 
examined Eyring Powell fluid peristalsis in a channel under an induced magnetic field, the fluid 
characteristics of Eyring-Powell liquid showed the opposite behavior. Eyring–Powell fluid peristaltic 
transport in a heat/mass transmission channel was studied by Hina [33]. The combined effects of slip 
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and MHD were examined. There were considerations for the effects of viscous dissipation in the 
study. The heat transfer coefficient is inversely proportional to the parameters of the magnetic field 
and the velocity slip. The impact of a magnetic field in radial direction on Eyring–Powell liquid 
peristalsis in a curved conduit was studied by Farooq et al., [34]. Peristaltic transport of Eyring-Powell 
fluid with electro-kinetic pumping and a transverse Lorentz force was recently explored by Mabood 
et al., [35]. Electro-Osmosis impedance dependence on surface roughness and induced magnetic 
field was studied by Asha and Namrata [36] in the Peristalsis of Eyring Powell nanofluid in an 
asymmetric tapered channel. 

To the best of the author's knowledge, the research on the peristalsis of Eyring-Powell fluid in an 
inclined uniform channel under variable liquid characteristics and wall properties has not been 
carried out in the literature. The governing nonlinear equations made simpler using approximations 
with a large wavelength and a low Reynolds number. The governing equations are then solved using 
the conventional Perturbation approach. The present attempt has been undertaken to overcome this 
knowledge gap in the Eyring Powell fluid with heat and mass transport and variable liquid properties.  
 
2. Formulation of the Problem 

 
Consider a viscous incompressible fluid flowing through an inclined uniform axisymmetric 

channel (see Figure 1). Non-Newtonian Eyring-Powell fluid governs the flow. The equations governing 
the flow [9] are written as follows 

 

 
𝜕𝑢′

𝜕𝑥′ +
𝜕𝑤′

𝜕𝑦′ = 0                                                                                                                                         (1) 

                             

𝜌 [
𝜕𝑤′

𝜕𝑡′ + 𝑢′ 𝜕𝑤′

𝜕𝑥′ + 𝑤′  
𝜕𝑤′

𝜕𝑦′
] =  −

𝜕𝑝′

𝜕𝑥′ +  
𝜕𝜏′

𝑥′𝑥′

𝜕𝑥′ + 
𝜕𝜏′

𝑥′𝑦′

𝜕𝑦′ + 𝜌𝑔 sin 𝛼                                 (2) 

 

𝜌 [
𝜕𝑢′

𝜕𝑡′ + 𝑢′ 
𝜕𝑢′

𝜕𝑥′ + 𝑤′
𝜕𝑢′

𝜕𝑦′] =  −
𝜕𝑝′

𝜕𝑦′ +  
𝜕𝜏′

𝑥′𝑦′

𝜕𝑥′ + 
𝜕𝜏′

𝑦′𝑦′

𝜕𝑦′ + 𝜌𝑔 cos 𝛼                                      (3) 

 

𝜌𝐶𝑃 [
𝜕𝑇′

𝜕𝑡′ + 𝑢′ 𝜕𝑇′

𝜕𝑥′ + 𝑤′
𝜕𝑇′

𝜕𝑦′] =  𝑘1 [
𝜕

𝜕𝑥′  (𝑘(𝑇′)
𝜕𝑇′

𝜕𝑥′)   +  
𝜕

𝜕𝑦′  (𝑘(𝑇′)
𝜕𝑇′

𝜕𝑦′)  ]   +   𝜏′𝑥′𝑥′   
𝜕𝑢′

𝜕𝑥′
+      

                                                        𝜏′𝑦′𝑦′  
𝜕𝑤′

𝜕𝑦
 +  𝜏′

𝑥′𝑦′ (
𝜕𝑢′

𝜕𝑥′ + 
𝜕𝑤′

𝜕𝑦′ )                  (4) 

 

  [
𝜕𝐶′

𝜕𝑡′
+ 𝑢′ 𝜕𝐶′

𝜕𝑥′
+ 𝑤′

𝜕𝐶′

𝜕𝑦′
] = 𝐷 [

𝜕2𝐶′

𝜕𝑥2
+

𝜕2𝐶′

𝜕𝑦2
] +

𝐷𝐾𝑇

𝑇𝑚
 [

𝜕2𝑇′

𝜕𝑥2
+

𝜕2𝑇′

𝜕𝑦2
]                                      (5) 

 
where 𝑢′ and 𝑤′ are the velocity components in radial direction and axial direction respectively.  𝜌 is 
the constant fluid density, 𝑝′ is the pressure, 𝜏′

𝑥′𝑥′  , 𝜏′
𝑥′𝑦′ ,  𝜏′

𝑦′𝑦′   are the extra stress components. 

While 𝑘1,  𝑇′, 𝐶𝑃 denotes mass diffusivity coefficient, temperature, and the specific heat at constant 
volume, respectively. 
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Fig. 1. Physical model 

 
The boundary conditions for the problem [9] are as follows 

 

𝜓′ =
𝐹

2
,      

𝜕2𝜓′

𝜕𝑦′2
= 0,

𝜕𝑇′

𝜕𝑦′
= 0,   

𝜕𝐶′

𝜕𝑦′
= 0    𝑎𝑡    𝑦′ = 0,                                                                   (6) 

 
𝜕𝜓′

𝜕𝑦′
= −𝑐 , 𝑇′ = 𝑇′

1 , 𝐶′ = 𝐶′1  𝑎𝑡  𝑦′ = 𝐻′ = 𝑎′ + 𝑏′ sin (
2𝜋

𝜆
 (𝑥′ − 𝑐𝑡′))                           (7) 

 
where 𝜆 is the wavelength,  𝑎′ is the radius of the channel, 𝑏′ is the wave amplitude, and  𝑡′ is the 
time. We now introduce the dimensionless quantities: 
   

𝑥 =
𝑥′

𝜆
 , 𝑦 =

𝑦′

𝑎′  , 𝑤 =
𝑤′

𝑐
 , 𝑢 =

𝜆𝑢′

𝑐𝑎
 , 𝜏𝑥𝑥 =

𝑎′𝜏′
𝑥′𝑥′

𝑐 𝜇
 , 𝜏𝑥𝑦 =

 𝑎′𝜏′
𝑥′𝑦′

𝑐 𝜇
, 𝜏𝑦𝑦 =

 𝑎′𝜏′
𝑦′𝑦′

𝑐 𝜇
 , 𝜗 =

𝜇0

𝜌
,   

 

𝑡 =
𝑐 𝑡′

𝜆
 , 𝜓 =

𝜓′

𝑎𝑐
   , 𝑅𝑒 =

𝑎 𝑐 𝜌

𝜇
 , 𝑝 =

𝑎′2
𝑝′

𝑐 𝜆 𝜇
  , 𝜖 =

𝑏′

𝑎′  , 𝜃 =
𝑇′−𝑇′

0

𝑇′
0

 , 𝑆𝑟 =
𝜌𝐷𝐾𝑇(𝑇′−𝑇′

0)

𝑇𝑚𝐶′
0

, 𝑆𝑐 =
𝜇

𝜌𝐷
 ,   

 

𝑃𝑟 =  
𝜇 𝐶𝑃

𝑘1
  , 𝛿 =

𝑎′

𝜆
 , 𝜇0

′ =
𝜇0

𝜇
 , 𝐹 =

𝜗𝑐

𝑔𝑎′2  , 𝐸𝑐 =
𝑐2

𝛿𝑇0
, 𝐵𝑟 = 𝐸𝑐. 𝑃𝑟, 𝜎 =

𝐶′−𝐶′
0

𝐶′
0

 , 𝐸1 = −
𝜏𝑎′3

𝜆𝜇0
3𝑐

,    

 

𝐸2 =
𝑚1 𝑎′3

𝑐

𝜆3𝜇0 
 , 𝐸3 =

 𝑚2𝑎′3

𝜆3𝜇 
, 𝐸4 =

𝑚3𝑎′3

𝜆5𝜇0𝑐
, 𝐸5 =

𝐻𝑎′3

𝜆𝜇0 𝑐
 , ℎ =  

𝐻′

𝑎′
= 1 + 𝜖 sin(2𝜋(𝑥 − 𝑡))  

        (8) 
     
Using Eq. (8) in Eqs. (1-7) and by applying the long wavelength and low Reynolds number 
approximations, we get the non-dimensional governing equations of the form as below: 
 

 
𝜕𝑝

𝜕𝑥
=

𝜕 𝜏𝑥𝑦 

𝜕𝑦
+  

sin 𝛾

𝐹
,                                                                                                                                        (9) 

 
𝜕𝑝

𝜕𝑦
= 0,                                                                                                                                                               (10) 

 
𝜕

𝜕𝑦
(𝑘(𝜃) 

𝜕𝜃

𝜕𝑦
) +  𝐵𝑟 𝜏𝑥𝑦

𝜕2𝜓

𝜕𝑦2 = 0,                                                                                                           (11) 
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𝜕2𝜙

𝜕𝑦2 + 𝑆𝑐𝑆𝑟
𝜕2𝜃

𝜕𝑦2 = 0,                                                                                                                                      (12) 

 
where 𝐵𝑟 is the Brinkman number and 𝜏𝑥𝑦 is the constitutive equation of Eyring Powell fluid [31] 

given by  
 

𝜏𝑥𝑦 = {𝜇(𝑦) + 𝐵} 
𝜕2𝜓

𝜕𝑦2 −  
𝐴

3
(

𝜕2𝜓

𝜕𝑦2)
3

.                                                                                                              (13) 

 
The corresponding dimensionless boundary conditions for Eq. (6) and (7) are 

 

𝜓 =
𝐹

2
,      

𝜕2𝜓

𝜕𝑦2 = 0,       
𝜕𝜃

𝜕𝑦
= 0,

𝜕𝜙

𝜕𝑦
= 0      𝑎𝑡    𝑦 = 0,                                                                   (14) 

 
𝜕𝜓

𝜕𝑦
= −1, 𝜃 = 1, 𝜙 = 1, 𝑎𝑡    𝑦 = ℎ.                                                                     (15) 

 
The variable fluid properties are given by the following relations 

 
𝜇(𝑦) = 1 − 𝛼𝑦  , for 𝛼 << 1,  
𝑘(𝜃) = 1 + 𝛽𝜃, for 𝛽 << 1. 

 
where 𝛼 is the coefficient of variable viscosity, and 𝛽 is the coefficient of variable thermal 
conductivity. 
      
3. Results  
 

The Eq. (9) and (11) are nonlinear differential equations hence, an analytical solution for these 
equations is not possible. Therefore, we introduce the series solution using the double perturbation 
technique to obtain the solutions.  

 
 𝜓 = Σ𝐴𝑛𝜓𝑛,                                     (16) 

 
𝜃 = Σ𝐴𝑛𝜃𝑛,                                         (17)  

 
By ignoring the higher order terms, we obtain the streamline function as given below 
 

𝜓 =  𝜓0 + 𝐴 𝜓1,                                                                                                                                              (18) 
 

Applying the Eq. (18) in Eq. (9) and (13), we obtain the following. 
 

(𝑃 − 𝑓) 𝑦 =    {1 − 𝛼1𝑦 + 𝐵} 
𝜕2𝜓0

𝜕𝑦2
,                                                                                                            (19) 

 

{1 − 𝛼𝑦 + 𝐵} 
𝜕2𝜓1

𝜕𝑦2 −  
1

3
(

𝜕2𝜓0

𝜕𝑦2 )
3

= 0,                                                                                                          (20)  

   

 𝜓0 =
𝐹

2
,

𝜕2𝜓0

𝜕𝑦2 = 0  at  𝑦 = 0  and 
𝜕𝜓0

𝜕𝑦
= −1  at  𝑦 = ℎ,                                               (21) 
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𝜓1 = 0,   
𝜕2𝜓1

𝜕𝑦2 = 0   𝑎𝑡  𝑦 = 0  and   
𝜕𝜓1

𝜕𝑦
= 0    at  𝑦 = ℎ.                                                                     (22) 

 
Similarly, by ignoring the higher order terms in Eq. (17), we obtain, temperature expression as 
 
𝜃 = 𝜃0 + 𝛽𝜃1,                                                                                                                                                  (23) 
 
By applying Eq. (23) in Eq. (11), we obtain the following 

 
𝜕𝜃0

𝜕𝑦
+ 𝛽𝜃0

𝜕𝜃0

𝜕𝑦
+ 𝐶1 = 0,                                                                                                                                 (24) 

 
𝜕𝜃1

𝜕𝑦
+ 𝛽𝜃0

𝜕𝜃1

𝜕𝑦
+ 𝛽𝜃1

𝜕𝜃0

𝜕𝑦
+ 𝐶2 = 0,                                                                                                               (25) 

 
𝜕𝜃0

𝜕𝑦
= 0 at 𝑦 = 0  and 𝜃0 = 1 at 𝑦 = ℎ,                                                                                                      (26) 

 
𝜕𝜃1

𝜕𝑦
= 0 at y = 0 and  𝜃1 = 0 at 𝑦 = ℎ.                                                                                       (27) 

 
The above equations are nonlinear; hence, we apply the double perturbation technique to obtain 

the solutions. 
 

𝜓𝑖 = Σ𝛼𝑗𝜓𝑖𝑗  where 0 ≤ 𝑗 ≤ 𝑛 ,                                                                                                                  (28) 

 

 𝜃𝑖 = Σ 𝛽𝑗  𝜃𝑖𝑗  where  0 ≤ 𝑗 ≤ 𝑛.                                                                                                                 (29) 

 
We ignore 𝑂(𝛼2) and 𝑂(𝛽2) to obtain a more straightforward solution for streamline function 

and temperature. Then we obtain the streamline function for zeroth order as, 
 

𝜓0 =  𝜓00 + 𝛼𝜓01,                       (30) 
 

where,  
 

𝜓00 =
(𝑃−𝑓)𝑦3

6(1+𝐵)
+ 𝑦 (−1 −

(𝑃−𝑓)ℎ2

2(1+𝐵)
) +

𝐹

2
,                                                                                                      (31) 

 

𝜓01 =
(𝑃−𝑓)𝑦4

12(1+𝐵)2 −
(𝑃−𝑓)ℎ3

3(1+𝐵)2 𝑦.                                                                                                                           (32) 

 
Similarly, we obtain the streamline function for first order as, 
 

𝜓1 =  𝜓10 + 𝛼𝜓11,                                                                                                                                     (33)    
                                                      

where,    
 

𝜓10 =
(𝑃−𝑓)3𝑦5

60(1+𝐵)4
−

(𝑃−𝑓)3ℎ4

12(1+𝐵)4
𝑦,                                                                                                                         (34)  
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𝜓11 =
4(𝑃−𝑓)3𝑦6

90(1+𝐵)5 −
4(𝑃−𝑓)3ℎ5

15(1+𝐵)5 𝑦.                                                                                                                      (35) 

 
The solution for temperature through the double perturbation technique for zeroth order is 

given by 
 

𝜃0 = 𝜃00 + 𝛽𝜃01,                                    (36) 
 

where, 
 
𝜃00 = 𝑄1 − 𝑄2 + 1,                                                                                                                                        (37)  

 
 𝜃01 = 𝑄3 + 𝑄5 + 𝑄7 + 𝑄9 − 𝑄4 − 𝑄6 − 𝑄8 − 𝑄10 − 𝑄1(1 − 𝑄2) + 𝑄2(1 − 𝑄2).                            (38)  
 

Similarly, we obtain temperature expression for first order as, 
 
𝜃1 = 𝜃10 + 𝛽𝜃11,                       (39) 
 
where, 
 
𝜃10 = 𝑄11 − 𝑄12,                                                                                                                                             (40) 

 
𝜃11 = −(𝑄1 + 1 − 𝑄2)(𝑄11 − 𝑄12).                                                                                                            (41) 

 

The analytical solution for the velocity can be obtained using the formula, 𝑢 =
𝜕𝜓

𝜕𝑦
.  Therefore, 

velocity  
 

𝑢 =
(𝑃 − 𝑓)𝑦2

2(1 + 𝐵)
−

(𝑃 − 𝑓)ℎ2

2(1 + 𝐵)
+ 𝛼 (

(𝑃 − 𝑓)𝑦3

3(1 + 𝐵)2
−

(𝑃 − 𝑓)ℎ3

3(1 + 𝐵)2
) + 𝐴 (

(𝑃 − 𝑓)3𝑦4

12(1 + 𝐵)4
−

(𝑃 − 𝑓)3ℎ4

12(1 + 𝐵)4
) 

             +𝐴 𝛼 (
4(𝑃−𝑓)3𝑦5

15(1+𝐵)5 −
4(𝑃−𝑓)3ℎ5

15(1+𝐵)5  )                              (42) 

 
The analytic solution for concentration is obtained by solving the Eq. (12). The solution is given as 

follows, 
 

 𝜎 = 1 + −𝑆𝑐𝑆𝑟[𝑅1 + 𝐴𝑅2 + 𝛽{(1 − 𝑄2)𝑅1 + 𝑅3} + 𝐴𝛽{−𝐴𝑄12𝑅1 + (1 − 𝑄2)𝑅2 + 𝑅4}] +
                 𝑆𝑐𝑆𝑟[𝑅5 + 𝐴𝑅6 + 𝛽{(1 − 𝑄2)𝑅5 + 𝑅7} + 𝐴𝛽{−𝑄12𝑅5 + (1 − 𝑄2)𝑅6 + 𝑅8}]              (43) 
 
4. Results and Discussions 
 

The present section is to comprehend and analyse how different parameters affect the Eyring 
Powell fluid flow in a peristaltic channel under the influence of heat and mass transfer as well as 
variable liquid properties. The results of the analysis for velocity, temperature, concentration, and 
stream function are represented graphically. 
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Fig. 2. Variation of velocity profiles when E1= 0.3, E2= 0.2, E3= 0.3, E4= 0.01, E5= 0.3, A=0.5, B=3, x= 

0.2, F= 1, γ = 
π

4
, α = 0.02, t=0.1, 𝜖 = 0.3 
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Fig. 3. Variation of temperature profiles when E1= 0.3, E2= 0.2, E3= 0.3, E4= 0.01, E5= 0.3, A=0.5, 

B=3, x= 0.2, F= 1, γ = 
𝜋

4
, α = 0.02, β =0.02, t=0.1, 𝜖 = 0.3, Br=2 
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Fig. 4. Variation of concentration profiles when E1= 0.3, E2= 0.2, E3= 0.3, E4= 0.01, E5 = 0.3, 

A=0.5, B =3, x = 0.2, F = 1, γ = 
𝜋

4
, α = 0.02, β=0.02, t=0.1, ϵ = 0.3, Br =2, Sc =1, Sr =1 

   

 
Fig. 5. Variation of streamlines for (a) 𝐴=0.1 and (b) 𝐴= 0.5 
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Fig. 6. Variation of streamlines for (a) 𝐵=2 and (b) 𝐵= 3 

 

 
Fig. 7. Variation of streamlines for (a) α =0.01 and (b) α = 0.06 
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Fig. 8. Variation of streamlines for  (a) 𝐸1 = 0.3, 𝐸2 = 0.2, 𝐸3 = 0.3, 𝐸4 = 0.01, 𝐸5 = 0.3; (b) 𝐸1 =
0.35, 𝐸2 = 0.2, 𝐸3 = 0.3, 𝐸4 = 0.01, 𝐸5 = 0.3; (c) 𝐸1 = 0.35, 𝐸2 = 0.25, 𝐸3 = 0.4, 𝐸4 = 0.01, 𝐸5 =
0.3; (d) 𝐸1 = 0.35, 𝐸2 = 0.25, 𝐸3 = 0.4, 𝐸4 = 0.01, 𝐸5 = 0.3; (e) 𝐸1 = 0.35, 𝐸2 = 0.25, 𝐸3 =
0.4, 𝐸4 = 0.011, 𝐸5 = 0.3;  (f) 𝐸1 = 0.35, 𝐸2 = 0.25, 𝐸3 = 0.4, 𝐸4 = 0.011, 𝐸5 = 0.6. 

 
4.1 Velocity Profiles 
 

The importance of this section is to analyze the impact of velocity profiles with varying pertinent 
parameters Figure 2(a)-(f) has been sketched to analyze the effects of variation of material 
parameters, variable viscosity, amplitude ratio variable thermal conductivity, wall properties and 
angle of inclination on velocity. Figure 2(a)-(b) has drawn to analyze the fluid parameter of the Eyring 
Powell fluid on velocity. The graph shows that as the fluid parameter 𝐴 increases, the velocity profile 
also increases. An opposite trend is seen in case of fluid parameter 𝐵. For an increase in variable 
viscosity, the rise in velocity profiles has been noticed (See Figure 2(c)). Figure 2(d) shows that the 
variation of velocity for amplitude ratio. The velocity profile improves with the larger value of the 
amplitude ratio. Figure 2(e) indicated the change in velocity due to varying wall properties. An 
increase in velocity can be seen for an increase in wall tension and mass characterization parameters 
but as the wall damping parameter increases, the velocity profiles diminish. A minute change in the 
wall rigidity parameter diminishes the velocity greatly. Similar behavior is seen for the wall elasticity 
parameter. An increase in the elasticity parameter decreases the velocity profile. Figure 2(f) 
represents the variation in the inclination angle, which improves the velocity profile for higher values 
of the angle of inclination. 

 
4.2 Temperature Profiles 
 

The present section emphasizes the effect of diverse parameters such as temperature profiles 
with varying pertinent parameters such as variation of material parameters, variable viscosity, 
amplitude ratio, variable thermal conductivity, wall properties and angle of inclination on 
temperature represented in Figures 3(a)-(h). Figures 3(a)-(b) show the effect of fluid parameters 𝐴 
and 𝐵 on temperature. It has been noticed that an increase in fluid parameter 𝐴 increases the 
temperature profiles, and a rise in liquid parameter 𝐵 decreases the temperature.  Figure 3(c)-(d) 
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shows that an increase in the coefficient of variable viscosity increases the temperature while the 
rise in variable thermal conductivity reduces the temperature. Figures 3(e)-(f) are sketched to analyze 
the temperature variation for the angle of inclination and amplitude ratio. They show similar 
behavior for temperature i.e., rise in both inclination angle and amplitude ratio improves the 
temperature profiles. Figure 3(g) has been drawn for varying wall properties on temperature. An 
increase in the wall tension and mass characterization parameter increases the temperature while 
the damping parameter shows opposite behavior. Rise in the wall damping parameter and rigidity 
parameter decreases the temperature profiles. A negligible decrease has seen in the rise of the wall 
elasticity parameter. An enhancement in temperature profiles is seen for the increase in Brinkmann 
number (See Figure 3(h)). 
 
4.3 Concentration Profiles 

 
This section explains the effect of significant parameters on the concentration profiles is depicted 

in Figure 4(a)-(j) represents varying parameters on concentration. Figure 4(a)-(b) shows the effects 
of Eyring-Powell parameters 𝐴 and 𝐵 on concentration, the Eyring-Powell parameters 𝐴 decreases 
the concentration profile while the increase in liquid parameter 𝐵 has an opposite impact on the 
concentration profile. Figure 4(c) shows lower the concentration for the higher value of variable 
viscosity. Similar behavior is seen in the case of variable thermal conductivity (See Figure 4(d)). 
Figures 4(e)-(h) has been sketched to analyze the variation of inclination angle, amplitude ratio, Soret 
number and Schmidt number on concentration. It has been noticed that for increasing all these 
parameters decreases the concentration profiles. Figure 4(i) is plotted for the variation of 
concentration on wall properties. A decrease in concentration profile is seen for an increase in wall 
tension and mass characterization parameter. This behavior is opposite to that in velocity and 
temperature profiles. As the wall damping parameter increases, the concentration profiles notice a 
huge enhancement. Similar behavior is seen in the case of the wall rigidity parameter. The Wall 
elasticity parameter improves the concentration profile. Figure 4(j) shows the decrease in 
concentration profile for a rise in Brinkmann number. 

 
4.4 Trapping Phenomenon 
  

The trapping is an important phenomenon in analyzing the peristaltic mechanism of biological 
liquids because it shows boluses' formation through closed streamlines. These streamlines are 
plotted in Figure 5-8. Figure 5 interprets streamlines' variation for different values of fluid parameter 
𝐴. The size of the bolus has increased from 𝐴 = 0.1 to 𝐴 = 0.5. In Figure 6 The opposite behavior is 
seen in liquid parameter 𝐵. The number of boluses decreases for an increase value from 𝐵 = 2 to 
𝐵 = 3. Figure 7 depicts the streamlines for variation of coefficient of variable viscosity. As variable 
viscosity increases, the bolus size increases. Figure 8(a) shows that effect of wall properties on 
streamlines. It can be noticed that as the wall tension parameter increases, there is an increase in 
the size of the bolus. Figure 8(b)- (c) shows the number of bolus increases. It is due to the rise in mass 
characterization parameters. Figure 8(d) revels that the size of the bolus decrease with an increase 
in the wall damping parameter. Similar behavior is seen in Figure 8(e), as the increased rigidity of the 
wall, decreases the number of boluses. Figure 8(f) shows the size of the boluses has reduced for an 
increase in the wall elasticity parameter. 
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5. Validation of the Results 
 

The obtained solutions satisfy both the required boundary conditions and the dimensionless 
governing equations perfectly. The streamline, temperature, and concentration solutions obtained 
by Eq. (30), (36) and (43) respectively, are in accordance with the boundary conditions given in Eq. 
(15), and we obtain ψ = - 1, θ = 1, and σ = 1 as specified in boundary conditions (15).  These equations 
are also satisfied if the solutions provided by Eq. (30), (36) and (43) are substituted into Eq. (9-12). 
The given solutions therefore satisfy all governing equations and requirements. Furthermore, the 
graphical solutions provide appropriate representations of the flow profile based on the simulated 
problem, which serves to confirm the boundary conditions for this flow that were considered. The 
results are further supported by Hina's [31] work when in the absence of MHD, and no-slip condition. 
The outcomes are consistent even in the absence of variable liquid properties. 
 
6. Conclusions 
 

An Eyring-Powell fluid peristaltic process is examined in a uniform channel with convective 
boundary conditions and varying liquid characteristics. Small quantities of variable viscosity and heat 
conductivity may be modelled using the semi-analytical approach (double perturbation). Analytical 
methods are used to discover the values of velocity and concentration. Some crucial findings from 
the present model are 

 
i. In terms of velocity, temperature, concentration, and streamline functions, the Eyring-

Powell fluid parameters 𝐴 and 𝐵 behave oppositely. 
ii. The wall properties 𝐸1 and 𝐸2 increase the velocity and temperature while 𝐸3, 𝐸4 and 

𝐸5 decrease the velocity and temperature profiles. Opposing behavior can be seen in the 
concentration profile. 

iii. While the concentration is reduced, the velocity and temperature profiles are increased 
for inclination angle. 

iv. Variable thermal conductivity decreases for both temperature and concentration profiles. 
Brinkmann number increases the temperature during the peristalsis. 

v. The variable viscosity increases, the bolus size increases. 
 
Acknowledgement 
This research was not funded by any grant. 
 
References 
[1] Latham, Thomas Walker. "Fluid motions in a peristaltic pump." PhD diss., Massachusetts Institute of Technology, 

1966.  
[2] Shapiro, Ascher H., Michel Yves Jaffrin, and Steven Louis Weinberg. "Peristaltic pumping with long wavelengths at 

low Reynolds number." Journal of fluid mechanics 37, no. 4 (1969): 799-825. 
https://doi.org/10.1017/S0022112069000899 

[3] Raju, K. Kanaka, and Rathna Devanathan. "Peristaltic motion of a non-Newtonian fluid." Rheologica Acta 11, no. 2 
(1972): 170-178. https://doi.org/10.1007/BF01993016 

[4] Srivastava, L. M., V. P. Srivastava, and S. N. Sinha. "Peristaltic transport of a physiological fluid." Biorheology 20, no. 
2 (1983): 153-166. https://doi.org/10.3233/BIR-1983-20205 

[5] Usha, S., and A. Ramachandra Rao. "Peristaltic transport of two-layered power-law fluids." (1997): 483-488. 
https://doi.org/10.1115/1.2798297 

https://doi.org/10.1017/S0022112069000899
https://doi.org/10.1007/BF01993016
https://doi.org/10.3233/BIR-1983-20205
https://doi.org/10.1115/1.2798297


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 102, Issue 2 (2023) 166-185 

 

184 
 

[6] Vajravelu, K., S. Sreenadh, and V. Ramesh Babu. "Peristaltic pumping of a Herschel–Bulkley fluid in a 
channel." Applied Mathematics and Computation 169, no. 1 (2005): 726-735. 
https://doi.org/10.1016/j.amc.2004.09.063 

[7] Hayat, T., Naseema Aslam, A. Alsaedi, and M. Rafiq. "Numerical analysis for endoscope and Soret and Dufour effects 
on peristalsis of Prandtl fluid." Results in physics 7 (2017): 2855-2864. https://doi.org/10.1016/j.rinp.2017.07.058 

[8] Hayat, T., Naseema Aslam, Ahmed Alsaedi, and M. Rafiq. "Endoscopic effect in MHD peristaltic activity of hyperbolic 
tangent nanofluid: a numerical study." International Journal of Heat and Mass Transfer 115 (2017): 1033-1042. 
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.110 

[9] Vaidya, Hanumesh, C. Rajashekhar, G. Manjunatha, and K. V. Prasad. "Peristaltic mechanism of a Rabinowitsch fluid 
in an inclined channel with complaint wall and variable liquid properties." Journal of the Brazilian Society of 
Mechanical Sciences and Engineering 41 (2019): 1-14. https://doi.org/10.1007/s40430-018-1543-4 

[10] Sobh, Ayman Mahmoud. "Heat transfer in a slip flow of peristaltic transport of a magneto-Newtonian fluid through 
a porous medium." International Journal of Biomathematics 2, no. 03 (2009): 299-309. 
https://doi.org/10.1142/S1793524509000704  

[11] Ali, Nasir, M. Sajid, Tariq Javed, and Zaheer Abbas. "Heat transfer analysis of peristaltic flow in a curved 
channel." International Journal of Heat and Mass Transfer 53, no. 15-16 (2010): 3319-3325. 
https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.036 

[12] Alsaedi, A., Naheed Batool, H. Yasmin, and T. Hayat. "Convective heat transfer analysis on Prandtl fluid model with 
peristalsis." Applied Bionics and Biomechanics 10, no. 4 (2013): 197-208. https://doi.org/10.1155/2013/920276 

[13] Bhatti, M. M., and A. Zeeshan. "Heat and mass transfer analysis on peristaltic flow of particle–fluid suspension with 
slip effects." Journal of Mechanics in Medicine and Biology 17, no. 02 (2017): 1750028. 
https://doi.org/10.1142/S0219519417500282 

[14] Vaidya, Hanumesh, C. Rajashekhar, G. Manjunatha, K. V. Prasad, O. D. Makinde, and K. Vajravelu. "Heat and mass 
transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal 
conductivity." Physica Scripta 95, no. 4 (2020): 045219. https://doi.org/10.1088/1402-4896/ab681a 

[15] Manjunatha, G., C. Rajashekhar, Hanumesh Vaidya, K. V. Prasad, and B. B. Divya. "Heat transfer analysis on 
peristaltic transport of a Jeffery fluid in an inclined elastic tube with porous walls." International Journal of 
Thermofluid Science and Technology 7, no. 1 (2020): 20070101. https://doi.org/10.36963/IJTST.20070101 

[16] Gurrampati, Venkata Ramana Reddy. "Cattaneo-Christov Heat and Mass Transfer Flux Across Electro-
Hydrodynamics Blood-Based Hybrid NanoFluid Subject to Lorentz Force." CFD Letters 14, no. 7 (2022): 124-134. 
https://doi.org/10.37934/cfdl.14.7.124134 

[17] Kothandapani, M., and S. Srinivas. "On the influence of wall properties in the MHD peristaltic transport with heat 
transfer and porous medium." Physics letters A 372, no. 25 (2008): 4586-4591. Hayat, T., and S. Hina. "The influence 
of wall properties on the MHD peristaltic flow of a Maxwell fluid with heat and mass transfer." Nonlinear analysis: 
Real world applications 11, no. 4 (2010): 3155-3169. https://doi.org/10.1016/j.physleta.2008.04.050 

[18] Javed, Maryiam, Tasawar Hayat, and A. Alsaedi. "Effect of wall properties on the peristaltic flow of a non-Newtonian 
fluid." Applied Bionics and Biomechanics 11, no. 4 (2014): 207-219. https://doi.org/10.1155/2014/802361 

[19] Devaki, P., S. Sreenadh, K. Vajravelu, K. V. Prasad, and Hanumesh Vaidya. "Wall properties and slip consequences 
on peristaltic transport of a casson liquid in a flexible channel with heat transfer." Applied Mathematics and 
Nonlinear Sciences 3, no. 1 (2018): 277-290. https://doi.org/10.21042/AMNS.2018.1.00021 

[20] Manjunatha, Gudekote, Choudhari Rajashekhar, Hanumesh Vaidya, K. V. Prasad, and Oluwole Daniel Makinde. 
"Effects wall properties on peristaltic transport of rabinowitsch fluid through an inclined non-uniform slippery 
tube." In Defect and Diffusion Forum, vol. 392, pp. 138-157. Trans Tech Publications Ltd, 2019. 
https://doi.org/10.4028/www.scientific.net/DDF.392.138 

[21] Rajashekhar, C., G. Manjunatha, Hanumesh Vaidya, B. Divya, and K. Prasad. "Peristaltic flow of Casson liquid in an 
inclined porous tube with convective boundary conditions and variable liquid properties." Frontiers in Heat and 
Mass Transfer (FHMT) 11 (2018). https://doi.org/10.5098/hmt.11.35 

[22] Vaidya, Hanumesh, Rajashekhar Choudhari, Manjunatha Gudekote, and Kerehalli Vinayaka Prasad. "Effect of 
variable liquid properties on peristaltic transport of Rabinowitsch liquid in convectively heated complaint porous 
channel." Journal of Central South University 26, no. 5 (2019): 1116-1132. https://doi.org/10.1007/s11771-019-
4075-x 

[23] Vaidya, Hanumesh, C. Rajashekhar, Manjunatha Gudekote, Kerehalli Vinayaka Prasad, Oluwole Daniel Makinde, 
and S. Sreenadh. "Peristaltic motion of non-newtonian fluid with variable liquid properties in a convectively heated 
nonuniform tube: Rabinowitsch fluid model." Journal of Enhanced Heat Transfer 26, no. 3 (2019). 
https://doi.org/10.1615/JEnhHeatTransf.2019029230 

[24] Manjunatha, G., C. Rajashekhar, Hanumesh Vaidya, K. V. Prasad, and K. Vajravelu. "Impact of heat and mass transfer 
on the peristaltic mechanism of Jeffery fluid in a non-uniform porous channel with variable viscosity and thermal 

https://doi.org/10.1016/j.amc.2004.09.063
https://doi.org/10.1016/j.rinp.2017.07.058
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.110
https://doi.org/10.1007/s40430-018-1543-4
https://doi.org/10.1142/S1793524509000704
https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.036
https://doi.org/10.1155/2013/920276
https://doi.org/10.1142/S0219519417500282
https://doi.org/10.1088/1402-4896/ab681a
https://doi.org/10.36963/IJTST.20070101
https://doi.org/10.37934/cfdl.14.7.124134
https://doi.org/10.1016/j.physleta.2008.04.050
https://doi.org/10.1155/2014/802361
https://doi.org/10.21042/AMNS.2018.1.00021
https://doi.org/10.4028/www.scientific.net/DDF.392.138
https://doi.org/10.5098/hmt.11.35
https://doi.org/10.1007/s11771-019-4075-x
https://doi.org/10.1007/s11771-019-4075-x
https://doi.org/10.1615/JEnhHeatTransf.2019029230


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 102, Issue 2 (2023) 166-185 

 

185 
 

conductivity." Journal of Thermal Analysis and Calorimetry 139 (2020): 1213-1228. 
https://doi.org/10.1007/s10973-019-08527-8 

[25] Vaidya, Hanumesh, C. Rajashekhar, G. Manjunatha, K. V. Prasad, O. D. Makinde, and K. Vajravelu. "Heat and mass 
transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal 
conductivity." Physica Scripta 95, no. 4 (2020): 045219. https://doi.org/10.1088/1402-4896/ab681a 

[26] Divya, B. B., G. Manjunatha, C. Rajashekhar, Hanumesh Vaidya, and K. V. Prasad. "Analysis of temperature 
dependent properties of a peristaltic MHD flow in a non-uniform channel: a Casson fluid model." Ain Shams 
Engineering Journal 12, no. 2 (2021): 2181-2191. https://doi.org/10.1016/j.asej.2020.11.010 

[27] Rajashekhar, C., F. Mebarek‐Oudina, Hanumesh Vaidya, K. V. Prasad, G. Manjunatha, and H. Balachandra. "Mass 
and heat transport impact on the peristaltic flow of a Ree–Eyring liquid through variable properties for 
hemodynamic flow." Heat Transfer 50, no. 5 (2021): 5106-5122. https://doi.org/10.1002/htj.22117 

[28] Vaidya, Hanumesh, Rajashekhar Choudhari, Fateh Mebarek‐Oudina, Isaac Lare Animasaun, Kerehalli Vinayaka 
Prasad, and Oluwale Daniel Makinde. "Combined effects of homogeneous and heterogeneous reactions on 
peristalsis of Ree‐Eyring liquid: Application in hemodynamic flow." Heat Transfer 50, no. 3 (2021): 2592-2609. 
https://doi.org/10.1002/htj.21995 

[29] Ewis, Karem Mahmoud. "Effects of Variable Thermal Conductivity and Grashof Number on Non-Darcian Natural 
Convection Flow of Viscoelastic Fluids with Non Linear Radiation and Dissipations." Journal of Advanced Research 
in Applied Sciences and Engineering Technology 22, no. 1 (2021): 69-80. https://doi.org/10.37934/araset.22.1.6980 

[30] Akbar, Noreen Sher, and S. Nadeem. "Characteristics of heating scheme and mass transfer on the peristaltic flow 
for an Eyring–Powell fluid in an endoscope." International Journal of Heat and Mass Transfer 55, no. 1-3 (2012): 
375-383. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.029 

[31] Noreen, S., and M. Qasim. "Peristaltic flow of MHD Eyring-Powell fluid in a channel." The European Physical Journal 
Plus 128 (2013): 1-10. https://doi.org/10.1140/epjp/i2013-13091-3 

[32] Hina, S. "MHD peristaltic transport of Eyring–Powell fluid with heat/mass transfer, wall properties and slip 
conditions." Journal of Magnetism and Magnetic Materials 404 (2016): 148-158. 
https://doi.org/10.1016/j.jmmm.2015.11.059 

[33] Farooq, S., T. Hayat, B. Ahmad, and A. Alsaedi. "MHD flow of Eyring–Powell liquid in convectively curved 
configuration." Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (2018): 1-14. 
https://doi.org/10.1007/s40430-018-1071-2 

[34] Mabood, Fazle, W. Farooq, and A. Abbasi. "Entropy generation analysis in the electro-osmosis-modulated 
peristaltic flow of Eyring–Powell fluid." Journal of Thermal Analysis and Calorimetry (2022): 1-16. 

[35] Kotnurkar, Asha, and Namrata Kallolikar. "Effect of Surface Roughness and Induced Magnetic Field on Electro-
Osmosis Peristaltic Flow of Eyring Powell Nanofluid in a Tapered Asymmetric Channel." Journal of Advanced 
Research in Numerical Heat Transfer 10, no. 1 (2022): 20-37. 

 

https://doi.org/10.1007/s10973-019-08527-8
https://doi.org/10.1088/1402-4896/ab681a
https://doi.org/10.1016/j.asej.2020.11.010
https://doi.org/10.1002/htj.22117
https://doi.org/10.1002/htj.21995
https://doi.org/10.37934/araset.22.1.6980
https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.029
https://doi.org/10.1140/epjp/i2013-13091-3
https://doi.org/10.1016/j.jmmm.2015.11.059
https://doi.org/10.1007/s40430-018-1071-2

