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Fly ash is a significant consequences of coal-fired power stations. Fly ash slurry 
transportation via long pipelines is a challenge for thermal plants and other industries. 
In the current investigation, numerical simulation has been performed to analyse the 
flow pattern of fly ash slurry via horizontal pipe. It has been discovered that pressure 
loss over horizontal pipe increases with velocity and solid concentration. Study of 
rheological flow properties of fly ash slurry is crucial for the development of its 
transportation system. The current work may help develop slurry pneumatic 
conveying systems for thermal plants. 
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1. Introduction 

 
Thermal power plants worldwide produce a lot of fly ash as a by-product. The combustion of coal 

generates it. This ash is carried through a pipe after being mixed with water and formed into a slurry. 
A slurry is a solid-liquid mixture, as stated by Al-sarkhi et al., [1]. Slurry flow differs significantly from 
single-phase flow in a pipeline. Fly ash-water slurry is widely encountered in many chemical and 
mining engineering processes. Ibrahim [2] advocated that slurry transportation via pipelines is cost-
effective and environmentally friendly and has several advantages. According to Patnaree et al., [3] 
it causes minimum pollution. Any pipeline network system would be incomplete without pipe bends. 

When compared to straight pipelines, pipeline bends create a higher pressure drop. CFD has been 
increasingly utilized to explore a wide range of two-phase fluid flow issues through pipelines. Various 
scholars have conducted a numerical and experimental studies on the behaviour of slurry flow in 
pipes. Doron et al., [4] studied the frictional loss of slurry through horizontal pipes. The  numerical 
simulation of complex flows in piping systems in the power station was conducted by Sowjanya et 
al., [5]. They reported that the pressure loss in piping systems is highly dependent on the geometry 
of the pipelines. Slurry flow across bend pipes was experimentally studied by Verma et al., [6]. Eesa 
et al., [7] performed a numerical simulation of granular particle suspension in the carrier fluid. Chen 
et al., [8] modelled coal-water slurry flow via a horizontal piping system. Chandel et al., [9] looked 
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into the additive impact on the rheology of FA slurry and pressure loss at significant concentrations. 
Wang et al., [10] simulated particle flow behaviour inside inverse liquid-solid fluidization by applying 
a numerical method. Numerical modelling of slurry pipeline flow was performed by many workers 
[11-13]. Mazumder et al., [14] performed a numerical simulation to analyze the influence of elbow 
radius on pressure loss. Panda et al., [15] used hydraulic techniques to transport FA slurry and fly 
ash-bottom ash mixtures via pipeline at increasing concentrations. Messa et al., [16] evaluated the 
computational estimation of slurry flow along the straight horizontal pipe and bends. Using 
computational fluid dynamics, Wu et al., [17] assessed the head loss behaviour of solid-liquid slurry 
flow through the piping system. Gopaliya et al., [18] used CFD to model the sand-water slurry flow 
via a straight tube. Rashid et al., [19] assessed frictional pressure losses caused by a polymeric 
additive in crude oil flow in a horizontal pipe experimentally. Kumar et al., [20] studied head loss 
patterns of bottom ash slurry in the presence and absence of additives. Parkash et al., [21] 
established CFD modelling of commercial slurry flow via a horizontal pipe. An attempt was made in 
the present investigation to use CFD to build a  slurry flow model and predict pressure loss and profile 
of solid concentration and velocity profile in a horizontal pipe. The modelling results are evaluated 
by experimental observations made by Chandel et al., [9] on the horizontal pipe. 

 
2. Mathematical Simulation 

 
Geometry has been created with the ANSYS 19.1 design modeller. The pipe length is 4.5 m, 

and the diameter is 41 mm, taken in geometry as shown in Figure 1. The length is sufficient for 
a fully formed flow to occur. The head loss for a wholly developed flow is computed among 
cross-sections 3m and 4.5m from the entrance 

 

 
Fig. 1. Horizontal pipe geometry 

 
The 41mm internal diameter pipe meshing generated in the ANSYS 19.1 with the different 

number of element size ranges 7mm-3mm. In order to achieve optimum mesh element, a grid 
independence test is being conducted on this geometry of tetrahedral volume mesh elements. The 
mesh sizes of 3, 4, 5, 6, and 7 mm had 149287, 186441, 298789, 541461 and 1111719 elements, 
respectively. After selecting the mesh size, the standard k-epsilon turbulence models were 
performed on 5 mm mesh with fly ash mixture. The velocity of the fluid (1m/s) is kept constant for 
all models. Figure 2 represents mesh elements and a cross-sectional view along the horizontal pipe 
used for further study. The change in pressure head is a consequence of the number of elements in 
the discretized horizontal pipe (Figure 3). So, mesh element 3 mm, and 7 mm is used for the further 
study pressure loss calculation of solid-liquid mixture flow via the pipe. The mesh structure remains 
the same thorough out the length of the pipe. 
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(a) (b) 

Fig. 2. (a) Mesh elements along horizontal pipe (b) C.S. view of horizontal pipe 
 

 
Fig. 3. Head loss variations with no. of elements in Horizontal pipe 

 
i. Governing Equations: They constitute the base of all computational hydrodynamic 

investigations. Such are numerical expressions of conservation law fundamentals. The 
following are governing equations of computational fluid dynamics 
 

a) The volume fraction of the solid phase 
 

𝑈𝑓 = ∫ 𝑏𝑓𝑑𝑣             (1) 

Where ∑ 𝑏𝑓
2
𝑓=1 = 1 

𝜌⏞ = 𝑏𝑓𝜌𝑓 

 
b) Continuity equations for solid phase 
 
𝑑

𝑑𝑡
(𝑏𝑓𝜌𝑓) + ∇(𝑏𝑓𝜌𝑓𝑢𝑓) = ∑  𝑛

𝑝=1 (𝑚𝑝𝑓 − 𝑚𝑓𝑝) + 𝑆𝑓        (2) 

 
c) Momentum equation for liquid phase 
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𝑑

𝑑𝑡
(𝑏1𝜌1𝑢1⃗⃗ ⃗⃗ ) + ∇(𝑏1𝜌1 →→𝑢1𝑢1) = −𝑏1∇𝑝 + ∇𝜏‾1̅ + 𝑏1𝜌1→ + 𝐶𝑠1(𝑢𝑠⃗⃗⃗⃗ − 𝑢1⃗⃗⃗⃗ )    (3) 

d) Momentum equations for solid phase 
 

(
𝑑

𝑑𝑡
(𝑏𝑠𝜌𝑠 →𝑠) + ∇(𝑏𝑠𝜌𝑠 → 𝑢𝑠⃗⃗⃗⃗ 𝑢𝑠⃗⃗⃗⃗ ) = −𝑏𝑠∇ − 𝑏∇𝑝𝑐 + ∇𝜏‾�̅� + 𝑏𝑠𝜌𝑠�⃗� +𝑐𝑠𝑙

(𝑢1 −
⟶𝑠

𝑢𝑠⃗⃗⃗⃗ )    (4) 

 
e) Phase stress tensor for solid 
 

𝜏‾�̅� = 𝑏𝑠𝜇𝑠(∇𝑢𝑠⃗⃗⃗⃗ + ∇�⃗� 𝑠
𝑡𝑟) + 𝑎𝑠 (𝛽𝑠 −

2

3
𝜇𝑞)∇𝑢𝑠⃗⃗⃗⃗         (5) 

 
f) Phase stress tensor for liquid 
 

𝜏1̅ = 𝑏1𝜇1(∇𝑢1⃗⃗⃗⃗ + ∇𝑢𝑠
𝑡𝑟)̅̅ ̅̅ ̅̅            (6) 

 
g) Bulk viscosity of solid 
 

𝜆𝑠 =
4

3
𝑏𝑠𝜌𝑠𝑑𝑠𝑓0.𝑠𝑠(1 + 𝑒𝑠𝑠) (

𝜙𝑠

𝜋
)
0.5

          (7) 

 
h) Shear viscosity of solid 
 
𝜇𝑠 = 𝜇𝑠,𝑐𝑜𝑙 + 𝜇𝑠,𝑠𝑘𝑖𝑛 + 𝜇𝑠,𝑓𝑟           (8) 

 
i) Collisional viscosity 
 

𝜇𝑠 =
4

5
𝑏𝑠𝜌𝑠𝑑𝑠𝑓0,𝑠𝑠(1 + 𝑒𝑠𝑠) (

𝜙𝑠

𝜋
)
0.5

          (9) 

 
j) Kinetic viscosity 
 

𝜇𝑠,𝑘𝑖𝑛 =
10𝜌𝑠𝑑𝑠√𝜏𝜑𝑠𝜋

96𝑏𝑠(1+𝑒𝑠𝑠)𝑓𝑜,𝑠𝑠
+ (1 +

4

5
𝑏𝑠𝜌𝑠𝑑𝑠𝑓𝑜,𝑠𝑠(1 + 𝑒𝑠𝑠))

2

𝑏𝑠                 (10) 

 
k) Frictional viscosity 
 

𝜇𝑠,𝑓𝑟 =
𝑝𝑠sin𝜑

2√𝐼2𝐷
                       (11) 

 
l) Liquid solid exchange coefficient 
 

𝐶𝑙𝑠 = 150
𝑏𝑠9(1+𝑏1)𝜇1

𝑏1𝑑𝑠
2 + 1.75

𝜌1𝑏𝑠|𝑢𝑠̅̅̅̅ ⟶𝑢1⃗⃗⃗⃗  ⃗|

𝑑𝑠
                   (12) 

 
ii. Boundary conditions: In computational, the geometry has three boundaries: outlet, inlet 

and wall of the pipe. The fluid enters at uniform velocity from the inlet face and is given 
as a pressure outlet. There has been no slip consequence at the wall, and the roughness 
constant is set to 0.5. In the current work, the inlet velocity of both phases is the 
same in the limit of 1 – 3 m/s. A SIMPLE scheme is preferred for pressure-velocity coupling. 
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This scheme has a higher level of accuracy and convergence. Solution controls contain 
some relaxation factors for density, pressure, momentum, forces, and slip velocity and 
remain by default. However, their value can be changed from 0.8 to 0.5 in case of 
deviation in the results. The convergence criterion in the present work is taken as 10-4.  

 
3. Results and Discussions 
3.1 Pressure Drop 

 
In current work, computational modelling has been performed to investigate pressure loss 

behaviour for fly ash slurry via a horizontal straight pipe. Pressure loss of FA slurry has been observed 
at different solid concentrations range (Cw) of 60% and 65 % by weight. Within the required range of 
velocities (1 to 3 m/s), the pressure drop was calculated in metres of water column per kilometre of 
the pipeline (mWc/km). For any solid concentration, pressure loss increased as the velocity, with the 
enrichment rate becoming much more observable at more incredible speeds, as depicted in Figure 
4. This is due to increasing the solid content that causes a significant rise in the viscosity and density 
of the slurry suspension. The simulated result agrees with Chandel et al., [9]. 
 

  
(a) (b) 

Fig. 4. Pressure drop Vs velocity at a solid concentration (a) 60% and (b) 65% by weight in horizontal pipe 

 
Experiments cannot predict the velocity profile of the solid state in a flow. The vertical velocity 

profiles generated by computational fluid dynamics agree with theoretical ideas. The velocity of 
mean flow and solid concentrations determine the symmetrical character of the vertical velocity 
profile. At low velocities, the velocity profile of the solid state is usually asymmetric about the 
longitudinal axis due to settling particles due to differences in densities. This asymmetry is reduced 
with increasing velocities, but most of the particles stay in the pipe's lower half. 

 
3.2 Solid concentration distribution 

 
The findings anticipated by mathematical modelling of solid volume fraction contours at 60% and 

65% by weight concentration of FA slurry at velocity 1m/s and 3 m/s for the horizontal  pipe. The 
contact of particles with the wall increased as fluid flow increased from 1 m/s to 3 m/s. The Findings 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 104, Issue 2 (2023) 153-160 

158 
 

are displayed for the vertical plane at the pipeline's output portion in Figure 5 and 6. Due to 
gravitational forces, the greater FA concentration area is shown at the pipe bottom. According to the 
findings, fly ash particles have a nature to settle towards the pipeline bottom at low velocities. 

 

 
Fig. 5. Solid volume fraction contour of fly ash at 60% concentration at velocity 1m/s and 3m/s 
in horizontal pipe 

 

 
Fig. 6. Solid volume fraction contour of fly ash at 65% concentration at velocity 1m/s and 
3m/s in horizontal pipe 

 
4. Conclusions 

 
The commercial CFD Programme could accurately model the fly ash-water slurry flow, and the 

predicted concentration profiles agree well with the experimental results. As the fluid velocity 
increases, pressure loss per unit length throughout the horizontal tube also increases. Pressure loss 
is considerably more significant at high concentrations than at low concentrations. For all solid 
concentrations investigated, the relative pressure loss over the pipe bend tends to increase with 
velocity and becomes stable at high velocity. Contour plots indicate that as time passes, more fly ash 
deposits on the lower pipe section and the impact of the bend are localized in a specific region after 
the bend. Due to the continuous deposition of fly ash, the maximum flow velocity is moved       to the 
pipe's upper cross-section. The slurry begins to settle as the velocity decreases; gravity causes the 
higher concentration region to move toward the bottom of the pipe and a decline in turbulent energy 
that hold the particles in the slurry. Long-distance slurry pipelines are utilized for the conveyance of 
concentrated slurries around the world today. The slurry's rheological properties are significant for 
determining essential aspects of hydraulic conveying, like pressure loss in industrial pipelines. Based 
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on the rheological behaviour of fly ash slurry at different solid concentrations and flow velocities, the 
present study may assist in estimating pressure drop in pipelines. The current research may help 
develop slurry pneumatic conveying systems for thermal plants. 
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