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The present work seeks to investigate the problem of stable laminar micropolar fluid 
flow through porous walls of varying permeability. Furthermore, the effect of an 
external magnetic field is investigated. The resulting solution is extended to analyse the 
nonlinear differential equation of heat and mass transfer in the flow situation. The 
velocity and microrotation at the channel’s entrance are assumed to be those of 
Poiseuille flow. Using appropriate transformations, the governing nonlinear equations 
are transformed to a system of ordinary differential equations, which are then solved 
using a novel numerical technique based on a finite difference scheme termed the 
Keller-box method. The results show that the smooth and straightforward Keller-box 
method is an appropriate method for estimating solutions of complex governing 
equations since it is simple to implement. Graphs and tables are used to explain the 
effect of significant parameters such as the suction Reynolds number, micro 
rotation/angular velocity parameters, and Peclet number on the stream function, 
temperature distribution, and concentration properties of the fluid. The effect of wall 
permeability on longitudinal velocity and microrotation has been investigated. The 
couple stress and skin friction on the walls have also been calculated. The effect of 
variation in Reynolds number is showing the importance of inertial forces in comparison 
with viscous forces. The velocity boundary layer is observed to decrease when there is 
an increase in Reynolds number. Furthermore, the accuracy and convergence of the 
obtained solutions show that the Keller-box method is applicable to various nonlinear 
physical problems, even those with significant non-linearity. 
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1. Introduction 
 

Exploration exercises aimed at investigating fluid material science at the micro and nano scales 
have grown in popularity in recent years. The fluid flows in channels using Navier-Stokes equations 
have been thoroughly studied in the literature [1-8]. Because the Navier-Stokes equations do not 
account for molecular spin, they cannot explain fluid flow characteristics on a large scale, Eringen 
[9,10] established the theory of micro continuum, which explains the micropolar theory. This theory 
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provided a mathematical framework for investigating the spinning effects in micropolar fluid motion. 
Because of the spinning micro ingredients, the micropolar fluid is extremely useful in modern 
engineering and technology. To understand theory behind the micropolar fluid flow and applications 
one can refer papers by Ariman et al., [11,12] and Lukaazewicz [13]. 

The flow of micropolar fluid between porous channel were studied by Sastry et al., [14]. They 
obtained the solution using numerical method followed by quasilinearisation. To better understand 
the behavior of micropolar fluids different authors have analyzed the flow situations using various 
semi-analytical and numerical techniques under different physical conditions [15-17]. Two-
dimensional micropolar fluid flow in a porous channel with high mass transfer was studied by Kelson 
et al., [18]. The governing equations were solved for huge mass transfer using semi-analytical 
perturbation technique. Later, the micropolar fluid flow driven by suction and injection on the 
channel walls is analyzed for high mass transfer using Optimal Homotopy Asymptotic Method [19]. 
The results were also validated with numerical solutions. It is well known fact that the presence of 
external magnetic force in any fluid flow situation alters the flow and have consequential effects on 
the flow parameters. The literature has witnessed a great amount of work on the analysis of 
micropolar fluid flow in fact in different geometries such as vertical plates, stretching sheets, tubes, 
disks and many more. The enormous applications of micropolar fluid flow in the existence of external 
magnetic force attracts research in this regard. 

Thus, in the present study, our focus is to investigate the effect of suction and external magnetic 
force on the electrically conducting laminar flow of micropolar fluid in a channel with porous walls of 
varying permeability. The research is also extended to understand the heat and mass transfer 
processes in the current flow situation. We consider [9] Eringen’s governing equations for the flow 
structure and model the problem with appropriate boundary conditions at the porous walls. The non-
linear problem governing velocity and micro-rotation is solved by using finite difference box scheme 
also called Keller box method. The numerical outcomes are represented in relevant graphs and 
tables. The Keller-box method [20,21] is proven to be an efficient numerical procedure to solve highly 
non-linear governing equations. An extensive amount of explanation about the validation and 
application of this method can be extracted from the book [22]. 
 
2. Mathematical Formulation of the Problem 
 

Consider the axi-symmetric laminar steady incompressible flow of an electrically conducting 
micropolar fluid between porous parallel walls of different permeability. Let the channel width be 2𝑙, 
with 𝑥 and 𝑦 axes chosen along and perpendicular to the porous walls. The fluid velocities along these 
axes are supposed to be 𝑢𝑥 and 𝑢𝑦 respectively. Let 𝑢𝑦 be 𝑣1 at the lower wall 𝑦 = −𝑙 while at the 

upper wall 𝑦 = 𝑙, 𝑢𝑦 = 𝑣2. Without affecting the validity of the problem in general, we consider a 

particular case with |𝑣2| ≥ |𝑣1|. 
Assuming a stationary magnetic field 𝐵0 in the transverse direction, which is perpendicular to the 

velocity field lying in the 𝑋𝑌-plane. We neglect the induced magnetic field when compared to 
imposed field. It is also assumed that there is no applied electric field, i.e., 𝐸 = 0. Also, assuming the 
absence of body couple, the linearized form of electromagnetic body force can be written as 

−𝜎𝑒𝐵0
2𝑢𝑥, where 𝜎𝑒 is electrical conductivity of fluid. The geometry of the flow situation can be 

visualized in Figure 1. 
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Fig. 1. Visualisation of the geometry in 𝑋𝑌 −plane 

 
We use the governing theory proposed by Eringen for micropolar fluids, the equations for the 

magnetohydrodynamic laminar viscous incompressible steady flow of micropolar fluid are 
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1
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where 𝜉 =
𝑦

𝑙
 is similarity variable, 𝜌, 𝜇 are the density and kinematic viscosity, 𝑗 is the microinertia 

viscosity, 𝜅, 𝛾 are the microrotation parameter and spin gradient viscosity respectively. 
Neglecting the viscous dissipation, the equation for temperature field and concentration can be 

written as 
  

𝜌𝑐𝑝 (𝑢𝑥

𝜕𝑇

𝜕𝑥
+

𝑢𝑦

𝑙
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𝑢𝑥
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𝜕𝑥
+

𝑢𝑦

𝑙
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𝐷 ∗

𝑙2

𝜕𝐶
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where 𝑇 is the temperature, 𝑐𝑝 is the specific heat at constant pressure, 𝜅0 is the thermal conductivity 

of fluid, 𝐶 is the concentration of fluid particles, and 𝐷 ∗ is the molecular diffusivity. 
The boundary conditions for velocity, microrotation, temperature and concentration field can be 

written as 
  

𝑢𝑥 = 0, 𝑢𝑦 = 𝑣1, 𝜈𝑚 = −
𝑠

𝑙

𝜕𝑢

𝜕𝜉
    at  𝜉 = −1                                                                                                  (7) 
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𝑢𝑥 = 0, 𝑢𝑦 = 𝑣2, 𝜈𝑚 =
𝑠

𝑙

𝜕𝑢

𝜕𝜉
    at  𝜉 = 1 

 

𝑇 = {
𝑇1,    𝜉 = −1
𝑇2,    𝜉 = 1

                                                                                                                                               (8) 

  

𝐶 = {
𝐶1,    𝜉 = −1
𝐶2,    𝜉 = 1

                                                                                                                                               (9) 

  
This complex system of nonlinear equations in Eqs. (1)-(4), Eq. (5) and Eq. (6) representing the 

present problem is solved after applying suitable transformations. The stream functions for velocity 
can be taken in the form [15] 
  

Φ(𝑥, 𝜉) = (
𝑙𝑈0

𝛼0
− 𝑣2𝑥) 𝐹(𝜉)                                                                                                                          (10) 

  

where, 𝑈0 = ∫
1

0
𝑢𝑥(0, 𝜉)𝑑𝜉 is the entrance velocity, and 𝛼0 = 1 −

𝑣1

𝑣2
. 

Using the defined similarity transformations, the velocity, microrotation, temperature and 
concentration components are given by 

 

𝑢𝑥(𝑥, 𝜉) = (
𝑈0

𝛼0
−

𝑣2𝑥

𝑙
) 𝑓′(𝜉),    𝑢𝑦(𝑥, 𝜉) = 𝑣2𝑓(𝜉),

𝜈𝑚(𝑥, 𝜉) =
1

𝑙
(
𝑈0

𝛼0
−

𝑣2𝑥

𝑙
)𝐺(𝜉)

𝜃(𝜉) =
𝑇 − 𝑇1

𝑇2 − 𝑇1
,       𝜙(𝜉) =

𝐶 − 𝐶1

𝐶2 − 𝐶1
.

                                                                                 (11) 

  
We see that this usual way of defined stream functions satisfies continuity equation and thus 

representing a valid fluid motion. Substituting Eq. (11) in Eqs. (1)-(4), Eq. (5) and Eq. (6), the 
dimensionless form of the governing equations can be obtained as 

 
(1 + 𝑛1)𝐹′′′′ − 𝑛1𝐺′′ + 𝑆(𝐹′𝐹′′ − 𝐹𝐹′′′) − 𝑀2𝐹′′ = 0                                                                          (12) 
 
𝑛2𝐺′′ − 𝑛1(𝐹′′ − 2𝐺) − 𝑛3𝑆(𝐹𝐺′ − 𝐺𝐹′) = 0                                                                                       (13) 
 
𝜃′′ + 𝑝ℎ(𝐹′𝜃 − 𝐹𝜃′) = 0                                                                                                                               (14) 
 
𝑝′′ + 𝑝𝑚(𝐹′𝜙 − 𝐹𝜙) = 0                                                                                                                               (15) 
 

where 𝑆 =
𝜌𝑣2ℎ

𝜇
 is the Reynolds number, 𝑀2 =

𝜎𝑒ℎ𝐵0
2

𝜌𝑣2
 is the magnetic parameter, 𝑃𝑟 =

𝜈𝜌𝑐𝑝

𝜅0
 is the 

Prandtl number with 𝑝ℎ = 𝑆𝑃𝑟, 𝑆𝑐 =
𝜈

𝐷∗
 is the Schmidt number with 𝑝𝑚 = 𝑆𝑐𝑆. Here, 𝑛1 =

𝜅

𝜇
, 𝑛2 =

𝛾

𝜇ℎ2
, 𝑛3 =

𝑗

ℎ2
 are the micropolar parameters respectively named vortex viscosity parameter, spin 

gradient viscosity parameter and microinertia density parameter. 
The boundary conditions in Eq. (7), Eq. (8) and Eq. (9) takes the dimensionless form as 
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{
At  𝜉 = −1, 𝐹 = 1 − 𝛼0, 𝐹′ = 𝐺 = 0, 𝜃 = 𝜙 = 1

At  𝜉 = 1, 𝐹 = 1, 𝐹′ = 𝐺 = 0, 𝜃 = 𝜙 = 0
                                                            (16) 

  
We now have to solve the system of governing equations in Eqs. (12)-(15) subject to boundary 

conditions represented in Eq. (16) representing the fluid flow situation described. 
 
3. Keller-Box Solution  
 

Majority of the physical problems when modeled are finally derived into complex set of non-
linear differential equations. It is well known that the exact analytical solutions to these governing 
equations are difficult to obtain. It is worthy to mention that the numerical techniques would give 
accurate, effective and efficient solutions. We use finite difference based numerical method 
popularly called as Keller-box method to solve the system of coupled non-linear equations for 
understanding the effects of various pertinent parameters of the flow. Because of its stability and 
efficiency, the box technique has been demonstrated in the literature to be a powerful tool for solving 
nonlinear differential equations. This method begins by introducing new variables into the governing 
system with boundary conditions, resulting in a set of first-order differential equations. The system 
of first-order equations is then discretized by substituting appropriate finite difference 
approximations. The non-linear algebraic equations are linearized using Newton’s linearization 
method. A block tri-diagonal elimination scheme is then used to solve the resulting linear system. 
The detailed steps of this numerical procedure for the current problem are not presented here to 
save space. For all computations, a uniform step size of  Δ𝜉𝑖 = 0.01 is used, and the solutions are 
obtained with an error tolerance of 10−9. The computational results for velocity profiles and 
microrotation are obtained for various sets of values of micropolar parameters 𝑛1, 𝑛2, and 𝑛3, 
Reynolds number, and magnetic parameter. 
 
4. Numerical Outcomes and Analysis 
 

In this section, the numerical results obtained using Keller-box method is visualised using graphs 
and tables. The numerical finite difference-based method is yet again proved to be an efficient 
reliable technique to solve non-linear coupled governing equations. Figure 2 shows dimensionless 
velocity and microrotation profiles for fixed 𝑀 = 5, 𝑅 = 1.5, and 𝑆 = 10,  𝛼0 = 0.1. These profiles 
are plotted for various micropolar parameters 𝑛1, 𝑛2  and 𝑛3. The velocity profiles intersect at one 
point for 0 ≤ 𝜉 ≤ 0.5 for every combination of 𝑛1,  𝑛2 and 𝑛3. Microrotation profile behaves 
differently for different micropolar parameters, whereas velocity profiles show the similar behaviour. 

In Figure 3, profiles are displayed for various suction Reynolds number S with 𝑛1 = 0.1, 𝑛2 = 0.01 
and 𝑛3 = 0.1, 𝑀 = 5, 𝛼0 = 0.2. Velocity profiles increase initially, achieving the minima for each 
curve, which shifts toward 𝜉 = 1.0, and increases after that, with an increase in suction Reynolds 
number S. Microrotation profile rises with an increase in suction Reynolds number S, except the 
region near the plate. 
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(a)                                                                                         (b) 

Fig. 2. Dimensionless (a) Axial velocity, (b) Microrotation profile for various sets of parameters 𝑛1, 𝑛2 
and 𝑛3 with 𝑀 = 5 and 𝑅 = 1.5, 𝑆 = 10, 𝛼0 = 0.1 

 

   
(a)                                                                                                  (b) 

Fig. 3. Dimensionless (a) Axial velocity, (b) Microrotation profile for various Reynolds number with 𝑛1 =
0.1, 𝑛2 = 0.01 and 𝑛3 = 0.1, 𝑀 = 5, 𝛼0 = 0.2 

 
In Figure 4, profiles are plotted for various values of magnetic parameter 𝑀, with micropolar 

parameters 𝑛1 = 0.1, 𝑛2 = 0.01 and 𝑛3 = 0.1, Suction Reynolds number 𝑆 = 5,  𝛼0 = 0.2. Velocity 
profiles increase as the magnetic parameter 𝑀 increases, but they become flatter. The effects of 
higher magnetic parameters tend to reduce the microrotation profiles curve at the upper and lower 
walls to zero. The outcome points out that an increment in the magnetic parameter enhances both 
velocity and microrotation profiles, although they tend to depress these profiles. The effect of the 
magnetic parameter 𝑀 is to decrease microrotation at the upper and lower wall of the channel when 
−0.8 < 𝜉 < −0.3 and 0.3 < 𝜉 < 0.8, respectively. 
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(a)                                                                                                 (b) 

Fig. 4. Dimensionless (a) Axial velocity, (b) Microrotation profile for various magnetic parameter with 
𝑛1 = 0.1, 𝑛2 = 0.01 and 𝑛3 = 0.1, 𝑆 = 5, 𝛼0 = 0.2 

 
In Figure 5, profiles are shown for different values of 𝛼0 with micropolar parameters 𝑛1 =

0.1, 𝑛2 = 0.01 and 𝑛3 = 0.1, suction Reynolds number 𝑆 = 5, and magnetic parameter 𝑀 = 5. 
Velocity profiles shows an increase with an increase in 𝛼0 as it goes on depressing. In contrast, 
microrotation profiles decrease when 𝜉 lies between -1.0 and 0.5, then increase after that, with an 
increase in 𝛼0 till 𝜉 = 1.0. 
 

    
(a)                                                                                                 (b) 

Fig. 5. Dimensionless (a) Axial velocity, (b) Microrotation profile for various permiability parameter 𝛼0 
with 𝑛1 = 0.1, 𝑛2 = 0.01 and 𝑛3 = 0.1, 𝑆 = 5, 𝑀 = 5 

 
Micropolar parameters do alter the flow situation and the effects of these various micropolar 

parameters on the shear stress, heat, and mass transfer rates at both the boundary walls are 
tabulated in Table 1. It is witnessed in Table 2 that an increase in Reynolds number, considerably 
increases the shear stress while decreasing the heat and mass transfer rates. 
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Table 1 
The shear stress, heat and mass transfer rates at both the boundary walls for various micropolar parameters 
 𝐹′′(−1) 𝐹′′(1) 𝜃′(−1) 𝜃′(1) 𝜙′(−1) 𝜙′(1) 

𝑛1 = 0.1,
𝑛2 = 0.001,
𝑛3 = 0.1 

-1.50550911 2.968726603 -0.012017868 -0.256813696 -0.012407247 -0.362697983 

𝑛1 = 0.2,
𝑛2 = 0.1,
𝑛3 = 0.3 

-1.54885649 2.974085686 -0.01186139 -0.258342322 -0.012245699 -0.364856861 

𝑛1 = 0.5,
𝑛2 = 0.3,
𝑛3 = 1 

-1.55880485 2.570425489 -0.014944431 -0.236864391 -0.015428631 -0.334523579 

𝑛1 = 0.2,
𝑛2 = 0.5,
𝑛3 = 0.8 

-1.55770785 3.141786527 -0.010249973 -0.269667123 -0.010582072 -0.380850877 

   
Table 2 
The shear stress, heat and mass transfer rates at both the boundary walls for various Reynolds number    
𝑆 𝐹′′(−1) 𝐹′′(1) 𝜃′(−1) 𝜃′(1) 𝜙′(−1) 𝜙′(1) 

1 -2.666203862 2.721072628 -0.028645114 -0.239593543 -0.029573216 -0.24824287 

5 -1.996853075 2.794085138 -0.019811846 -0.245608924 -0.02045375 -0.254475406 

10 -1.531290913 3.043451448 -0.011888394 -0.260731382 -0.012273578 -0.270143785 

20 -1.128909404 3.674404706 -0.003570526 -0.294066579 -0.003686212 -0.304682382 

50 -0.822755541 5.353601976 -0.00086254 -0.364669122 -0.000890486 -0.377833677 

    
The effect of having different permeability at the two boundary walls on shear stress, heat, and 

mass transfer rates are depicted in Table 3. Table 4 demonstrates the outcome of varying Peclet 
number for heat and mass diffusion at both the boundary walls. It is observed that the effect of Peclet 
number is higher than others near the upper boundary, because of the presence of Prandtl number. 
Also, it is deduced that the concentration diffusion rate increases with the increase of Peclet number 
in top half of the channel. 
 
Table 3  
The shear stress, heat and mass transfer rates at both the boundary walls for various permeability parameter 
𝛼0 
𝛼0 𝐹′′(−1) 𝐹′′(1) 𝜃′(−1) 𝜃′(1) 𝜙′(−1) 𝜙′(1) 
0 -1.62437 3.454823 -0.00867 -0.25811 -0.00895 -0.26654 
0.1 -1.53129 3.043451 -0.01189 -0.26073 -0.01228 -0.26924 
0.2 -1.43175 2.64912 -0.02219 -0.26438 -0.02291 -0.273 
0.3 -1.3238 2.271606 -0.02777 -0.26969 -0.02867 -0.27849 
0.4 -1.20486 1.910436 -0.02062 -0.27658 -0.0213 -0.2856 
0.5 -1.07166 1.564807 -0.01251 -0.28463 -0.01292 -0.29391 

 
Table 4 
The heat and mass transfer rates at both the boundary walls for diffetent Peclet numbers for heat 𝑝ℎ and 
mass diffusion 𝑝𝑚 
𝑝ℎ  𝜃′(−1) 𝜃′(1) 𝑝𝑚 𝜙′(−1) 𝜙′(1) 

0.1 -0.01189 -0.26073 0.1 -0.01228 -0.27269 

0.2 -0.01387 -0.21886 0.2 -0.01433 -0.22889 

0.3 -0.01417 -0.19606 0.3 -0.01464 -0.20506 

0.4 -0.01386 -0.18078 0.4 -0.01431 -0.18907 

0.5 -0.01852 -0.16945 0.5 -0.01913 -0.17722 
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5. Conclusions 
 

In the present study, with the implementation of Keller-box method the equations governing heat 
and mass transfer analysis of micropolar fluid between porous channel of different permeability at 
the boundaries in the presence of external magnetic field is analysed. The numerical results showing 
effects of various micropolar parameters, Reynolds number, magnetic parameter, permeability 
variable on the flow were explained with the help of figures and tabulated data. It is important to 
note that the Reynolds number shows how important the inertia impact is in comparison to the 
viscous effect. Therefore, as Reynolds number rises, a decrease in velocity boundary layer thickness 
is observed. The external magnetic force plays an important role in controlling the fluid flow situation.  
 
Acknowledgement 
This research was not funded by any grant. 
 
References 
[1] Berman, Abraham S. "Laminar flow in channels with porous walls." Journal of Applied physics 24, no. 9 (1953): 1232-

1235. https://doi.org/10.1063/1.1721476 
[2] Sellars, John R. "Laminar flow in channels with porous walls at high suction Reynolds numbers." Journal of Applied 

Physics 26, no. 4 (1955): 489-490. https://doi.org/10.1063/1.1722024 
[3] Yunan, S. W. "Further investigation of laminar flow in porous channels." J. Appl. Phys 27 (1956): 267-269. 

https://doi.org/10.1063/1.1722355 
[4] Wah, Thein. "Laminar flow in a uniformly porous channel." Aeronautical Quarterly 15, no. 3 (1964): 299-310. 

https://doi.org/10.1017/S0001925900010908 
[5] Robinson, W. A. "The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction 

at both walls." Journal of Engineering Mathematics 10 (1976): 23-40. https://doi.org/10.1007/BF01535424 
[6] Brady, J. F. "Flow development in a porous channel and tube." The Physics of fluids 27, no. 5 (1984): 1061-1067. 

https://doi.org/10.1063/1.864735 
[7] Cox, Stephen M. "Analysis of steady flow in a channel with one porous wall, or with accelerating walls." SIAM 

Journal on Applied Mathematics 51, no. 2 (1991): 429-438. https://doi.org/10.1137/0151021 
[8] King, J. R., and S. M. Cox. "Asymptotic analysis of the steady-state and time-dependent Berman problem." Journal 

of engineering mathematics 39, no. 1 (2001): 87-130. https://doi.org/10.1007/978-94-010-0698-9_7 
[9] Eringen, A. Cemal. "Theory of micropolar fluids." Journal of mathematics and Mechanics (1966): 1-18. 

https://doi.org/10.1512/iumj.1967.16.16001 
[10] Eringen, A. Cemal. "Theory of anisotropic micropolar fluids." International Journal of Engineering Science 18, no. 1 

(1980): 5-17. https://doi.org/10.1016/0020-7225(80)90003-8 
[11] Ariman, T. M. A. N. D., M. A. Turk, and N. D. Sylvester. "Microcontinuum fluid mechanics—a review." International 

Journal of Engineering Science 11, no. 8 (1973): 905-930. https://doi.org/10.1016/0020-7225(73)90038-4 
[12] Ariman, T. T. N. D., M. A. Turk, and N. D. Sylvester. "Applications of microcontinuum fluid mechanics." International 

Journal of Engineering Science 12, no. 4 (1974): 273-293. https://doi.org/10.1016/0020-7225(74)90059-7 
[13] Lukaszewicz, G. "Micropolar fluids. Theory and applications. Modeling and Simulation in Science, Engineering and 

Technology, Birkhuser Boston." Inc., Boston, MA (1999). https://doi.org/10.1007/978-1-4612-0641-5_5 
[14] Sastry, V. U. K., and V. Rama Mohan Rao. "Numerical solution of micropolar fluid flow in a channel with porous 

walls." International Journal of Engineering Science 20, no. 5 (1982): 631-642. https://doi.org/10.1016/0020-
7225(82)90117-3 

[15] Na, T-Y., and I. Pop. "Boundary-layer flow of a micropolar fluid due to a stretching wall." Archive of Applied 
Mechanics 67 (1997): 229-236. https://doi.org/10.1007/s004190050113 

[16] Desseaux, A., and Neil Kelson. "Solutions for the flow of a micropolar fluid in a porous channel." In Proceedings of 
the 4th Biennial Engineering Mathematics and Application Conference, pp. 115-118. Engineering Mathematics 
Group of ANZIAM, 2000. 

[17] Bhat, Ashwini, and Nagaraj N. Katagi. "Micropolar fluid flow between a non-porous disk and a porous disk with slip: 
Keller-box solution." Ain Shams Engineering Journal 11, no. 1 (2020): 149-159. 
https://doi.org/10.1016/j.asej.2019.07.006 

https://doi.org/10.1063/1.1721476
https://doi.org/10.1063/1.1722024
https://doi.org/10.1063/1.1722355
https://doi.org/10.1017/S0001925900010908
https://doi.org/10.1007/BF01535424
https://doi.org/10.1063/1.864735
https://doi.org/10.1137/0151021
https://doi.org/10.1007/978-94-010-0698-9_7
https://doi.org/10.1512/iumj.1967.16.16001
https://doi.org/10.1016/0020-7225(80)90003-8
https://doi.org/10.1016/0020-7225(73)90038-4
https://doi.org/10.1016/0020-7225(74)90059-7
https://doi.org/10.1007/978-1-4612-0641-5_5
https://doi.org/10.1016/0020-7225(82)90117-3
https://doi.org/10.1016/0020-7225(82)90117-3
https://doi.org/10.1007/s004190050113
https://doi.org/10.1016/j.asej.2019.07.006


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 102, Issue 2 (2023) 186-195 

 

195 
 

[18] Kelson, N. A., and T. W. Farrell. "Micropolar flow over a porous stretching sheet with strong suction or 
injection." International Communications in Heat and Mass Transfer 28, no. 4 (2001): 479-488. 
https://doi.org/10.21914/anziamj.v44i0.692 

[19] Joneidi, A. A., D. D. Ganji, and M. Babaelahi. "Micropolar flow in a porous channel with high mass 
transfer." International Communications in Heat and Mass Transfer 36, no. 10 (2009): 1082-1088. 
https://doi.org/10.1016/j.icheatmasstransfer.2009.06.021 

[20] Keller, Herbert B. "Some computational problems in boundary-layer flows." In Proceedings of the Fourth 
International Conference on Numerical Methods in Fluid Dynamics: June 24–28, 1974, University of Colorado, pp. 
1-21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. 

[21] Keller, Herbert B. "Numerical methods in boundary-layer theory." Annual Review of Fluid Mechanics 10, no. 1 
(1978): 417-433. https://doi.org/10.1146/annurev.fl.10.010178.002221 

[22] Vajravelu, Kuppalapalle, and Kerehalli V. Prasad. "Keller-box method and its application." In Keller-Box Method and 
Its Application. De Gruyter, 2014. https://doi.org/10.1515/9783110271782 

[23] Bhat, Ashwini, Nagaraj N. Katagi, and N. M. Bujurke. "Analysis of Laminar Flow in a Porous Pipe with Slip 
Velocity." Journal of Mechanical Engineering Research and Developments 40, no. 4 (2017): 1-11. 

[24] Adnan, Nurul Shahirah Mohd, Norihan Md Arifin, Norfifah Bachok, and Fadzilah Md Ali. "Stability analysis of MHD 
flow and heat transfer passing a permeable exponentially shrinking sheet with partial slip and thermal 
radiation." CFD Letters 11, no. 12 (2019): 34-42. 

[25] Wahid, Nur Syahirah, Mohd Ezad Hafidz Hafidzuddin, Norihan Md Arifin, Mustafa Turkyilmazoglu, and Nor Aliza 
Abd Rahmin. "Magnetohydrodynamic (MHD) slip darcy flow of viscoelastic fluid over a stretching sheet and heat 
transfer with thermal radiation and viscous dissipation." CFD Letters 12, no. 1 (2020): 1-12. 

[26] Bhat, Ashwini, and Nagaraj N. Katagi. "Influence of Slip Velocity on Micropolar Fluid Through a Porous Channel: 
Using Keller-Box Method." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 66, no. 2 (2020): 
49-64. 
 

 

https://doi.org/10.21914/anziamj.v44i0.692
https://doi.org/10.1016/j.icheatmasstransfer.2009.06.021
https://doi.org/10.1146/annurev.fl.10.010178.002221
https://doi.org/10.1515/9783110271782

