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This study highlights the hybrid Fe3O4-CoFe2O4/H2O ferrofluid flow and heat transfer 
with the effects of linear heat generation, magnetic field and suction on a rotating disk. 
Using the similarity transformation, the mathematical model is simplified and reduced 
to a similarity set of equations. The bvp4c solver is used for computational analysis as 
well as the stability analysis procedure. The present model is successfully validated 
with previous results, and also verified with the fulfillment of the asymptote profiles. 
Triple solutions are observed within a limited range of testing parameters. The flow 
progress of Fe3O4-CoFe2O4/H2O is reduced when some changes made by varying the 
magnetic and suction parameters while a reverse result is obtained for the third 
solution. Only the suction parameter boosts the thermal progress of Fe3O4-
CoFe2O4/H2O. The stability analysis surprisingly shows that two of the solutions have 
positive smallest eigenvalues and align with the physical results.  
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1. Introduction 
 

Ferrofluids or magnetic nanofluids have been applied in various applications such as computer 
drives, medicine delivery, vacuum chambers, amplifiers, revolving shaft seals and cell parting [1].  
Meanwhile, hybrid ferrofluids are the combination of two solid ferromagnetic particles with a 
conventional heat exchange fluid like water, ethylene glycol or their mixture (water-ethylene glycol). 
Several studies numerically demonstrated the development of heat transfer rate in ferrofluids (see 
Anuar et al., [2], Saranya et al., [3], Waini et al., [4] and Hamid et al., [5]). The heat generation 
physically affects the distribution of temperature in the engineering applications like semiconductor 
wafers, electronic chips and nuclear reactors [6]. In addition, nanorefrigerant (nanofluid based on 
the refrigerant) is also significant in the development of heat transfer efficiency. Few studies related 
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to the thermal progress of nanorefrigerant working fluid can be found in Halim and Sidik [7,8]. The 
unsteady flow with heat generation effect was analyzed by Zainal et al., [9] specifically for the hybrid 
nanofluid. Besides, Elbashbeshy et al., [10] showed that the Nusselt number decreased with the 
increment of heat generation parameter. Meanwhile, Khan et al., [11] demonstrated the reduction 
in temperature distribution with the upsurge of heat generation factor. Very recent, Khashi’ie et al., 
[12] analyzed and discussed the flow and thermal distributions of hybrid ferrofluid flow with thermal 
radiation subjected to a stretching/shrinking surface in a three-dimensional system. Many references 
highlighted the heat generation and thermal behaviour of the conducting fluids [13-18]. 

The unsteady flow has also fascinated the interest of researchers in fluid mechanics area. Vaidya 
et al., [19,20] studied the peristaltic flow of various fluids for the application of blood flow through a 
narrow arteries and chyme movement, respectively. Meanwhile, other studies regarding the non-
Newtonian fluids flow in a channel/tube were numerically conducted by Gudekote and Choudhari 
[21] and Divya et al., [22] for the Casson fluid model, Gudekote et al., [23] and Divya et al., [24] for 
the Herschel-Bulkley fluid model, and Vaidya et al., [25] and Gudekote et al., [26] for the 
Rabinowitsch liquid model. Normally, the ideal steady flow suits the environment/system, however, 
due to few cases related to non-uniformities, fluctuations and body induction, the unsteadiness of 
the surrounding fluid occurs [27,28]. Wang [29] being the first to introduce the research of the 
unsteady flow due to a stretching sheet. Other references for the unsteady and steady flow of 
nanofluids can be found here [30-38].  

Based on the above literature reviews, the current study is intended to carefully evaluate the 
multiple solutions of unsteady Fe3O4-CoFe2O4/H2O flow subjected to a rotating disk. Furthermore, 
the impact of heat generation on the hybrid ferrofluid flow is debatable and so the analysis of this 
effect is carried out. Final analysis results are portrayed in figures and tables form. These findings are 
significant as benchmark in the knowledge expansion regarding this prospect fluid. 
 
2. Mathematical Formulation 
 

Consider the Fe3O4-CoFe2O4 (magnetite-cobalt ferrite) flow past a rotating disk geometry with 
water base fluid (H2O) as portrayed in Figure 1. The considerations for this model are 

 
i. The rotating velocity of the disk is ( )Ω 1s r ctv v = −= ;  , t  and c  is the angular velocity 

(constant), time, and unsteadiness strength (constant), accordingly. 
ii. The stretching/shrinking velocity for the rotating disk is defined as ( )Ω 1s tu cu r = = −  

where 0   (stretching case), 0 =  (static case) and 0   (shrinking case). 

iii. The mass flux velocity of the permeable disk is 
0 1s w ctw w = − −= ; 

0w  is a constant.  

iv. The magnetic field strength is *

0 1B B ct= − ; 
0B  is a constant.  
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Fig. 1. The physical model 

 
The equations which represent this two-dimensional system are given as (see Waini et al., [4]) 
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+ =

 
             (1) 

 
2 2 2

2

2 2 2

1 1
    ,

hff hff

hff hff hff

u u u v p u u u u
u w B u

t r r r r r z r r r

 

  

       
+ + − = − + + + − − 

       
     (2) 

 
2 2 

2

2 2 2

1
    ,

hff hff

hff hff

v v v uv v v v v
u w B v

t r z r r z r r r

 

 

      
+ + + = + + − − 

      
       (3) 

 
2 2

2 2

1 1
,

hff

hff hff

w w w p w w w
u w
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,      ,  

0

    ,         when    0

, , ,      as      

  

    

ss s su u v v w w T T z

u v w T T z





= = = = =

→ → →
        (6) 

 

The  hybrid ferrofluid velocities are ,u v  and w , T  is the temperature, 0
1

1 ct

Q
Q =

−
 is the variable 

heat generation factor with constant 0Q  [36].  

 

( ) ( ) ( ) ( )
2 Ω  Ω Ω Ω

,   ,   ,   ,   .
1   1  1 1

f

w f

T Tr r z
u f v g w f

ct ct T Tct ct


     






−
= = = − =

− −
 =

−− −
   (7) 

 
By substituting Eq. (7) into Eq. (2) to Eq. (6), the similarity ODEs are [4] 
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( ) 22  0.5 0,
hff f hff f

hff f hff f

f M f f ff S f f g
   


   

  


 − 
 

− +  + + + = 


      (8) 

 

( )2 0.5 2 0,
hff f hff f

hff f hff f

g fg S g g M f g
   


   

 
+ − + − + =  

 

          (9) 

 

( ) ( )
( )

( ) ( )
1

0.5 2 0,
Pr

hff f

p p p phff f hff f

k k Q
S f

C C C C
   

   
 − − + =                 (10) 

 
and the BCs are [4] 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0.5 ,     0 ,     0 1,     0 1,

, , 0,     as   

f B f g

f g

 

    

= = = =

 → →
                   (11) 

 
where the involving parameters are 
 

i. unsteadiness parameter ( )ΩS c= ,  

ii. suction/injection parameter ( )0 Ω fB w = ,  

iii. heat generation parameter ( )( )0 p f
Q Q C=  ,  

iv. Prandtl number ( )( )Pr p ff
C k= , and 

v. magnetic parameter ( )2

0 f fM B  =  .  

 
Tables 1 and Table 2 show the general correlations of hybrid nanofluid and thermophysical 

properties for the used nanoparticles and base fluid.  
 

   Table 1  
   Properties of the water, magnetite and cobalt ferrite 

Properties Base fluid Nanoparticles 

Water Magnetite Cobalt Ferrite 

𝐶𝑝 (J/kgK) 4179 670 700 

𝑘 (W/mK) 0.613 9.8 3.6 
𝜌 (kg/m3) 997.1 5180 4908 
𝜎 (S/m) 0.05 0.74 x 106 1.1 x 107 

Prandtl number, ( )Pr  6.2 - - 
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 Table 2 
 The hybrid ferrofluid’s correlations 
Properties Correlations 

Thermal conductivity 

( )

( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

2 2 2

2

hff

hff

hff

hff

hff

f f

f

f f

k k
k k k k

k k
k k

k k k k

 
  



 
  



  +
− + + +   

  =   + + − + +     

 

Electrical conductivity 

( )

( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2
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2

hff f f
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hff f

hff f f
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  
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 

  
     



  +
− + + +   

  =   + + − + +     

 

Heat capacity ( ) ( ) ( ) ( )( )1 21 2
1p p p hff phff s s f

C C C C      = + + −  

Density ( )1 1 2 2 1hff s s hff f      = + + −  

Dynamic viscosity 
( )

1 22.5
;      

1

f

hff hff

hff


   


= = +

−
 

 
Meanwhile, the skin friction coefficients and local Nusselt number are defined as 
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s
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Substituting Eq. (7) into Eq. (12), the following physical interests are obtained  
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1/2
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f
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f
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k









−

=

=
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                   (13) 

 
where the local Reynolds number is Re

r s f
u r = . 

 
3. Stability Analysis  
 

There are many papers reported the stability analysis of the dual or two solutions (Wahid et al., 
[39-41], Bakar et al., [42-44], Aladdin et al., [45-47] and Khashi’ie et al., [48]), however, for the 
multiple solutions (more than two), only few of references are accessible like Waini et al., [49] and 
Yahaya et al., [50]. Following Merkin [51], Weidman et al., [52] and Harris et al., [53], the suitable 
transformation for the unsteadiness case:  
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The following differential equations are obtained by substituting Eq. (14) into Eq. (2) until Eq. (5) 

[4] 
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while the reduced boundary conditions are 
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The perturbation function is designed based on Weidman et al., [52] 
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The imposition of Eq. (19) into Eq. (15) to Eq. (18) leads to the linearized equations [4,49,52] 
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0 0 0 0

0 0 0

(0) 0, (0) 0, (0) 0, (0) 0,

( ) 0, ( ) 0, ( ) 0 as .

F F G H
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Following the judgment from Harris et al., [53], the boundary condition 
0
( ) 0F  →  is replaced 

with (0) 1F =  in order to get the smallest eigenvalue. 

 
4. Results and Discussion 
 

The results are obtained for the similarity solutions (Eq. (8) to Eq. (11)) and stability analysis (Eq. 
(20) to Eq. (23)) using the bvp4c. Also, the explanations of the flow and thermal behavior are 
discussed and presented in Figure 2 until Figure 12. Here, the validation of the current study is 
conducted by making a comparison with the previous studies. It is noted that the good agreement is 
attained between the results as given in Table 3.  

The present study highlights the existence of multiple solutions; first solution, second solution 
and third solution based on the fulfillment of the boundary condition (see Figure 9 until Figure 12) 
when the parameters are used within the range of 0 0.1M   (magnetic parameter), 0 0.1Q   

(heat generation parameter) and 0.2 0.3B   (suction parameter). The volumetric concentration of 
Fe3O4-CoFe2O4 is fixed as 2%

hff
 =  with water as the base fluid ( )Pr 6.2=  and 0 =  is also used in 

the entire computation. Table 4 shows the smallest eigenvalues against suction parameter. 
Obviously, the first and the second solutions give the positive values which means these solutions 
are stable as time evolves. However, the third solution shows the opposite behavior. 

 
Table 3  

Model validation when 
1 2

0Q M B = = = = =  and various S  

S  Present Waini et al., [4,49] Fang and Tao [54] 

 ( )0g  ( )0f   ( )0g  ( )0f   ( )0g  ( )0f   

-1 −0.236575 0.719787 -0.2366 0.7198 -0.2366 0.7198 
-2 0.154981 0.931507 0.1550 0.9315 0.1550 0.9315 
-5 1.360850 1.562797 1.3609 1.5628 1.3609 1.5627 
-10 3.413860 2.600801 3.4139 2.6008 3.4139 2.6008 

 
Table 4  
Smallest eigenvalues of the multiple solutions when 

2%,
hff
 = 0.2,B =  0.1M =  and 0.05Q =  

S  Smallest Eigenvalues 
 First Solution Second Solution Third Solution 

-1.11 5.8746 12.1600 -0.6953 
-1.12 6.2075 12.2104 -0.6973 
-1.13 6.4807 12.2178 -0.6991 
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The impact of the magnetic parameter on the flow and thermal behaviour can be observed in 
Figure 2 until Figure 4. The reductions of the physical quantities ( 1/2Re

r f
C , 1/2Re

r g
C , 1/2Re

r r
Nu− ) for the 

first and the second solutions are noticed when the magnetic parameter increasing, whereas the 
reverse trend is shown by the third solution. From the stability analysis results in Table 4, it is 
concluded that, the first and second solutions are more stable than the third solution, hence the 
stable behaviours of the first and second solutions are taken into account. The Lorentz force is well 
known to be developed in the resonance of magnetic field. This force usually decelerates the fluid 
motion to maintain the laminar boundary layer and at the same time, develops the thermal progress 
of the working fluid. However, the present finding contradicts with the natural behavior of magnetic 
flow [49].  The unsteadiness phenomenon in fluid flow affects the natural progress of magnetic field 
and obstructs the enhancement of the heat transfer progress. 

Apart from that, Figure 5 to Figure 7 are provided to get clear insight of suction effect on the 
physical quantities. Higher suction rate has the tendency to improve the values of 1/2Re

r r
Nu− , 

however, it reduces the values of 1/2Re
r f

C , 1/2Re
r g

C  for the first and the second solution. The 

respective profiles of the impact of suction parameter are presented in Figure 9 to Figure 11. All the 
solutions asymptotically fulfilled the far field boundary conditions up to boundary layer thickness 

(blt) 20,

=  which affirms the results’ validness. However, in Figure 9 to Figure 12, the blt is shown 

up to 7,

=  so that the different profiles for all the similarity solutions can be highlighted. Besides, 

the influence of heat generation parameter Q  on 1/2Re
r r

Nu−  is also presented in Figure 8. The 

imposition of Q  in the boundary layer leads to decrease all the physical quantities. Meanwhile, the 

impact of this parameter on the temperature profile is given in Figure 12. From this figure, it is noted 
that the temperature is increased with the rise of Q . The profiles for the third solution shown an 

abnormal behaviour which proves it instability. 
 

 
Fig. 2. 1/2Re

r f
C  for various 𝑀 

 

 
Fig. 3. 1/2Re

r g
C  for various 𝑀 
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Fig. 4. 1/2Re

r r
Nu−  for various 𝑀 

 

 
Fig. 5. 1/2Re

r f
C  for various 𝐵 

 
Fig. 6. 1/2Re

r g
C  for various 𝐵 

 

 
Fig. 7. 1/2Re

r r
Nu−  for various 𝐵 

 
   

 
Fig. 8. 1/2Re

r r
Nu−  for several 𝑄 

 

 
Fig. 9. Velocity (radial) with different 𝐵 
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Fig. 10. Velocity (azimuthal) with 
different 𝐵 

 

 
Fig. 11. Temperature with different 𝐵 

 
Fig. 12. Temperature with different 𝑄 

 

5. Conclusion 
 

The case of unsteady flow of a magnetic hybrid nanofluid/ hybrid ferrofluid is considered 
subjected to a rotating disk with heat generation. The Fe3O4-CoFe2O4 hybrid nanoparticles are 
considered with water/H2O as the base fluid. The bvp4c solver is used in the generation of similarity 
solutions including the stability analysis procedure. The results are as follows 

 
i. Three solutions are obtained within the specific intervals of the physical parameters.  
ii. The first and second solutions with similar physical behaviors have positive smallest 

eigenvalues. Meanwhile, the third solution with a contradict flow and thermal behaviors 
has negative smallest eigenvalues which represents an unstable solution. 

iii. The flow behavior of Fe3O4-CoFe2O4/H2O is reduced with the increment of magnetic and 
suction parameters while a reverse result is obtained for the third solution.  

iv. Under the unsteadiness flow case, the heat generation parameter does not develop the 
flow and thermal progress. 

v. Only suction parameter boosts the thermal progress of Fe3O4-CoFe2O4/H2O. 
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Meanwhile, the recommendation for future studies is as follows 
 

i. Researchers can observe other physical parameters which can develop thermal progress 
like thermal radiation, electromagnetohydrodynamics (EMHD) and viscous dissipation 
effects. 

ii. The present work only highlights the solution based on the numerical approach. The 
researchers also can conduct statistical data analysis for the obtained results like 
sensitivity analysis and response surface methodology in investigating the significant 
factors which contribute to the development of flow and thermal progression of the 
working fluid. 
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