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This paper includes numerical simulation upon MHD mixed convective heat transfer 
properties of stagnation point flow across an angled stretched sheet. Boundary value 
problem is solved using similarity transformation approach with shooting technique. 

The impact of different corporeal constraints like mixed convection parameter ( ), 

thermal radiation parameter (
dR ), chemical reaction parameter ( ), Brownian 

motion (
bN )and thermophoresis (

tN ), Casson parameter (  ) upon velocity and 

temp profile as well as skin-friction coefficient 
fC , Nusselt number 

xNu , Sherwood 

number 
xSh  on velocity, temp concentration profile are shown graphically. Casson 

parameter increases velocity and diminishes temperature profile. Chemical reaction 
term decreases Sherwood number and increases concentration profile. 

Keywords: 
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1. Introduction 

 
Non-Newtonian fluids have been closely related with its viscosity that plays key role in 

boundary layer flows in many industrial applications such as chemical processing units, food 
processing and polymer solutions etc [1]. Due to increased usage of non-Newtonian fluids in many 
domains it is very important to understand physics of these fluids within boundary layer region. 
Significant number of studies can be found in literature exploring boundary layer flows of non-
Newtonian fluids using different rheological models. Sakiadis [2-4] successfully demonstrated these 
type of flows over different geometries in his initial works. Later many researchers extended this 
model under various physical conditions. Rajagopal et al., [5] discussed about viscoelastic fluid flow 
upon stretched surface. Siddappa and Subhas [6] scrutinized non-Newtonian boundary layer flows. 
Due to technological revolution over the period of time many advanced problems are considered in 
non-Newtonian fluid flows with respect variety of geometries. Non-Newtonian fluid flow with 
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convective condition in non-uniform channel is studied by Gudekote et al., [7]. The major 
complexity in modelling non-Newtonian fluid flows is governing equations, because a single 
equation can’t exhibit all properties hence different non-Newtonian models are use in literature 
among them Casson rheological model is widely used to understand which discloses the yield 
stress. Ibrahim et al., [8] researched regarding mixed convection Casson fluid flow upon stretch 
surface having chemical reaction impacts. Khan et al., [9] reported Casson fluid flow over stretching 
sheet having convective & slippery boundary circumstances. Khan et al., [10] researched about 
hydromagnetic Casson liquid flow over stretching sheet having inclined magnetic field, 
thermophoresis impacts and Brownian motion. Role of no linear thermal radiation upon Casson 
stagnation point flow is explained by Ananta Kumar et al., [11]. Concurrent impacts of mixed 
convection and thermal radiating into boundary layer flow over a stretching surface is scrutinized 
by Mehmood et al., [12]. Entropy analysis of Casson fluid stagnation point flow is examined with 
Afridi et al., [13] past non-isothermal stretching surface and joule heating effect. Apart from these 
some more article on mixed convection Casson fluid flow can be found in literature [14-19]. Effect 
of variable viscosity of peristaltic flow with porous channel geometry is reported by Vaidya et al., 
[20]. Casson fluid flow in an inclined tube with slip condition is examined by Gudekote and 
Rajashekhar [21] and another work with elastic tube configuration and slip condition is reported by 
Gudekote et al., [22]. Baliga et al., [23] studied Herschel-Bulkley fluid through an inclined tube. 
Some more recent works on non-Newtonian fluid and applications can be found in research works 
[24–26].  

The usage of external magnetic field on stretching sheet boundary layer flows is investigated by 
several scholars due to its wide range of applications. Magnetic field is applied to control 
momentum and heat transport phenomena in boundary layer flows. Nagantran et al., [27] 
discussed time dependent stretching shrinking stagnation point flow of special non-Newtonian 
models. Aly [28] portrayed role of magnetic field and radiation in stagnation point flow of Casson 
fluid embedded in porous media. Reddy et al., [29] presented magnetohydrodynamic fluid flow 
under zero mass flux boundary condition. Recently Kumar et al., [30] researched entropy 
generation of viscoelastic non-Newtonian stagnation point flow over stretch sheet. Report on 
Williamson nanofluid over stretching sheet intensifies role of magnetic field which was illustrated 
by Rajput et al., [31]. Most recently Verma et al., [32] examined Sorret and DuFour effect upon 
stagnation point flow past moving surface. Even though many articles published on stagnation 
point flow of non-Newtonian models past stretching shrinking sheets, most of authors considered 
geometry as either horizontal or vertical. But inclined stretch sheet problems have wide range 
application in many industries and very few articles can be seen in literature focusing inclined 
stretching sheet stagnation point flow of non-Newtonian fluid. Hence the main goal of current 
study is examining mass & heat transport phenomena of Casson fluid upon persuaded stretch 
surface by extending article Gupta et al., [33] by including Casson rheological model.    

 
2. Problem Statement and Governing Equations 

We thought of Casson fluid flowing steadily in 2D along an inclining stretching sheet near the 
stagnation point of a magnetohydrodynamic (MHD). A homogenous intensity of magnetic field B0 is 

occupied as into plane parallel to surface. We presumed as stretching velocity ( )wU x ax=  & free 

stream velocity ( )U x bx =  being presumed to be into orientation of x-axis. Assuming vertical 

stretch sheet is oriented at angle. Temperature T  & nanoparticle concentration C . Temperature 

& concentration of fluid over a sheet are wT and wC  correspondingly.  Ambient fluid temp at the 
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wall & concentration T  & C  correspondingly as y tends to infinity at stretch sheet. Magnetic 

Reynold’s number is presumed as very smaller & induced magnetic field and pressure gradient is 
neglected.  

 

 
Fig. 1. Physical representation of the fluid flow 

 
The following the works of Gupta et al., [33], the boundary layer equations of continuity, 

momentum, energy and concentration. 
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Associated boundary conditions are 
 

( ) , 0, ,w w wu U x ax v T T C C= = = = =  at 0y =          (4) 
 

( ) , 0, ,u U x bx v T T C C aty  → = = → → →          (5) 

 
Introducing the following similarity transformation, we obtain governing equations as shown in 

Eq. (6) until Eq. (8) 
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By corresponding boundary conditions are  
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chemical reaction. ,T C  are thermal expansion coefficient & concentration extension coefficient 

correspondingly. 
Coefficient of Skin Friction, Local Nusselt Number, and Sherwood Number are physical 

quantities of interest for this problem and given as 
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Into aforementioned equation 𝜏𝑤 is Stress with stretching surface, 𝑞𝑤 is wall heat flux, mq  is 

mass heat flux, k is the thermal conductivity which are stated as 
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Using variables with no dimensions, we get the following in Eq. (12) 
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3. Result and Discussions 

 
The equations for velocity, energy, and density after transformation. Eq. (6) until Eq. (8) are 

solved numerically utilizing shooting approach, corresponding boundary constraints specified in Eq. 
(9). We were able to plot the profiles of speed, temperature, and concentration for a variety of 
input values.  

In Figure 2, we see the effect of the velocity ratio on the momentum profile, and in Figure 3 and 
Figure 4, we see impact ratio upon temperature profile & concentration profile. Casson's parameter 
upon temperature and velocity profiles are depicted into Figure 5 and Figure 6 correspondingly. 
Chemical concentration reaction diagram is shown in Figure 7. Thermophoresis on a temperature 
and concentration profile are shown in Figure 8 and Figure 9. Brownian motion on a temperature 
profile is shown as in Figure 10 and a concentration profile as in Figure 11. 

Figure 2 depicts velocity graph for several values of velocity ratio parameter A. By fixing other 
parameter and varying values we have noticed enhanced. When A is increased, free stream velocity 
increases. Its thermal boundary layer is narrower because of free stream velocity is higher. There is 
rise in flow velocity and a reduction into boundary layer thickness with increasing A so when free 
stream velocity is higher compared velocity of stretch sheet. In addition, whenever stream velocity 
is smaller than stretch velocity, flow velocity & thickness of boundary layer are both reduced. When 
A>1, boundary layer structure is present in flow, & thickness of boundary layer reduced with 
increasing. If A<1, boundary layer thins even as flow does have an inverted boundary structure; this 
happens when A is less than one because the boundary layer is thinner at larger values. No 
boundary layer thickness of Casson nanofluid exists close to sheet so when stretching sheet velocity 
is equal to free stream velocity. 
 

 
Fig. 2. Impact of velocity ratio upon momentum 
profile 
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Any change in values of velocity ratio constraint is depicted into Figure 3 having impact upon 
temp profile. Thickness of thermal boundary layer is found to decrease with increasing velocity 
ratio. In addition, absolute value of surface temperature gradient rises as A rises. Consequently, 

local Nusselt number - ( )' 0  upon surface rises. 

 

 
Fig. 3. Impact of velocity ratio upon temperature 
profile 

 
The impact of relative velocity upon that concentration graph is seen into Figure 4. Thickness of 

concentration boundary layer decreases as A increases. The graph also makes it clear that as A 
rises, so does temperature gradient upon that plate's surface. When a result, as the value of grows, 

the surface mass transfer rate (represented by local Sherwood number ( )' 0− ,) also increases. The 

rate of mass transfer between nanofluids may rise when velocity ratio parameter is increased, 
which might explain why this is the case. 
 

 
Fig. 4. Impact of velocity ratio upon momentum profile 
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The influence of Casson parameter upon that velocity graph with varying  is seen in Figure 5. 

As  increases, its seen as the velocity profile flattens out. As   rises, yielding stress drops, 

causing thickness of momentum boundary layer to grow, which in turn increases surface velocity 
gradient. 

 

 
Fig. 5. Impact of Casson parameter upon momentum 
velocity profile 

 
Impact of Casson parameter  upon that fluid's temperature profile is shown graphically in 

Figure 6. This is because as Casson parameter  increases, also temperature at sheet's border. The 

result was a rise in fluid's average temperature, which in turn caused thickness of boundary layer to 
shrink. 

 

 
Fig. 6. Impact of Casson parameter upon 
temperature profile 

 
The impact of chemical reaction   upon that concentration profile is seen in Figure 7. The 

particle concentration in the fluid rises as a result of this characteristic. Volume decrease of 
nanoparticles results from an increase into amount of intermolecular mass transport as result of a 
chemical reaction. 
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Fig. 7. Impact of chemical reaction parameter upon 
concentration 

 
In Figure 8 and Figure 9, we see impact of changing thermophoresis variable Nt upon that 

resulting temperature and concentration curves. Fluid temperature is shown to rise in step with the 
thermophoresis parameter Nt. As Nt increases, a similar pattern emerges in the concentration 
profile. 

 

  
Fig. 8. Impact of thermophoresis upon 
temperature profile 

Fig. 9. Impact of thermophoresis upon 
concentration profile 

 
It's worth noting that thermophoresis has a far larger impact on Newtonian fluid than on non-

Newtonian fluid. For small Prandtl Pr and Lewis numbers Le, the boundary layer may be warmed via 
thermophoresis. It may be deduced that when Nt lowers, so does rate of mass and heat 
transmission.  

The concentration and temperature patterns for different Brownian motion parameters are 

shown in Figure 10 and Figure 11, correspondingly (Nb). Its known which dimension temp ( )   

rises as Brownian motion parameter (Nb) rises, but we found the converse to be true for 
concentration profiles. Temperature of boundary layer rises with rise in Brownian motion 
parameter (Nb) because of accompanying increase into the mass diffusivity. 
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Fig. 10. Impact of Brownian motion upon 
temperature 

Fig. 11. Impact of Brownian motion upon 
concentration 

 
Table 1 shows the key physical values namely skin friction coefficient, Nusselt number and 

Sherwood number for different physical parameters. 
 

Table 1 
Computation of the skin friction coefficient, Nusselt and Sherwood numbers 

 
 
 
 
 

M γ β λ A Le Nt Nb Cfx Nux Shx 

0.5        0.979823 0.452057 2.446418 

1.0        1.084144 0.448494 2.435190 

1.5        1.180084 0.445386 2.425106 

 0.1       0.935265 0.453637 2.451295 
 0.4       0.935447 0.454693 2.390790 

 0.7       0.935634 0.455790 2.328996 

  1.3      0.935265 0.453637 2.451295 

  1.5      0.906820 0.452567 2.448152 
  1.7      0.884556 0.451691 2.445557 

   0.1     0.935265 0.453637 2.451295 

   0.2     0.909221 0.454931 2.454929 

   0.3     0.883324 0.456207 2.458522 
    0.3    1.218510 0.433324 2.406393 

    0.4    1.084690 0.443363 2.428193 

    0.5    0.935265 0.453637 2.451295 

     2   0.953387 0.577609 0.946697 
     3   0.947579 0.535638 1.233957 

     5   0.941502 0.493720 1.673145 

      0.2  0.941300 0.771916 2.296613 

      0.4  0.937590 0.611515 2.418006 
      0.6  0.935653 0.481849 2.447981 

       0.2 0.936016 0.498352 2.425452 

       0.4 0.935004 0.439914 2.460685 

       0.6 0.933906 0.390254 2.500826 
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4. Conclusions 
 

Theoretical study upon non-Newtonian fluid flow upon inclined stretch sheet is discussed using 
shooting method. Casson rheology model has been used to explain fluid behaviour and few 
significant observations of our research 

 
i. Casson parameter reduces Nusselt number & skin friction coefficient. 
ii. Mixed convection parameter rises Nusselt number and Sherwood number. 
iii. Heat transfer rate increased with respect to velocity ratio parameter.  
iv. Temperature distribution increases with Brownian motion and thermophoresis 

parameter. 
 
5. Scope and Future Work 

 
The results obtained in this study will be used to analyse the heat and mass transport 

phenomena in many non-Newtonian fluid flow industrial applications. This work can be extended in 
future with some other geometries and physical conditions. 
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