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We have investigated effect of throughflow and gravity modulation on double diffusive 
convection with couple-stress fluid saturated porous media. Applying the Landau model, 
we have derived finite amplitude of couple-stress convection in the presence of gravity 
modulation. The presence of a couple-stress parameter produces both diminishing and 
enhancing heat mass transfer in the layer. To present the results we have used 
Mathematica to obtain the Nusselt number and Sherwood numbers numerically. Further, 
it is shown that, throughflow and modulation of gravity controls double diffusive 
convection through convective amplitude and alter transport phenomenon. 
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1. Introduction 
 

The concept of convective instability in a porous medium has been well investigated by Vafai 
[1,2], Ingham and Pop [3], Pop and Ingham [4], Nield and Bejan [5], and Vadász [6]. In both thermal 
and engineering sciences, the idea of managing convective instabilities is really an important one. 
Convection can be controlled by using factors like as temperature, gravity, rotating, and magnetic 
force modulations. According to Davis [7], depends on the exact tuning of the magnitude and 
amplitude of the modulation, the dynamics of stabilisation and destabilisation may result in 
dramatically different changes in behaviour. 

If an induced modulation can destabilise an otherwise stationary state, then heat, mass, and 
momentum transmission are significantly improved. In an induced modulation can stabilise an 
otherwise unsteady state, so that higher efficiency is obtained in many processing methods. In 
present study, we take into account the effects of fluid motion (where continuously vibrating porosity 
can produce time-periodically gravitational modulation with this case). Thus, for related gravity 
modulation, according to research by Gresho and Sani [8] and Clever et al., [9], gravity modulating 
influences the entire amount of fluid, and based on the magnitude and frequency of the forcing, it 
might be either stabilizing or destabilizing effect. Similar research related to gravity modulation was 
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carried out by Bhadauria et al., [10], Yang [11], Bhadauria [12], Malashetty and Padmavathi [13], 
Bhadauria et al., [14], Bhadauria and Kiran [15,16], Bhadauria et al., [17], and Kiran [18,19]. 

In the concept of convection, the double-diffusive convection refers to the process of coupled 
heat and mass transport that is enhanced by buoyancy forces. In this situation, the gradient of mass 
resistance and the gradient of temperature are independent. The double diffusive convection with 
porous layer is widely investigated with a presence of consistent concentration and temperature 
gradient by Nield and Bejan [5] and Shivakumara and Sumithra [21] for some of the practical 
problems, for example, mantle flow in the Earth's crust, seawater flow, in devising an affective 
technique of discarding of useless products and removal of energy, and in the applications of 
engineering. Siddheshwar et al., [22] studied the gravitational modulation and temperature influence 
on double diffusive convection with porous layer. They observed that both modulations are to be 
performed together to increase or decrease heat/mass transport in system, going to consider weak 
nonlinear theory on stationary mode. Further, Bhadauria [23] studied the additional internal heating 
influence and anisotropy of Siddheshwar et al., [22], observed that the internal heating and 
anisotropy can also be exploited to increase or decrease mass and heat transmission for the system. 
Furthermore, Malashetty et al., [24] investigated by considering the linear theory which influence of 
rotations on double-diffusive convection at the convectional onset and also for convection of finite 
magnitude they consider nonlinear theory. Further, in investigation by Bhadauria and Kiran [25], they 
determined that, with the proper ranges of modulation parameters, gravity modulation is employed 
to manage the nonlinear and temperature destabilization of the problems. 

Wooding [27], Homsy and Sherwood [28], and Sutton [29], were examined the throughflow effect 
on the onset of convective in a vertical porous media. Shivakumara [30] and Nield [31] proved that if 
a little quantity of throughflow which have destabilising effect where we consider if boundaries are 
various types and a scientific clarification have been presented. Additionally, they observed that the 
influence of throughflow is not always stabilising and depending on their characteristics of the 
boundaries. The influence of throughflow and internal heating on the onset of convection with 
porous media was examined by Khalili and Shivakumara [32]. Though there is no internal heating 
source, they found that throughflow does not destabilize the system when the similar kinds of 
boundaries are exit. Moreover, various kinds of hydrodynamic boundary situations, Khalili and 
Shivakumara [33] explored the throughflow effect with stability of double diffusive convection with 
in porous medium. When the lowest and the higher boundaries are of the same type, throughflow is 
seen to be destabilizing even if they are of the same type, and when the boundaries are of various 
types, it is found to be both stabilizing and destabilizing, depending on its direction. Throughflow 
with porous medium is managed by the Darcy-Forchheimer equation and the Beavers-Joseph 
condition was enforced at the intersection of the porous medium and fluid layers were investigated 
by Khalili and Shivakumara [33]. Hill [34] observed linear and weak nonlinear temperature 
instabilities of horizontal throughflow with that of fluid-saturated of porous media, where Hill et al., 
[35] consideration of densities with exponential temperature expanded the result for penetrative 
flow. 

Convective instability for porous layer with an inclination temperature gradient and horizontal 
throughflow was studied by Brevdo and Ruderman [36,38]. For horizontal porous layer, double-
diffusive convection was studied by Shivakumara and Nanjundappa [39] and used the extended 
Forchheimer - Darcy model. Gudekote et al., [51] investigated the properties of mass transmission 
are evaluated with slip boundary conditions at the walls, those of heat transfer are studied with 
convective conditions. Baliga et al., [52] in their findings show that thermal and velocity slips have 
increasingly negative effects on temperature and pressure rise. According to Vaidya et al., [53] the 
findings reported here, Newtonian, dilatant and pseudoplastic fluid models' flow amounts are 
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considerably impacted by the existence of variable viscosity along porous parameters, and with slip 
parameter. Further, the analysis also demonstrates that the presence of the trapping phenomena is 
enhanced by a rise the value of viscoelastic fluid and porous parameters. Osman et al., [54] they have 
shown the flow of free convection -across an infinitely inclined plate using magnetohydrodynamics 
(MHD). The Laplace transform approach has been used to examine the impacts of velocity, 
temperatures, and concentrations. Although it is commonly believed that the boundaries of porous 
media are either impermeable or porosity, actually they make excellent conductors of heat and 
solute concentration. For a single component system, they noticed that small amounts of 
throughflow in either direction destabilize the mechanism regardless of the nature of the boundaries. 
Throughflow occurrences causes peak hydrologic and the permeability of the geological medium 
determines the flow rates. Understanding the research of throughflow under gravity modulation is 
necessary for this problem. Moreover, in the literature it shows that there is no much more study on 
temperature instability in which modulation considers for convective instability there in 
the nonlinear mode of convection, together including vertical throughflow. This paper's goal is to 
analyze the weak nonlinear stability analysis on porous material with same temperature gradient and 
solutal concentration gradients in order to maintain vertical throughflow. To derive an analytic 
expression, we used the non-autonomous Complex Ginzburg-Landau Equation (CGLE), for both 
Nusselt number and Sherwood number to calculate finite amplitude. 
 
2. Governing Equation 
 

We consider a non-Newtonian fluid-saturated infinitely extended horizontally porous media 
bounded within two boundaries that are completely free - free at z = 0 and z = d as heated from the 
bottom. ∆T is fixed variation in temperature and S  is concentration all over the porous media. We 

have used the reference in Cartesian terms with the origin at the bottom as well as z-axis moving 
upwards in a vertical direction. Its schematic diagram is shown in Figure 1. 
 

 
Fig. 1. Sketch of physical problem 

 
In this paper we consider the throughflow in both vertical and horizontal directions. Furthermore, 

we consider these assumptions are taken under Darcy Brinkman law and the Oberbeck Boussinesq 
approximations, the flow model's corresponding equations are provided by Bhadauria and Kiran [49] 
and Kiran and Bhadauria [50]. 
 

. 0,q =               (1) 

 

20 ,cq
g P q q

t K K

 





− + = − + 


           (2) 
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2( . ) ,T

T
q T k T

t



+  = 


            (3) 

 

2( . ) ,s

S
q S k S

t


+  = 


             (4) 

 

 0 0 01 ( ) ( ) ,T sT T S S   = − − + −            (5) 

 

where K is permeability, q  is velocity, µ is viscosity, P is pressure, c is couple stress fluid, Tk  is the 

parameter of thermal expansion, density is ρ, 0S = concentration, 0T  = temperature for which 0 =

is the standard density and the heat capacity ratio are equal to   (here   is taken unity for simplicity). 

The following are the temperature and periodic gravitational field produced by externally 
 

0 2
ˆ(1 cos( )) ,g g t k = +             (6) 

  

0T T T= +    at Z = 0,  

0T T=    at Z = d, 

0S S S= +  at Z = 0,           (7) 

0S S=     at Z = d, 

 
where 

2  is magnitude of gravity modulation and   is frequency of modulation and T is difference 

in temperature whereas S is the solute difference. 

Therefore, in this stage, basic state is considered quiescent, with the following quantities 
 

0((0,0, ( )),q w z=  ( ),b z =  ( ),bP P z=  ( , )bT T z t= , ( , )bS S z t=        (8) 

 
Substituting Eq. (8) into Eq. (1) to Eq. (5), obtained following expressions, for basic state 

of pressure, temperature and concentration 
 

0 ,b
b

dp
w g

dz K


= −              (9) 

 
2

0 2
,b b

T

dT d T
w k

dz dz
=                        (10) 

 
2

0 2
,b b

S

dS d S
w k

dz dz
=                        (11) 

 

 0 0 01 ( ) ( ) .b T b S bT T S S   = − − + −                     (12) 

 
The amplitude solution of the Eq. (10) and Eq. (11) when subjected to thermal boundaries’ 

condition in Eq. (7) is provided by 
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0 ,
1

Pez Pe

b Pe

e e
T T T

e

−
= +

−
                      (13) 

 
( ) ( )

( )

1 1

10 ,

1

Pe z Pe

b Pe

e e
S S S

e

− −

−

 



−
= +

−

                     (14) 

 
Perturbations of finite-amplitude are introduced to the solution of the basic state are 
 

,bq q q= +    

,bP P P= +   

,b  = +                           (15) 

,bT T T = +
 

.bS S S= +
    

 
Since, we introduce convection stream function which is two-dimensional i.e.,   as 

( ,0, ) ,0,u w
z x

   
  = − 

  
 which satisfy Eq. (1) and following are physical factors that are not 

dimensional which are rescaled by 
 

* * *, , ,
x y z

x y z
d d d

= = = * ,Tk
p p

K


 =  

2
*

T

d
t t

k
 = , *,Tk

q q
d

 =  

 

*T T T =  , * ,S S S =   
*,Tk =  and 

2
*.Tk

d
 =   

 
Substituting Eq. (15) in the Eq. (1) to Eq. (5). We obtain the resulting not dimensional governing 

model while dropping its asterisk by using the dimensionless variables stated above and eliminating 
the pressure term 
 

( )2 4 2 21
1 cos( ) ,

Pr

S T
C Rs Ra t

t x x
  

     
 −  +  = − +    

     
                 (16) 

 

2 ( , )
,

( , )

bdT T
Pe T

dz x t z x z

     
− + − + = 

    
                    (17) 

 

2 1 ( , )
,

( , )

bdS S
Pe S

dz x t z x z

 −    
− + − +  = 

    
                   (18) 

 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 1 (2023) 121-136 

126 
 

where 
2

0

T

w d
Pe

k
=  is Peclet number, 

2

PrD

T

vd

Kk


=  is Prandtl Darcy number, T

T

g TdK
Ra

vk

 
= is thermal 

Rayleigh number, 2(1 cos( ))mg t k = + , ;S

S

g SdK
Rs

vk

 
= is the solutal Rayleigh number, and 

2
,cC

d




=  is the couple stress parameter,   is diffusivity ratio, S

T

k

k
= . Considering small change of 

time t and re-arranging it 2 ,t =  the system convection in a stationary mode going to be discussed. 

The linear and non-linear system of Eq. (16) to Eq. (18) may be represented in the matrix form as 
follows 
 

2
2

2 4

0

2
2

2 1

2

Pr

( , )
0

Pr ( , )

0
( , )

Pr ( , )

D

S

b

D

b

D

C R R
x x

dT T T
Pe T

dz x z x z

dS
Pe S

dz x z S S

x z






 

 

  



−

 − 
 

      −  −              −      − − + = +                     − − +            −   +
   

                 (19) 

 
To evaluate the solution of this Eq. (19), the impermeable stress-free heat transfer boundary 

condition is used by Bhadauria and Kiran [16], Bhadauria et al., [17], and Kiran [18,19]. 
 

0 =  and 0T =  for Z = 0 and Z = 1                    (20) 

 
3. Heat Transport and Stationary Instability 
 

For determining the answer and to find nonlinearity with following asymptotic solutions are given 
in Bhadauria and Kiran [16], Bhadauria et al., [17], and Kiran [18,19] in the above Eq. (19) 
 

2

0 2

2 3

1 2 3

2 3

1 2 3

2 3

1 2 3

2 3

0 1 2 3

....

....

.....

.....

.....

Ra R R

T T T T

S S S S



     

  

  

      

= + +


= + + + 


= + + + 


= + + + 
= + + + + 

                     (21) 

 

In the absence of gravitational modulations, 0R  would be the critical Rayleigh number where 

convection starts. The statement  is suitable with a basic state solution such that if 0  disappears 

at the lower order (following Bhadauria and Kiran [16]). Further in addition, 1  vanishes, the 

equations that were derived in order 2and   shows that the solution has a singularity. These 
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findings show that gravity modulation effects must be provided at an early stage 2

2  =  for 

enabling consistency [16]. Now system will be studied for different orders of  . 
 
 
 
 
3.1 First Order System 
 
The system uses the following format at the lowest level 
 

2 4
10

2

1

2 1

1

0

0 0

0 0

S

b

b

C R R
x x

dT
Pe T

dz x z

dS
Pe S

dz x z







−

  
    −  − 

      
       
   − − + =  

        
           − − +          

                 (22) 

 
Lowest-order solution according to initial conditions Eq. (20) evaluated as follows 
 

1 sin( )sin( ),cA k x z =                       (23) 

 
2

1 2 2

4
cos( )sin( ),

(4 )

c
c

k A
T k x z

c Pe





= −

+
                     (24) 

 
2

1 2 1 2

4
cos( )sin( ),

(4 ( ) )

c
c

k A
S k x z

c Pe




 −
= −

+ 
                    (25) 

 

where 
2 2

cc k = +  is wave number. Onset of stationary convection is quantitatively determined by 

using value of Critical Rayleigh number with the related wave number and expressions are given by 
 

2 2 2

0 2 2 2 1 2

( ) (4 )
,

4 (4 ( ) )c

c c C Rs Pe
R

k Pe



  −

− +
= +

+ 
                     (26) 

 
3.2 System of Second Order 
 
Now, the system adopts the following form 
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2 4
2 210

2

2 22

2 1

2 23

0

0

S

b

b

RC R R
x x

dT
Pe T R

dz x z

dS
Pe S R

dz x z







−

  
    −  − 

      
       
   − − + =  

        
           − − +           

                (27) 

 
The following terms of RHS in present system were given below 
 

21 0,R =                         (28) 

 

22

( , )
,

( , )

T
R

x z


=


                       (29) 

 

23

( , )
,

( , )

S
R

x z


=


                       (30) 

 
The solutions of second-order subjected to initial conditions as in Eq. (20) of system are given by 
 

2 0, =                         (31) 

 
2 3 2 2

2 2

2 2 2 2 2 2 2

2
sin(2 ) cos(2 ),

(4 ) (4 )

c ck Pek
T A z A z

c Pe c Pe

 
 

 

− −
= +

+ +
                 (32) 

 
2 3 2 2

2 2

2 2 1 2 2 2 1 2 2

2
sin(2 ) cos(2 ).

(4 ( ) ) (4 ( ) )

c ck Pek
S A z A z

c Pe c Pe

 
 

 − −

− −
= +

+  + 
                (33) 

 
For convection in a stationary mode, the horizontally averaged Nusselt number is Nu and 

Sherwood number Sh, calculated as follows 
 

2 2

2

0 0

1
2 2

c ck k

c c bk k TT
Nu dx dx

z z

 

 

   
   

= +    
 

   
   

 
4 2

2

2 2 2

4 ( 1)
1 .

(4 )

Pe

ck e
A

cPe Pe





−
= +

+
                (34) 

 
2 2

2

0 0

1
2 2

c ck k

c c bk k SS
Sh dx dx

z z

 

 

   
   

= +    
 

   
   

 
14 2

2

1 2 1 2 2

4 ( 1)
1 .

(4 ( ) )

Pe

ck e
A

cPe Pe





−

− −

−
= +

 + 
               (35) 

 
In the situation of a porous media which is isotropic in the absence of fluid flow, the following 

results are found in Eq. (26) Eq. (34) and Eq. (35) are presented by Bhadauria et al., [14], Bhadauria 
and Kiran [15], and Siddheshwar et al., [22]. 
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3.3 System of Third Order 
 
Now for this point system takes the form as 
 

2 4
3 310

2

3 32

2 1

3 33

0

0

m S m

b

b

RC R g R g
x x

dT
Pe T R

dz x z

dS
Pe S R

dz x z







−

       −  − 
     
       
   − − + =  

        
           − − +           

                (36) 

 
Here terms of RHS were given by 
 

( ) ( )2 4 1 1
31 1 1 2 2 0 2

1
cos( ) cos( ) ,

Pr

S T
R C Rs R R

s x x
     

 
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Now, putting first-order and second-order solutions are into the following Eq. (37), Eq. (38) and 

Eq. (39) and easily we get the expressions for 31R , 32R  and 33R . Under solvability condition we get 

Ginzburg-Landau equation for existence of 3rd order system. The Ginzburg-Landau expression is given 
by 
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Where these coefficients are as follows 
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Eq. (40) is also known as Bernoulli equation, because of its non-autonomous structure, finding an 

analytical solution is very difficult in the presence of modulation. As a result, it was numerically solved 

by using Mathematica 12.0 built-in function ND Solution, when necessary initial condition at 0 0A a=

where 0a  is defined as present initial convection magnitude. Its analytic solution of Eq. (40) for such 

an un-modulated case is as follows 
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where 1Q , 3Q  as same in Eq. (40), 

 
2 2 2 2

2 2
2 2 2 2 2 2 1 2

4 4
( )

(4 ) (4 ( ) )

c cR k R k
Q

c Pe c Pe

 


  −

   
= +   

+ +    
, and 1C  is an integration constant which appears in 

Eq. (41), which can be obtained by adopting appropriate boundary conditions. 
 
4. Results and Discussions 
 

A cellular preservation of constant convection has been created for a horizontal porous material 
is consistently heated both from below and above it is cooled. This occurs when the Rayleigh number 
exceeds a critical point. In order to calculate the amplitude of convection, one must analyse the weak-
nonlinear interaction of fluid motion in relation to temperature and concentration. Here, a technique 
is described for measuring frequency of convection's and examining heat and mass transmission. 
Further, an investigation is done into the cumulative effects of vertical throughflow and gravitational 
modulation on heat exchange in an infinite horizontally couple stress fluid with a saturated porous 
media. Throughflow allows temperature gradient and solutal gradient to change with linear to 
nonlinear for reference to the height of the porosity. By using CGLE, a nonlinear phenomenon 
stability examination was performed to observe the effects of gravitational modulation and vertical 
throughflow with heat and mass transports of system. The Dacry-Brinkman model is considered, 
where it is supposed that the porous medium is densely packed. It has been observed that the values 
of Pe  (Peclet number), PrD

 (Prandtl number) and diffusivity ratio   must be considering to satisfy 

and the values of and  are mentioned to be small. To this maximum mass and heat transfer is 

possible, for lowest values of amplitude and frequencies. For stabilizations or destabilization in 
system, a small amount of throughflow is required. For this, the values for Pe  are taken around 0.1. 
The expressions given in Eq. (34) and Eq. (35) are the numerical obtained results for Nu and Sh  with 

solving Eq. (39) and were presented in Figure 2 to Figure 8 which illustrate how each parameter 
effects with heat and mass transfers, wherein the plots of Nu versus the slow time s and Sh  versus 

the slow time s are presented. From the figures, it can be examined that, the values of Nusselt 
number and Sherwood number starts with one and remains constant for quite some time which 
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shows the convection state, and on further enhancing become constant. Therefore, it obtained 
steady state. The Critical Rayleigh number (Eq. (26)) enhances with values of Pe , and therefore from 
the throughflow direction which is independent. Therefore, the effective length of scale is lower than 
that of porous layer's thickness. As a result, the Rayleigh number as substantially smaller than its 
actual value. Therefore, when the throughflow strength increases, for the onset of convection it 
required a large value of the Rayleigh number, these results were observed by Khalili and 
Shivakumara [33] for the free – free boundaries. In this case, the outcomes were opposite which are 
obtained by Nield [31] a fluid layer for the small amount of throughflow. 

According to Reza and Gupta [42] when the throughflow velocity increases, a temperature of 
boundary which forms for one of the boundaries. As a result, the stratified layer's effective thickness 
is reduced while maintaining its characteristic temperature constant. Therefore, it is naturally follows 
that the critical value of Rayleigh number increases with the increasing value of Pe . The maximum 
temperature can be found where the vertical velocity is most perturbed, which increases the amount 
of energy supplied for destabilization. It is shown that a similar situation occurs in solutal 
concentration, which shows conduction state of concentration provided in Eq. (14) is nonlinear. 

To know about their effect with stability of the system, the basic state temperature and 
concentration distribution is calculated for given values of Pe  and   which is graphically displayed 
in Figure 2 and Figure 3. With an increase of Peclet number Pe , the basic state distributions for 
throughflow become nonlinear and separate from one another. In comparison to the temperature 
with decreases in  . It is observed that the values of Nu and Sh start with one and showing the 

system in conduction state, while, increasing with the time s, and then become oscillatory. According 
to Figure 2(a) and Figure 2(b), the effect of upward throughflow ( Pe > 0) increases, whereas the 
effect of downward throughflow ( Pe < 0) decreases the heat and mass transmission in the given 
system. Further, in Figure 3(a) and Figure 3(b) shows that the influence of diffusivity ratio   is to 
decreases heat and mass transfer in the model. These results are as same as the results obtained by 
Bhadauria [23] and Bhadauria and Kiran [25]. In Figure 5(a) and Figure 5(b) the effect of the solutal 
Rayleigh number Rs  is to increase heat and mass transfer. 
 

  
(a) (b) 

Fig. 2. Influence of Peclet number on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 
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(a) (b) 

Fig. 3. Influence of diffusivity ratio on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 

 

  
(a) (b) 

Fig. 4. Influence of Vadasz number PrD
 on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 

 

  
(a) (b) 

Fig. 5. Influence of solutal Rayleigh number on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 

 
Furthermore, in Figure 6, the consequence of the gravity modulation's amplitude is to increase 

the magnitudes of 𝑁𝑢 and 𝑆ℎ, increasing the heat and mass transfers. Additionally, it can be shown 
from Figure 7 that the magnitudes of ( ) ( ) ,Nu Nusslt number and Sh Sherwood number decrease as 

the value of ,  increases, and the frequency of the modulating has the effect of reducing the mass 

and heat transfer. Gravitational modulation's influence on thermal instability fully disappears at 
higher frequencies. These results support those of the linear theory researchers Malashetty and 
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Padmavathi [13] and Venezian [48], they found that the correction to the critical Rayleigh number 
caused by thermal and gravitational modulations almost disappears with higher frequencies. 
 
 

  
(a) (b) 

Fig. 6. Influence of amplitude modulation on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 

 

  
(a) (b) 

Fig. 7. Influence of frequency of modulation on heat and mass transfer; (a) 𝑁𝑢, (b) 𝑆ℎ 

 
In Figure 8 which has been compared the analytical and numerical solutions for the both 

unmodulated case and modulated case, it is seen in the graph that the Nusselt and Sherwood 
numbers for the unmodulated case are larger than those for the modulated case. In this study, the 
modulating flows transport less heat than while in a compression with unmodulated flows. 
 

  
(a) (b) 
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Fig. 8. Comparison between modulated and unmodulated system; (a) 𝑁𝑢, (b) 𝑆ℎ 

 
 
 
5. Conclusions 
 

A weak nonlinear stability analysis is conducted in order to determine the Ginzburg-Landau 
equation by combining the effects of through-flow and gravity modulation on double diffusive 
convection with porous media. 

 
i. Rate of Heat and mass transfer are increased by upward throughflow (Pe > 0), and 

decreased by downward throughflow (Pe 0). As a result, throughflow has dual 
characteristics of heat and mass transfer. 

ii. Mass and heat transfer rate can be enhanced by increasing amplitude δ of modulation. 
iii. As its value increases the frequency Ω of modulation decreases heat and mass transfer. 
iv. Heat and mass transfer in a system can be effectively controlled through throughflow and 

gravity modulation. 
v. There is less heat and mass transport by gravity-modulated systems compared to their 

corresponding unmodulated flows when there is nonlinear fluid flow. 
vi. There is a similarity between gravity modulated flows and lower boundary temperature 

modulated flows. 
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