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In this article, the numerical study of the influence of a magnetic field at the laminar forced 
convection in a thermally developing region coming under the influence of local thermal 
non-equilibrium (LTNE) of parallel plate channels completely immersed in the porous 
material is investigated. Constant wall heat flux boundary conditions are applied to the 
walls of the channel. In the nonlinear flow model, the Darcy-Brinkman-Forchheimer 
equation governs the flow field in the porous region, which is assumed to be 
unidirectional. The system is defined by certain well-known parameters, these being Darcy 
number (Da), thermal conductivity ratio (κ), Forchheimer number (F), Hartmann number 
(M), and Biot number (Bi). Numerical solutions have been obtained by applying a 
successive accelerated replacement (SAR) scheme. Exact solutions for the dimensionless 
temperature and the fully developed Nusselt number in the absence of the Forchheimer 
number (F = 0), for the fully developed thermal field, are obtained for the linear flow 
model, the Darcy-Brinkman model. Plots are given for the dimensionless temperature 
profiles in the fluid and solid phases, wall temperature, as well as the local Nusselt number 
at the parallel plate channel, which has been displayed. The effect of the magnetic field 
and the thermal conductivity ratio has a significant effect on the local Nusselt number. 
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1. Introduction 
 

Numerous theoretical and experimental studies have recently been carried out in various fields 
based on fluid flow and convection heat transmissions in porous media, which have gotten a lot of 
attention in recent decades due to their many engineering applications, such as heat pipes, gas and 
water management in fuel cells, petroleum reservoirs, water, and solute transport in building 
materials, solar power collectors, textiles, nuclear reactors, drying of paper pulp, compact heat 
exchangers, and Microfluidic paper-based analytical devices [1]. The fundamental transport 
phenomena in porous media have since been thoroughly studied using a local thermal equilibrium 
(LTE) model, which disregards the temperature difference between the solid and fluid phases. 
Significant research on convective transport in porous media has been carried out under the 
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assumption that the fluid and solid-matrix phases are in LTE. Vafai and Tien [2] demonstrated this 
first, and it was later reviewed in monographs by Nield and Bejan [3] and Nakayama [4]. This LTE 
hypothesis, however, frequently fails for practical engineering problems, as noted by Amiri and Vafai 
[5], and Carbonnel and Whitaker [6]. As an alternative to the LTE model, Nield and Bejan [3] discussed 
the local thermal non-equilibrium (LTNE) model, which allows temperature difference between solid 
and fluid phases with interphase temperature difference. 

Many researchers have shown a keen interest in these issues. It might be because there are so 
many fascinating and limitless ways to use these equations in real-time applications such as the 
upkeep of reactors generating nuclear power [7]; in flows that assume nanofluid order [8, 9]; in flows 
in metallic foams [10]; liquid nitrogen jet fracturing for HDR reservoirs [11], and bioheat transfer [12]. 
The effects of LTNE on the beginning of convection in a vertical throughflow internally heated layered 
porous medium were examined by Kuznetsov and Nield [13]. With linear and nonlinear flow models, 
Yi et al., [14, 15] investigated the LTNE effect for parallel plate geometry. Lee and Vafai [16], Amiri et 
al., [17] and Marafie and Vafai [18], completed a thorough investigation into the effects of using 
different boundary conditions under LTNE conditions. Unsteady heat transfer has been studied by 
Singh et al., [19] under LTE and LTNE in a porous medium contained in a tube. However, for multi-
layered micro-heat exchangers in a porous medium with the flow and thermal slip conditions, the 
effects of LTNE on the beginning of convection in a vertical throughflow internally heated layered 
porous medium were examined by Kuznetsov and Nield [13]. 

Magnetohydrodynamic (MHD) flow and heat transfer above a plate for a viscous incompressible 
fluid has a wide range of uses in engineering and business, including spacecraft power generation, 
hypersonic wind tunnel experiments, laser power MHD generators, plasma studies, defense sectors, 
and petroleum industries among others. The flow of electric current through a magnetic field and 
body force affects the Lorentz force. Numerous researchers, including Sreekala and Reddy [20], 
Kiema et al., [21], Chauhan and Rastogi [22], and Onyango et al., [23] investigated two-dimensional 
MHD flow and heat transfer through channels and plates with various boundary conditions. When 
viscosity dissipation and Joule heating are present, Raju et al., [24] examined the MHD-driven 
convective flow of a viscous fluid.  The effect of magnetic fields on fluid flow has been studied by 
several authors (Vineet Kumar and Amit Kumar [25], Kurzweg [26], and Raptis and Kafousias [27]) 
using a variety of scenarios and various geometries. Bhargavi and Sharath Kumar Reddy [28] 
investigated the impact of the magnetic field on the Brinkman extended non-Darcy flow model. The 
boundary layer flow in a porous region was studied by Pal [29] using Darcy Brinkman Forchheimer's 
model. The magnetic field has been found to have a significant impact on boundary layer velocity. 

The analysis in the present work is based on temperature distribution, wall temperatures in the 
fluid and solid phases, and variations in the local Nusselt number in porous media. The nonlinear flow 
model, the Darcy-Brinkman-Forchheimer equation governs the flow field in the porous region, which 
is assumed to be unidirectional. For constant flux wall boundary conditions, as far as the author is 
aware, the effect of the Hartman number on wall temperatures at the channel's entry in both phases 
is not discussed. Numerical solutions have been obtained by applying a successive accelerated 
replacement (SAR) scheme. Exact solutions for the dimensionless temperature and the fully 
developed Nusselt number in the absence of the Forchheimer number (F = 0), for the fully developed 
thermal field, are obtained for the linear flow model, the Darcy-Brinkman model. Plots are given for 
the dimensionless temperature profiles in the fluid and solid phases, wall temperature, as well as the 
local Nusselt number at the parallel plate channel, which has been displayed. The effect of the 
magnetic field and the thermal conductivity ratio has a significant effect on the local Nusselt number. 
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2. Mathematical Model and Boundary Conditions 
 
The schematic model and coordinate system of the parallel plate channel are shown in Figure 1. 

The distance between the parallel plates is denoted by H, and Te the fluid enters the channel at a 
uniform temperature (Figure 1). The constant wall heat flux (qw) has been applied to channel walls. 
The following assumptions are considered in the present analysis 
 

i. The Darcy Brinkman Forchheimer model for the fluid flow through the porous region. 
ii. The flow is laminar, incompressible, steady, and unidirectional. 

iii. The magnetic field, Bo is applied transversely along the channel walls. 
iv. Porous and fluid regions are in LTNE. 
v. The flow field is fully developed hence dp/dx* is a constant and developing thermal field. 

vi. Heat generation, axial conduction, and thermal dispersion are negligible. 
vii. The porous medium is isotropic and homogeneous. 

viii. The thermophysical properties are constant. 
 

 
Fig. 1. Schematic model and coordinate system 

 
2.1 Governing Equations 
 

The dimensionless variables specified below are used to establish the governing equations 
dimensionless. 
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In Eq. (1), ξ and η are the dimensionless coordinates. The dimensionless temperature and velocity 

are denoted by φ and U, respectively. The fluid and solid phases are designated by subscripts f and 
s, respectively. The average velocity across the channel is denoted by uavg. The Peclet number (Pe) 
can be absorbed and defined in Eq. (2), at the condition, when the channel walls are exposed to a 
continuous heat flow. 

 
* / Pe =  (2) 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 103, Issue 1 (2023) 87-104 

 

90 
 

In Eq. (2), ξ* is the normalized dimensionless axial distance. The dimensionless form of governing 
equations (after applying the dimensionless variables given by Eq. (1)). 
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Eq. (3) is the dimensionless form of conservation of momentum equation [30,31], and Eq. (4) and 

(5) are the dimensionless form of thermal energy equations (LTNE model [13-15]). 
In Eq. (3) to (5), Da, M, F, and Bi denote the Darcy number, Hartman number, Forchheimer 

number, and Biot number, respectively [32-37]; however, ε, k1 and, κ represent the ratio between 
the viscosity of the fluid to the effective viscosity of the porous, fluid thermal conductivity to porous 
thermal conductivity, effective solid thermal conductivity to effective fluid thermal conductivity in 
the porous region, respectively and it can be defined as 

 
2/Da K H=  (6) 

 
2 2
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(7) 
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( )2 /sf sf seBi a h H k=  
(9) 

 

/ eff  =  (10) 

 

1 /f fek k k=  (11) 

 

/se fek k =  (12) 
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2.2. Dimensionless Boundary Conditions 
 

Hydrodynamics boundary condition 
 

1
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Thermal boundary condition 
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where in Eq. (14), the ratio, k2 is defined by 
 

2 /f sek k k=  (15) 

 

( ),

1 1
0, 0,    for 

2 2
f s  = −    (16) 

 
Interface boundary condition 
 

f s interface  = =  (17) 

    
3. Local Nusselt Number 
 

The local heat transfer coefficient (hξ) is determined at the wall * / 2y H=  adjacent to the porous 

medium as follows 
 

( ) ( )*

*
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In Eq. (18), the bulk mean temperature (Tb) is denoted as follows 
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Upon dimensionless variables {using Eq. (1)}, the local Nusselt number at 1 / 2, = , Nu  is given 

by 
 

( ) ( )*
12 2f wNu h H k k   = = −  (20) 
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In Eq. (20), w  and *  are defined by 

 

( ) ( )/ /w w e fT T qH k = −  (21) 

 

( ) ( )* / /b e fT T qH k = −  (22) 

 

where *  is evaluated by 
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Dimensionless temperature based on bulk mean temperature, b  defined by 
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4. Limiting Case 
4.1 Case 1: F = 0.0, M ≠ 0.0 
 
 Analytical expressions for dimensionless temperature and the fully developed Nusselt number for 
Forchheimer number, F = 0.0 for the fully developed thermal field are given for the Darcy Brinkman 
Model [28]. Dimensionless form Darcy Brinkman model is given by 
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Solving the set of equations Eq. (3), (4), and (25) along with boundary conditions Eq. (13) and (14). 

The temperature profiles in the fluid and solid phases are expressed relative to φwf, and φws 
respectively. 

For the Darcy Brinkman model, the dimensionless temperature in the fluid and solid phases, as 
well as the fully developed Nusselt number expressions, are given by 
 
4.2 Darcy Brinkman Model 
 

The dimensionless temperature in fluid and solid phases 
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In Eq. (26) and (27), dimensionless wall temperatures in fluid and solid phases, φwf, and φws are 
defined by 
 

( ) ( )/ ,    /wf wf e w f ws ws e w fT T q H k T T q H k = − = −  (28) 

 
4.3 Fully Developed Nusselt Number ( fdNu ) 

 
The constants, Ai, i = 1,2,3, …, 14, 15, appearing in Eq. (26), (27), and (29) are given in Appendix. 

The variation of fully developed Nusselt number, fdNu  with Bi is shown in Figure 2(a)-(c) for various 

thermal conductivity ratios κ = 0.1, 1.0, and 10.0 respectively for Hartman numbers, M = 1, 3, 5, 8 
and, 10. fdNu  rises to certain Bi then, it decreases as Bi decreases for all the Hartman numbers and 

κ. For all the Biot number values, as the Hartman number increases, fdNu  increases. Also, fdNu  

decreases as κ increases for a given Bi, M, and Da. 
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(c) 

Fig. 2. fdNu variation with Bi for the Darcy Brinkman model for (a) κ = 0.1, (b) κ = 1.0, and (c) 

κ = 10.0 at Da = 0.005 for distinct Hartmann numbers, M 

 
4.4 Case 2: F ≠ 0.0, M = 0.0 
 

In the absence of the Hartman number, M (M = 0), the velocity profiles are matching with the 
paper done by Sharath Kumar Reddy and Bhargavi [38], and Gupta and Bhargavi [39] for all the values 
of the Forchheimer number (F) and the channel filled with the porous material. 
 
5.  Numerical Methodology and Results and Discussion 
 

The successive accelerated replacement (SAR) methodology has been widely used in the 
literature [38-40], to generate numerical solutions to Eq. (3) to (5) along with the boundary conditions 
(Eq. (13), (14), and (16)). 0.001 ≤ Da ≤ 0.1, 1 ≤ Bi ≤ 100, 1 ≤ F ≤ 100, 1 ≤ M ≤ 65, and 0.1 ≤ κ ≤ 10 are 
the ranges used for parameters. It is assumed that 1 / 1f fek k k= = , 2 / 1f sek k k= = , and / 1eff  = =  

 

5.1 Hydrodynamics 
  

In this section, the velocity profiles for flow through a channel filled with porous material have 
been investigated. 
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5.1.1 Velocity profile 
 

Figure 3 and 4 illustrate the dimensionless velocity profiles at distinct values of Hartman number 
(M) and at Da = 0.01, and Da = 0.1 for Forchheimer numbers F = 1 and 100, respectively. It may be 
remarked that the value of dimensionless velocity Up decreases with the increment in M for all 
Forchheimer numbers (F). The decrease in the velocity is expected due to a rise in the Hartman 
number. However, it is also clear from these figures that for all the Hartman numbers, the 
dimensionless velocity Up rises as the Forchheimer number (F) increases. By comparing Figure 3 and 
4, it is clear that as Darcy number increases, Up also increases and for a large value of Da, the increase 
in the velocity is more because for large Da the porous region begins to behave like a clear fluid 
region. These velocity profiles match those reported in Sharath Kumar Reddy and Bhargavi [38] for 
channel filled porous region and in the absence of Hartman number (M = 0). 
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Fig. 3. Effect of Up for distinct M values at (a) F = 1, and (b) F = 100 for Da = 0.01 
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Fig. 4. Effect of Up for distinct M values at (a) F = 1, and (b) F = 100 for Da = 0.1 

 
5.2 Thermal Field 
 

The dimensionless temperature profiles and the wall temperatures in both phases solid and fluid 
as well as the local Nusselt number for flow through the porous filled channel are examined in the 
present section. 
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5.2.1 Dimensionless temperature in the fluid phase and solid phase 
 

Dimensionless temperature profiles, f  in fluid phase for Biot numbers Bi = 10, Forchheimer 

number F = 10, Da = 0.001, and  = 0.1 at different values of *  are shown in Figure 5 for Hartman 

numbers, (a) M = 1, and (b) 65 respectively. A similar type of plot is given for s  in the solid phase in 

Figure 6. Dimensionless temperature profiles (a) f  and (b) s  for Bi = 100, F = 10, Da = 0.001, and 

 = 0.1 at different values of *  are shown in Figure 7 for M = 1. A similar type of plot is shown in 

Figure 8 for Bi = 10.0 and   = 10.0  
Since the channel is symmetric, it can be observed from Figures 5 to 8, wall temperatures 
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Fig. 5. Impact of f  for distinct *  for Bi = 10 and  = 0.1 at Da = 0.001 for (a) M = 1 and 

(b) M = 65 
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Fig. 6. Impact of s  for distinct * values for Bi = 10 and  = 0.1 at Da = 0.001 for (a) M = 1 

and (b) M = 65 

 
From Figure 5 and 6, It is observed that for all Hartman numbers (M) and Forchheimer numbers 

(F), ,f  and s  increase with an increase of *.  Moreover, as Hartman number (M) increases,  ,f  

and s  decreases for all the values of *.  By comparing of Figure 5(a) and Figure 7(a) and Figure 6(a) 
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and Figure 7(b), as Bi increases from 10 to 100, it can be seen that there is a less increment in ,f

whereas s  is decreasing and tends to temperature in a fluid region under LTE. It means LTNE tends 

to LTE when the Biot number is large. This is happening for all the values of the Hartman number, 
Forchheimer number, and Darcy number. 
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Fig. 7. Impact of (a) ,f  and (b) s  for distinct * values at the high Biot number, Bi = 100 

for  = 0.1, Da = 0.001 and, M = 1 
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Fig. 8. Impact of (a) ,f  and (b) s  for distinct * values at the large value of  = 10.0 for F = 10, Bi = 

10, Da = 0.001 and, M = 1 

 
By comparing Figure 5(a), Figure 8(a) and, Figure 6(a) Figure 8(b) as the thermal conductivity ratio, 

 ( )/se fek k=  increases, ,f  and s  increase, it is due to increases in the effective thermal 

conductivity of the fluid, .fek  From Figure 5 to 8, it can also be observed that temperature in a solid 

phase, s  is larger than the temperature in a fluid phase . f  This is due to the LTNE condition. There 

is very less effect of the Forchheimer number on .  Hence plots are given for F = 10 only. 

 
5.2.2 Wall temperature 
 

Since the constant heat flux conditions at the walls are applied, wall temperatures will not be 
known. Hence to see the effect of the relevant parameters, wall temperature profiles are given. The 

variations of wall temperatures in fluid phase ( wf ) and solid phase ( ws ) with *  for F = 100, Bi = 10, 
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and  = 1.0 for M = 5, and 65 are demonstrated in Figure 9(a) and (b), for Da = 0.01 and 0.1 
respectively.  
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Fig. 9. Impact of wf and ws  with *  for F = 100, Bi = 10, and for M = 5, 65 and  = 1.0 

for (a) Da = 0.010 and (b) Da = 0.100 

 

As *  increases, wall temperatures in the fluid phase ( wf ) and solid phase ( ws ) also increase for 

all Hartman numbers. wf  and, ws  increase as *  increases, initially non-linearly and then linearly 

for * > 0.03, say. This is the condition for the onset of a fully developed temperature field, where 

the constant heat flux is employed at the channel walls. From Figure 9, it can be observed that ws > 

wf  because of the heat transmission from the fluid to the solid is more to solid wall temperature 

than the fluid wall temperature. 
 

5.2.3 Local Nusselt number 
 

The effect of the local Nusselt number Nu  with *  for Bi = 10,  = 1.0 and F = 10 is shown in 

Figure 10(a) and (b) for (a) Da = 0.001 and (b) Da = 0.05 respectively for M = 1, 10, 25, 50, and 65. 

The variation of Nu  with *  for various values of Biot number for a given Da = 0.005,  = 1.0, and F 

= 10 are given in Figure 11 for (a) M = 5, and (b) M = 65 respectively. Plots for the variation of Nu  

with *  for various thermal conductivities ( ) are given in Figure 12 for low Da = 0.01 and Figure 13 

for moderate Da = 0.05.  

From Figure 10 to 13, Nu  decreases with the increase of *.  The trends in the variation of Nu  

with *  for the channel coming under a porous medium are similar to the well-reported trend for 

the channel with clear fluid flow under the local thermal equilibrium. 
From Figure 10(a) and (b), Nu  increases with the increase of Hartman number, M. The same 

pattern is also seen in Figures 11 to 13 for small and large values of M. This fact is also observed in 
Figure 2(a)-(c) for the fully developed Nusselt number. In Figure 10, it can also be seen that as Darcy 
number, Da increases, Nu  decreases and for large Da (say Da = 0.1), values of Nu  for the channel 

with porous material are the same as values Nu  for the clear fluid channel. At * = 0.4, values of 

Nu  are the same as the fully developed Nusselt numbers ( Nu ) with different Hartman numbers, M 

at Da = 0.005, F = 0, Bi = 10,  = 0.1 (as given in Table 1). 
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Fig. 10. Nu effect with *  for distinct M values with Bi = 10,  = 0.1, and F = 10 for (a) Da 

= 0.001 and (b) Da = 0.050 

 

From Figure 11 to 13, there are significant changes in local Nusselt numbers with *  for higher 

Biot numbers and,  . This fact was reported by Dehghan et al., [41]. From Figure 11(a) and (b), as 
the Biot number increases the local Nusselt number decreases for a given Da, F, M, and . This 
feature was observed for the constant wall temperature boundary condition and in the absence of 
the Hartman number given in Nield et al., [42]. 
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Fig. 11. Nu effect with *  for distinct Bi values with Da = 0.005,  = 0.1, and F = 10 for (a) 

M = 5 and (b) M = 65 

 
From Figure 12 and 13, as   increases from 0.1 to 10.0, Nu  value decreases for all the values of 

the Hartman number, Biot number, Darcy number, and Forchheimer number. This fact is also given 
in Figure 2(a)-(c) for all the values of M. The value of Nu  is less influenced by the Forchheimer 

number (F) for all the Hartman numbers, and Biot numbers. Nu  increases, as the Forchheimer 

number increases, and the amount of decrease is smaller in quantity. 
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Fig. 12. Nu effect with *  for distinct  values with Da = 0.001, Bi = 10, and F = 10 for (a) 

M = 5 and (b) M = 65 
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Fig. 13. Nu effect with *  for distinct  values with Da = 0.050, Bi = 10, and F = 10 for (a) 

M = 5 and (b) M = 65 

 

At the fully developed length, say * ≥ 0.38, local Nusselt numbers ( Nu ) approach to the fully 

developed Nusselt numbers, which are obtained analytically. Local Nusselt numbers, ( Nu ) at * = 

0.38 and the fully developed Nusselt numbers values (Eq. (29)) are given in Table 1 for different 
Hartman numbers, M  = 1, 5 and 10 for Da = 0.005, F = 0, Bi = 10,  = 0.1. At the fully developed 

length, say * > 0.38, local Nusselt numbers ( Nu ) approach to the fully developed Nusselt numbers, 

,fdNu  which are obtained analytically which can be seen in Table 1. 

 
Table 1 
Local Nusselt numbers ( Nu ), and the fully 

developed Nusselt numbers ( fdNu ) values 

with various Hartman numbers, M 
M Nu  at * = 0.38 fdNu  

 1 9.753 9.894 
 5 9.832 9.971 
10 10.143 9.165 
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The variation of Forchheimer number, F on Nu  is given in Table 2 at various *  at Darcy number, 

Da = 0.001,  = 0.1, and at Hartman number, M = 5, and 65. From the Table 2, it clear that effect of 
F is very less on Nu  may be because of the magnetic field effect. 

  
Table 2 
Variation of local Nusselt number, Nu  for different Forchheimer number, F  

  M = 5, Bi = 50   M = 65, Bi = 50  
ξ* F = 1 F = 10 F = 100 F = 1 F = 10 F = 100 

0.00005 130.977 130.977 130.979 158.864 158.864 158.864 
0.00010 98.670 98.670 98.672 122.599 122.599 122.599 
0.00100 39.285 39.285 39.286 47.222 47.222 47.222 
0.00500 21.744 21.744 21.744 24.806 24.806 24.806 
0.05000 11.447 11.448 11.448 12.244 12.244 12.244 

 
6.  Comparison of Present Work with the Existing Literature 
 

To validate the present work, the comparison between present values of local and fully developed 
Nusselt number with Gupta and Bhargavi [39] for Bi = 50,  = 0.1, F = 100 in the absences of the 
magnetic field, M = 0 is given in Table 3. The agreement is very good. 
 

     Table 3 
The comparison between present values of local and 
fully developed Nusselt number with Gupta and 
Bhargavi [39]  

 Gupta and Bhargavi [39] Present value 

Da Nu  fdNu  Nu  fdNu  

0.001 167.935 10.756 167.935 10.756 
0.005 138.326 9.783 138.326 9.782 
0.010 127.090 9.334 127.090 9.332 
0.050 110.011 8.618 110.010 8.618 
0.100 106.894 8.494 106.894 8.494 

 
7.  Conclusion 
 

In this work, the numerical investigation of forced convective heat transfers in the thermal entry 
of parallel plate channels completely immersed in porous media under local thermal non-equilibrium 
circumstances is discussed. The parallel plates are exposed to a constant wall heat flux. The flow field 
is unidirectional and obeys the Darcy Brinkman Forchheimer equation. The problem was defined by 
Darcy number (Da), Hartman number (M), thermal conductivity ratio ( ), Biot number (Bi), and, 
Forchheimer coefficient (F). The numerical solution has been adduced for temperatures in both 
phases solid and fluid, wall temperature, and local Nusselt number at the entrance to the channel 
filled with porous medium for LTNE condition. The key findings on the behaviour of the investigated 
system are 

 
i. For all the values of Hartman number, M and for the large Bi, s  is decreasing and tends 

to temperature in a fluid region under LTE. It means LTNE tends to LTE. when the Biot 
number large. Also, s  is larger than the temperature in a fluid phase .f  This is the 

validation of LTNE condition. 
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ii. As *  increases, wf  and, ws  increase, initially non-linearly and then linearly for * > 0.03, 

say. This is the condition for the onset of a fully developed temperature field. Moreover, 

ws > wf  because heat transmission from fluid to solid is greater at solid wall temperature 

than fluid wall temperature. 
iii. With the increase of Hartman number, M, local Nusselt number increases. This fact is also 

true for fully developed Nusselt number (as given in the figures). 
iv. Local Nusselt number ( Nu ) value decreases with increase of Da. For large value of Da 

(say Da = 0.1), value of Nu  for the channel with porous material is the same as value of 

Nu  for the clear fluid channel. 

v. For all the values of Hartman number, Nu decreases with increase of thermal 

conductivity ratio, κ. This fact is also true for fully developed Nusselt number. 
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