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An unstable flow of non-Newtonian fluid, with friction in a pipe is studied, describing the 
water hammer phenomenon. The equations of the problem are given, then solved by a 
numerical approach. The non-Newtonian behavior of the fluid, as well as the effect of the 
coefficient of friction which represents an additional mechanism of energy dissipation are 
investigated. The 1D and 2D problem is used simultaneously, based on the Runge-kutta 
method for the descritization in time, Finite differences, Characteristics for the 
descritization in space. The results of this article show by verifying with experience that 
these methods used, in addition to being simple, are also effective and give reasonable 
results. 
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1. Introduction 
 

The water hammer phenomenon means a pressure surge or shock wave that can oscillate in a 
pipe system with a speed close to that of sound in water. This gradual pressure wave in the system 
can cause an explosion or pipeline implosion. The distribution and amplitude of the pressure wave 
front depend on the roughness of the pipeline, blockages due to sediment deposition, corrosion, etc. 
[1]. Recorded pressures are a tool for estimating driving conditions after studying pressure damping 
models. This methodology, based on studies of transient flows, has recently attracted the attention 
of several researchers [2-7]. Establishing an understanding of the damping mechanisms of water 
hammer waves is fundamental to the development of the transient study, and the design of pipeline 
safety accordingly. The friction on the wall makes it possible to study the damping of water hammer 
waves which reveals the importance of the present study. This translates into adding the term of 
friction to the equations governing the problem, and represents a means of predicting the damping 
of the amplitude of the pressure waves face to models of frictionless water hammers. 

The simplest known friction model is the quasi-stable model [8-11]. Indeed, the decrease in the 
pressure amplitude observed by this model was found to be slower than that obtained in the 
experiments [12,13]. 
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Pezzinga [14] proved that the unsteady coefficient of friction depends on the properties of the 
system, location and time, by making comparisons with numerical results based on a quasi-two-
dimensional (2D) model. Pezzinga [15] and Brunone et al., [16] gave an example in which an increase 
in the unsteady friction coefficient of 35% has little effect on the pressure time histories at the valve. 
unstable frictional stresses were greater in pipe systems compared to a single straight pipe and also 
had a smaller effect on pressure wave damping [17]. With the increase in the product of the 
coefficient of a friction as well as the Reynolds number of the initial flow [17]. Wylie [12], Brunone et 
al., [18] and Soares et al., [19] have adopted trial and error procedures to have the unsteady 
coefficient, which gives the best fit. Adamkowski and Lewandowski [20] determined the difference 
between predicted and measured pressure time histories at the valve using the difference between 
the areas enveloped by the pressure histories and the center of the pressure oscillations. Nikpour et 
al., [21] and Duan et al., [22] used the differences between the predicted and measured peaks of the 
valve pressure time histories, to assess the validity of their numerical models. Prashanth Reddy et al., 
[23] used the normalized mean squared deviation in order to quantify the difference between the 
predicted and measured time histories of pressure and to specify the unsteady coefficient of friction. 

Experimental studies by Holmboe and Rouleau [24], Brunone et al., [18] and Adamkowski and 
Lewandowski [20] show that the pressure waves are smoothed as they propagate in the pipe, and 
finally their amplitudes are attenuated. Indeed, the pressure waves predicted by quasi-stationery 
and acceleration-based models, for instance in the studies by Wylie [12], Brunone et al., [18], and 
Soares et al., [19], exhibit progressive wavefronts before damping, but the model of Pezzinga [25] 
describes a progressive change in the pressure wave. Whatever the model used (quasi-stationary, 
based on acceleration, quasi-2D or 3D-CFD), the presence of the term of friction does not change the 
hyperbolic nature of the problem. indeed, it was recognized by Szymkiewicz and Mitosek [26] in their 
studies on quasi-stable models based on acceleration. Again, friction in quasi-stationery and 
acceleration-based models has no influence on the wavefront, which remains sharp before damping. 
For this reason, the study added a diffusive term to refine the pressure wave front, for cases where 
the number of currents is less than unity. The present study introduces the effects of non-Newtonian 
bahavior fluid flow and the coefficient of friction that introduces an additional mechanism of energy 
dissipation. Also, the experimental verification explaining the actual water hammer phenomenon. 
 
2. Methodology  
2.1 Governing Equations 
2.1.1 Global system 
 

In the transient pipeline flow (Figure 1), the continuity and momentum global equations are given 
by the following system (Eq. (1)) [27]: 
 

{

∂H

∂t
+

𝑎2

𝑔

∂V

∂x
= 0

∂H

∂x
+

∂V

∂x
+ Jq = 0

             (1) 

 
where 𝑉 is average velocity, H is piezometric head,𝑎 is wave speed, ρ is density, t is time and 𝐽𝑞 is 

quasi-steady friction. 
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2.1.2 Local system  
 

In the transient pipeline flow, the continuity and momentum local equations are given by the 
following system (Eq. (2)) [28]: 
 

{

𝜕𝐻

𝜕𝑡
+

𝑎2

𝑔

𝜕𝑣

𝜕𝑥
= 0

𝜕𝑣

𝜕𝑡
+ 𝑔

𝜕𝐻

𝜕𝑥
=

1

𝑟𝜌

𝜕

𝜕𝑟
(𝑟

𝜕𝜏

𝜕𝑟
)

            (2) 

 

 
𝒅 = 𝟎. 𝟎𝟐𝟓 𝒎, L=36,09 m 

Fig. 1. Schematic of the reservoir-pipe-valve system [28] 

 
2.1.3 Initial conditions 
 

The initial conditions correspond to the steady state flow. So, these conditions can be written as: 
 
∂v

∂x
= 0               (3) 

 
∂P

∂x
= −

2τ0

R
              (4) 

 
Where R is the inner radius of the pipe. 
 
2.1.4 Boundary conditions 
 

After the valve closure, the velocity is set to zero at the valve boundary. At the reservoir, a 
constant pressure head is associated. In contact, the flow boundaries with the pipe wall have zero 
velocity. Therefore, these boundary equations can be written as follows (Eq. (5) to Eq. (7)): 
 
v(r=R) = 0              (5) 

 
v(valve) = 0              (6) 

 
Hreservoir = cte             (7) 
 
where R is the inner radius of the pipe. 
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2.2 Non-Newtonian Behavior 
 

The equation which represents the shear stress of the fluid is (Eq. (8)) [27]: 
  
τ = μγ̇               (8) 
 
where 𝜇 and 𝛾̇ are apparent viscosity and shear rate respectively. 

The power-law is given by the following equation, with the fewest possible parameters. 
 
μ = m(γ̇)n−1              (9) 
 
where 𝑚 and 𝑛 are two empirical curve fitting parameters, also known as the fluid consistency 
coefficients and the flow behavior index respectively. If 𝑛 is fixed to one and m is set to 𝜇0, the 
Newtonian fluid equation is obtained. This allows to investigate n values, in the power law model 
during transient fluid flows. 
 
2.3 Quasi-Steady Friction Model 
 

The quasi-steady friction model supposes that there is no contribution due to the unsteady flow 
(i.e., 𝐽𝑠 = 0 ) and that only the quasi-steady term of the pipe resistance contributes to the dampening 
due to friction, hence the name quasi-steady friction. This contribution to the friction term is 
computed using the formula 
 

𝐽𝑠 =
𝑓

𝐷
.

𝑉|𝑉|

2𝑔
                        (10) 

 
Which 𝑉 is average cross-sectional velocity, 𝑓 is Darcy Weisbah friction factor. In the laminar flow, 
the friction coefficient 𝑓 is concluded based on the Reynolds Number: 
 

𝑓 =
64

𝑅𝑒
                         (11) 

 
Where 𝑅𝑒 is Reynolds Number. 
 
2.4 Numerical Method 
 

The governing equations are solved using the finite difference and characteristics methods, and 
the system of equations over time, is solved using a fourth-order Runge-Kutta scheme. 
 
The systems (Eq. (1) and Eq. (2)) are given in matrix form (Eq. (12)) 
 
∂{W}

∂t
= −[B]

∂{W}

∂z
+ {c}                      (12) 

 
with the unknown vector: {W}={H V} 
 
∂{W}

∂t
= f(W, t)                        (13) 
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{W}N+1 = {W}N +
1

6
[{K1} + 2{K2} + 2{K3} + {K4}]                  (14) 

 
3. Results  
 

In the present study, the copper pipe has an internal diameter of 0.025 m and a length of 36,09 
m with laminar flow conditions, the fluid used with high viscosity oils (µ = 0.03484 N·s/m²). The test 
is initiated by a sudden closing of the valve, which creates the excision of the fluid flow to the valve, 
causing pressure and velocity oscillations, propagating along the pipe. The Newtonian and non-
Newtonian velocity profile at the midpoint is represented (Figure 2 to Figure 5). Also, the 
representation of the pressure history at the midpoint and the valve is given (Figure 6), the history 
of average velocity at the midpoint and at the tank is also presented (Figure 7). 
 
3.1 Velocity Profile 
 

To better illustrate the variations in the transient velocity profile for a Newtonian and non-
Newtonian fluid, the axial velocity in the radial direction at midpoint is calculated at several time 
sections, from the 2D simulation (the present study) (Figure 2, Figure 4 and Figure 5), and also 
compared with the experimental work (Figure 3) [26]. The coefficients of the power-law model are 
chosen to be equal to 0.6. The initial viscosity of the power-law model is set to the viscosity of the 
corresponding Newtonian fluid, so for n = 1, the characteristics of the Newtonian fluid is obtained. 

In addition, the flow characteristics, which result from the nonlinear property of the fluid, can be 
identified (Figure 4 and Figure 5) by showing that the velocity distribution changes significantly due 
to the behavior of the non-Newtonian fluid. The velocity gradient increases in the flow section, and 
the increase in the velocity gradient in the vicinity of the pipe wall causes a drop in the viscosity value. 
Figure 2 illustrates that the consistency between the two results verifies the computer code 
implemented and the method used in this study. 
 

 
 

(a) (b) 
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(c) (d) 

 
(e) 

Fig. 2. Velocity profiles at the midpoint of pipe for Newtonian fluid n=1: t=0, t=1 L/a, 
t=2 L/a, t=3 L/a, t=4 L/a 

 

  
(a) (b) 

Fig. 3. Velocity profiles at midpoint of pipe for Newtonian fluid n=1: (a) present study (b) study by 
Wahba [29] 
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(a) (b) 

 
 

(c) (d) 

 
(e) 

Fig. 4. Velocity profiles at the midpoint of pipe for non-Newtonian fluid n=0,6: t=0, t=1 
L/a, t=2 L/a, t=3 L/a, t=4 L/a 
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Fig. 5. Velocity profiles at the midpoint of pipe for non-
Newtonian fluid n=0,6 at several time sections 

 
3.2 Effect of the Friction Coefficient 
 

Figure 6 represents the peak pressure values and the shape of the pressure history at the valve 
and midpoint when using the classic boundary expression. While Figure 7 illustrates the average 
velocity history at tank, and midpoint. The higher value of the friction factor has a greater retardation 
effect on the reflection of the pressure wave, which is consistent with the literature, indeed more 
the value of friction coefficient increases the effect becomes more important, which is illustrated by 
the remarkable retardation on the value f= 0.5 compared to f=0.2, and no effect for frictionless. 
Therefore, the coefficient of friction influences the damping of the pressure waves. 
 

  
At midpoint At valve 

Fig. 6. Presser histories at the valve and the midpoint of pipe in frictionless and steady 
friction model 
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At reservoir At midpoint 

Fig. 7. Average velocity histories at the valve and the midpoint of pipe in frictionless and 
steady friction model 

 
4. Conclusions  
 

In the present study 2D methods are heavy in computation, so the 1D and 2D problem is used 
simultaneously and a numerical method based on Runge-kutta, characteristics and finite differences 
are proposed. The required cross-sectional velocity gradient of the transient power law was 
calculated based on that of the steady-state flow. Also, an approximation of average velocity and 
pressure history is shown. Therefore, the velocity distribution changes significantly due to the 
behavior of the non-Newtonian fluid, and friction coefficient. The higher value of the friction factor 
has a larger retardation effect on the reflection of pressure wave; therefore, the friction coefficient 
influences the damping of the pressure waves. 
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