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The growing demand for fossil fuels has prompted the exploration of alternative 
sustainable energy sources like biodiesel, renowned for its renewable nature and eco-
friendliness. Empty fruit bunch ash (EFBA) has attracted significant interest due to its 
composition of various metal oxides, making it a promising option for creating high-
performance heterogeneous catalysts. The synthesis of EFBA involves the co-
precipitation method, where it is activated by KOH catalyst, denoted to as K/EFBA. This 
method enables the metal oxides in EFBA to bond with KOH, forming a catalyst with 
mixed metal oxides that enhances catalytic efficiency and prevents the loss of active 
sites. The K/EFBA catalyst exhibits a robust basicity of 2215.05 μmol/g, with more active 
sites resulting from the interaction of metal oxides, capable of converting waste cooking 
oil (WCO) into fatty acid methyl esters (FAME). Optimal conditions for transesterification 
of WCO, including a 7 wt% catalyst loading, 45 minutes reaction time, and a 12:1 
methanol to oil ratio, yielded a biodiesel output of 70.51%. Gas chromatography-mass 
spectrometry (GCMS) analysis identified six peaks corresponding to different FAME 
groups, such as lauric acid methyl ester, myristic acid methyl ester, palmitic acid methyl 
ester, oleic acid methyl ester, and linoleic acid methyl ester. These results underscore 
the potential of the K/EFBA catalyst in converting WCO into biodiesel. 
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1. Introduction 
 

Fossil fuels significantly contribute to global energy demand, but they are non-renewable and 
costly. Furthermore, burning fossil fuels generates greenhouse gases (GHGs) and particulate matter, 
exacerbating some of the world's most critical environmental issues. Consequently, researchers have 
increasingly focused on alternative renewable energy sources to reduce reliance on fossil fuels. 
Among these, biodiesel stands out as the most practical option. The term "bio" refers to its natural 

 
* Corresponding author. 
E-mail address: akmarshohaimi@uitm.edu.my 
 
https://doi.org/10.37934/arfmts.127.2.133147 

https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/index


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 127, Issue 2 (2025) 133-147 

134 
 

origin, while "diesel" denotes its use as a fuel, as suggested by its name [1]. Biodiesel or FAME is 
considered an ideal alternative to petroleum fuel due to its sulfur-free composition, high oxygen 
content, sustainability, and low hydrocarbon emissions [2]. Biodiesel can be produced from vegetable 
oils, animal fats, and waste products. Edible oil feedstocks include sunflower oil, soybean oil, palm 
oil, and coconut oil [3]. Non-edible feedstocks include oils from castor bean seeds, neem, rubber 
trees, rice bran, tobacco seeds, animal fats, waste cooking oils, and microalgal lipids. The primary 
method for biodiesel production is transesterification, a reversible catalytic reaction that occurs 
under mild conditions, reducing costs and increasing yield. This reaction is accelerated by the 
presence of an acid or base catalyst [4]. Essentially, the process involves exchanging the ester group 
with the OH group from alcohols like methanol or ethanol. Through three reversible stages, 
triglycerides are converted into diglycerides, monoglycerides, and glycerol, producing alkyl esters at 
each stage. Oil triglycerides react with alcohol in a 1:3 stoichiometric ratio with the aid of a catalyst. 
This process requires an excess amount of alcohol beyond the stoichiometric ratio to push the 
reaction towards equilibrium [5,6]. 

As noted by Welter et al., [7], vegetable oils were the predominant feedstock in the biodiesel 
industry in 2023. However, their utilization has diminished due to increased costs and concerns about 
resource scarcity. Consequently, low-quality alternatives like WCO have emerged as potential 
substitutes [8]. WCO, sourced from edible vegetable oils used in cooking or frying in restaurants and 
households, possesses high levels of free fatty acids (FFA) and moisture content. Despite this, WCO 
is capable of yielding biodiesel at rates exceeding 90%. For instance, Mohadesi et al., [9] achieved an 
impressive yield of 98.26% using WCO with a 1.16 wt% catalyst concentration and a reaction 
temperature of 62.4°C within 30-120 seconds. Similarly, Sabzi et al., [10] investigated WCO using 
Metal-Organic Frameworks (MOFs) as catalysts and attained conversions of up to 98.8% at 145°C 
with a 24.18% catalyst amount over 7.5 hours. These findings highlight WCO as a promising feedstock 
due to its cost-effectiveness, widespread availability, eco-friendliness, and capacity to yield biodiesel 
at high rates. Additionally, utilizing WCO helps mitigate environmental concerns associated with its 
disposal into sewage pipelines. 

Catalysts are employed to accelerate reaction rates. Homogeneous basic catalysts like NaOH and 
KOH, and homogeneous acid catalysts such as H2SO4, HCl, and H3PO4, are favored for their rapid 
reaction rates and high yields. However, separating these catalysts from the liquid product is 
challenging, rendering them non-reusable and prone to issues like saponification, emulsification, and 
high corrosiveness [11]. In contrast, heterogeneous catalysts offer several advantages, including 
broader selectivity, adaptability to high FFAs, and water tolerance. Heterogeneous catalysts are non-
toxic, less complex, and more stable [12]. Examples of basic heterogeneous catalysts include CaO, 
KOH/Al2O3, KOH/NaY, Al2O3/KI, and alumina/silica supported K2CO3 Heterogeneous acid catalysts 
encompass heteropoly acids, zeolites, and modified transition metals supported on materials like 
silica, alumina, zirconium, and molybdenum. These catalysts exhibit greater stability, environmental 
friendliness, ease of separation, and reusability. 

EFBA is readily available, particularly in Malaysia and Indonesia, as these nations are the primary 
producers of palm oil, contributing to around 85%-90% of global production. Approximately 23%-
25% of EFBA is generated for every ton of EFB processed, potentially leading to a surplus of waste if 
not efficiently utilized [13]. EFBA, a type of biomass, contains various metal oxides such as KO2, Al2O3, 
CaO, Fe2O3, and others, making it suitable for catalytic applications. EFBA presents an opportunity 
for sustainable utilization as a heterogeneous catalyst. In a study by Biswal and Sarkar [14] fly ash 
mixed with NaOH-catalyzed soybean oil, achieving a 97.8% conversion rate with a fly ash to NaOH 
mass ratio of 1:3. The presence of aluminosilicates and rare earth metals in fly ash enhances the 
structural, textural, and morphological properties of the catalyst. Oloyede et al., [15] investigated 
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biodiesel production using calcined ash catalyst derived from agricultural residues, reporting 
successful conversion rates of 80-99.8%, with up to five recycling cycles yielding appreciable 
biodiesel. Therefore, basic heterogeneous catalysts derived from ash materials have the potential to 
produce high-yield biodiesel while maintaining high catalytic activity and stable structural properties. 
Ash materials have thus emerged as a viable option for renewable energy resources in the biodiesel 
industry due to their availability, lower cost, and capacity to mitigate environmental issues. 

The objective of this research is to create a novel heterogeneous catalyst through the co-
precipitation method, doping ash materials with KOH catalyst. A comprehensive discussion based on 
characterization findings is presented. The study explores the application of EFBA mixed with KOH 
material by utilizing WCO as feedstock to assess catalyst performance. The evaluation includes 
optimizing parameters such as catalyst loading, reaction time, reaction temperature, and methanol 
to oil molar ratio. 
 
2. Methodology 
2.1 Material and Feedstock 
 

The feedstock of WCO was obtained from household area in Bandar Pusat Jengka, Pahang and 
the EFBA obtained from FTJ Bio Power Sdn. Bhd. Potassium hydroxide (KOH, 99%), n-hexane (purity 
> 99%), methanol (purity > 99%), methyl heptadecanoate (purity > 99%), sodium hydroxide (NaOH, 
99%), phenolphthalein (C20H14O4, 99%), hydrochloric acid (HCl, purity > 32%). All reagents were 
directly purchased with analytical grade and used without further purification. The WCO obtained 
undergoes filtration process to remove the solid particles and other impurities. After the WCO has 
been filtered, it was heated at 120°C while stirring for 2 h to remove water content and any 
impurities. Then, the pre-treated WCO was stored in a clean container. The physicochemical 
properties of WCO were analysed and presented in Table 1. 
 

Table 1 
Physical properties of WCO 
Properties  WCO 

Acid value (wt%) 2.48 
FFA value (wt%) 1.24 
Saponification value (mg KOH g-1) 109.74 
Molecular weight (gmol-1) 1533.85 
Moisture content (%) 0.04 

 
2.2 Catalyst Preparation 
 

The alkaline activation process of EFBA with KOH involved mixing 20 g of EFBA with 44.56 mL of 
2 M KOH and heating the mixture to 90°C until dry. Once the reaction mixture had completely dried, 
it was placed in an oven for 12 hours at 110°C. The treated EFBA was then ground into a smooth 
powder, resulting in the final product known as K/EFBA. Similarly, for the calcined sample, the same 
procedure was repeated followed by calcination, where the material was heated in a furnace at 
600°C, resulting in the final product known as K/EFBA600. 
 
2.3 Catalyst Characterization 
 

Characterization of the catalyst was conducted to evaluate its physicochemical properties and 
morphological structure. Thermal decomposition was analyzed using a TGA-DTG curve with a TGA-
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Pyris 2012 and a GSA7-Perkin Elmer thermal gas detector, which is equipped with differential 
thermogravimetry (DTG). Fourier transform infrared spectroscopy (FTIR) was performed using a 
Perkin Elmer Spectrum TM 100 FTIR instrument to identify active species on the catalyst, employing 
the universal Attenuated Total Reflectance (ATR) method for compound identification. 
Morphological and elemental composition analyses were carried out using a TESCAN VEGA3 scanning 
electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX). X-ray 
diffraction (XRD) analysis was used to determine the internal structure, bulk phase, and crystalline 
phase composition, utilizing a LabX XRD-6100 PANalytical powder X-ray diffractometer with Cu Kα 
radiation (30 kV, 15 mA). Mineral and elemental species of the catalysts were identified using 
standards from the Joint Committee on Powder Diffraction Standards (JCPDS). Pore size distribution 
and specific surface area were analyzed using the BET model with a Micromeritics ASAP 2010 
instrument. The Barrett-Joyner-Halenda (BJH) method was applied for pore size distribution, while 
the BET method was used for specific surface area determination. The density of active sites and 
basic distribution of the catalyst were determined using carbon dioxide-temperature programmed 
desorption (CO2-TPD) analysis with a Thermo Finnigan TPDRO 1100 series, measuring CO2 gas 
desorption with a Thermocouple detector (TCD). Elemental composition and leaching spots on the 
solid sample were measured using an XRF instrument model S2 PUMA series in a helium atmosphere. 
 
2.4 Biodiesel Analysis 
 

The FAME composition in biodiesel samples was determined using a Gas Chromatography – Mass 
Spectrometry (GC-MS) model (GC-7890A, Agilent Technologies). Both the injector and detector 
temperatures were set to 240°C. Helium was employed as the gas carrier with a flow rate of 19.2 
mL/min. The column temperature was maintained at 150°C with a ramping rate of 15°C/min for 
warm-up. The instrument's column temperature was then set to 300°C for startup, with a ramping 
rate of 7°C/min. A 1 μL sample was injected into the GC inlet port. From the obtained chromatogram, 
the peak area of FAME in biodiesel was identified and compared with the peak area of the internal 
standard (methyl heptadecanoate). Utilizing the equation below, the percentage of biodiesel yield 
from the transesterification reaction could be calculated: 
 
𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 (%), 𝑑 = (𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 (𝑔)/10 𝑔 𝑜𝑓 𝑊𝐶𝑂)  × 100    (1) 
 

Due to the presence of unreacted oil, glycerol and other impurities, the ester content can be 
calculated using GC-MS analysis. By using Agilent method EN14103, ester content can be calculated 
using the formula below: 
 
𝐸𝑠𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%), 𝑐 = (𝑇𝐴 − 𝐴𝐸𝐼/𝐴𝐸𝐼)  × (𝐶𝐸𝐼 × 𝑉𝐸𝐼/𝑚) × 100      (2) 
 
where c is ester content FAME, m is mass of the sample for GC-MS analysis, TA is total area of FAME, 
AEI is area of internal standard, CEI is concentration of internal standard solution (mg/mL) and VEI is 
volume of methyl heptadecanoate solution (mL). 
 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙, 𝑌 = (𝑐/100)  × 𝑚          (3) 
 
where c is from the previous calculation from GC-MS analysis and m is mass of biodiesel collected 
after transesterification reaction. 
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𝐵𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 𝑦𝑖𝑒𝑙𝑑 (%), 𝐵 = (𝑌/10 𝑔 𝑜𝑓 𝑊𝐶𝑂)  × 100        (4) 
 
3. Results 
3.1 Catalyst Characterization 
 

TGA was employed to assess the thermal stability of K/EFBA. As depicted in Figure 1, a slight 
weight loss of 3.20% at temperatures around 30-50°C is attributed to the evaporation of absorbed 
water. Between 50-100°C, a 7.90% weight loss is due to the total elimination of water molecules 
associated with K/EFBA. At 600-700°C, there is a 4.90% weight loss resulting from the dihydroxylation 
of OH molecules [16]. From 700-900°C, an 8.20% weight loss is observed, caused by deposit 
formation and ash aggregation [17,18]. Furthermore, the TG curve indicates that thermal 
decomposition of EFBA can still occur, and 900°C is insufficient to achieve complete combustion 
[19,20]. 
 

 
Fig. 1. TGA analysis of K/EFBA 

 
Figure 2 displays the XRD patterns of K/EFBA and K/EFBA600. The highest peak for K/EFBA is at 

2θ = 28.68°, corresponding to CaSi2 with a tetragonal structure (JCPDS No. 00-019-0251). Additional 
peaks at 2θ = 29.82° and 2θ = 32.29° correspond to FeS (JCPDS No. 03-065-1894) and Mg (JCPDS No. 
00-001-1141), respectively. A peak at 2θ = 40.79° indicates the formation of KCl with a cubic structure 
(JCPDS No. 00-001-0790), supported by another peak at 2θ = 50.19°. The presence of KCl is consistent 
with findings by Romero et al., [21], who reported that KCl (sylvite) typically appears in ash 
compounds. 

For K/EFBA600, only two peaks are observed: one at 2θ = 29.82° for FeS (JCPDS No. 03-065-1894) 
and another at 2θ = 40.79° for KCl (JCPDS No. 00-001-0790). After calcination, the peaks for FeS and 
Mg disappear, and the intensity of the KCl and CaSi2 peaks is reduced. This disappearance suggests 
structural degradation of the particles at high temperatures [22]. Therefore, K/EFBA demonstrates 
better catalytic abilities compared to K/EFBA600, as it retains more active sites on the catalyst 
surface. 
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Fig. 2. XRD analysis for K/EFBA and K/EFBA600 

 
Figure 3 presents SEM micrographs of K/EFBA and K/EFBA600 samples, both exhibiting irregular 

plate structures. Specifically, the K/EFBA micrograph in Figure 3(a) shows coarse particles formed by 
the aggregation of smaller particles, along with small agglomerate particles [21,23]. In contrast, the 
K/EFBA600 micrograph in Figure 3(b) reveals a densely agglomerated structure, consistent with data 
reported by Namkung et al., [24]. This dense agglomeration is attributed to the high calcination 
temperature, which increases the tendency for agglomeration. 

The EDX spectrum in Figure 3(c) and Figure 3(d) indicates the presence of various metals in the 
catalyst, including K, Ca, Si, Mg, Al, Fe, S, C, and O. The significant presence of O suggests the 
formation of metal oxides in the K/EFBA structure, enhancing the catalyst's basicity [25]. Both 
catalysts show a high amount of K, which significantly enhances their basicity and catalytic activity. 
However, the presence of alkali and alkaline earth metals reduces the ash melting temperature, 
increasing particle stickiness and agglomeration properties. K is the most abundant alkaline earth 
metal in EFBA, contributes to this effect [24]. The addition of KOH to EFBA further promotes 
agglomeration in the catalyst structure. Other metal oxides present in EFBA have minimal effect due 
to their low concentrations. The XRF analysis in Table 2 confirms the high percentages of K2O and 
other basic metal oxides in K/EFBA, explaining the high basicity of the catalysts [26]. 

Both fresh and spent K/EFBA catalysts were chemically analyzed using XRF, as shown in Table 2, 
to determine the elemental composition and the leaching of active sites. K2O is the most abundant 
element in the catalyst, followed by SiO2, CaO, and Cl. The study revealed a significant leaching of 
K2O from the catalyst surface. This observation aligns with the BET data, which show that the spent 
catalyst has a higher surface area than the fresh catalyst due to the leaching of initially deposited K 
on the surface [27]. According to Noiroj et al., [28], this leaching occurs due to the chemical instability 
of the catalysts during the reaction. 
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Fig. 3. SEM images (a) K/EFBA and (b) K/EFBA600 with 2Kx magnification and 
EDX spectrums (c) K/EFBA and (d) K/EFBA600 

 
Table 2 
XRF analysis of fresh and spent of K/EFBA 
Component Composition (wt%) 

K/EFBA Spent K/EFBA 

K2O 55.80 46.30 
SiO2 19.90 23.90 
CaO 7.11 10.90 
Cl 6.10 5.39 
Fe2O3 3.21 4.52 
SO3 3.08 2.62 

 
Brunauer-Emmett-Teller (BET) analysis was conducted to determine the surface area and pore 

structure of the catalysts. Figure 4 shows the isotherm graph for fresh and spent K/EFBA and 
K/EFBA600. According to IUPAC classifications, the nitrogen adsorption isotherms for both fresh and 
spent K/EFBA and K/EFBA600 are Type IV with hysteresis loops of Type H3, indicating mesoporous 
structures characterized by aggregates of plate-like particles forming slit-shaped pores [19,26,29]. 
Additionally, all catalyst samples have an average pore diameter between 20 and 40 nm, confirming 
their mesoporous nature [16]. 

Table 3 presents the BET surface area, total pore volume, and average pore diameter, calculated 
using the Barrett, Joyner, and Halenda (BJH) method. It was observed that K/EFBA has a lower surface 
area compared to K/EFBA600, although both catalysts show an increase in surface area after use. 
According to Ghasemi and Dehkordi [27], the smaller surface area of K/EFBA compared to K/EFBA600 
is due to KOH loading, which covers the porous surface of the catalyst. The decrease in surface area 
is also attributed to sintering, which results in particle enlargement and crystallization [22]. The 
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higher surface area of the spent catalysts compared to the fresh ones is due to the leaching of active 
species such as K2O (as shown in Table 2), which increases the catalyst’s surface area. 
 

  

  

Fig. 4. BET isotherm graph for (a) fresh K/EFBA, (b) spent K/EFBA, (c) fresh K/EFBA600 and (d) 
spent K/EFBA600 

 
Table 3 
Physical properties of catalyst based on BET analysis 
Catalyst SBET  

(m2/g) 
Total pore volume 
(cm/g) 

Average pore diameter 
(nm) 

Fresh K/EFBA 1.23 0.0026 34.20 
Spent K/EFBA 5.55 0.0173 38.35 
Fresh K/EFBA600 4.52 0.0033 20.04 
Spent K/EFBA600 5.89 0.0035 21.23 

 
Figure 5 showed the CO2-TPD analysis was used to assess the basicity of K/EFBA and K/EFBA600, 

which is crucial for enhancing catalytic activity during the transesterification of WCO. The results 
indicate that both catalysts exhibit a broad desorption peak in the strong basicity region (above 
550°C), suggesting significant CO2 adsorption by electron donors with O2

- ions, similar to findings by 
Abdullah et al., [30]. In the weak basicity region (below 250°C), K/EFBA shows a minor peak, while 
K/EFBA600 displays a sharp peak. Despite this, the basic density of K/EFBA is higher, at 2215.05 
μmol/g, compared to K/EFBA600's 1587.59 μmol/g, due to metal-metal interactions from transition 
metal oxides [31]. These results suggest that K/EFBA is more effective in converting WCO to biodiesel. 
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Fig. 5. CO2-TPD of of K/EFBA and K/EFBA600 

 
Figure 6 presents the FTIR spectra for both fresh and spent K/EFBA and K/EFBA600. The broad 

peaks at 3295.93 cm−1 and 3282.66 cm−1 are attributed to the OH band, further supported by the OH 
stretching observed at 683.38 cm−1 and 667.79 cm−1, indicating water molecules adsorbed onto the 
catalyst surface [26]. Figure 6(a) and Figure 6(b) illustrates that the fresh catalysts, K/EFBA and 
K/EFBA600, exhibit lower water content on their surfaces compared to the spent catalysts, 
suggesting that the fresh catalysts demonstrate higher catalytic activity, as corroborated by BET and 
XRF analysis results. Additionally, peaks at 1033.51 cm−1 and 1034.09 cm−1 in the fresh catalysts' 
spectra are attributed to the alternating SiO and AlO bonds and the catalyst's bending plane [19,26]. 
The peaks at 1407.92 cm−1 and 1403.52 cm−1 are due to the CH bending vibrations in the CH2 groups 
of cellulose [32]. The spectra for the spent catalysts, K/EFBA and K/EFBA600, show similarities to the 
fresh catalysts but with significantly increased peak intensities due to catalyst degradation during the 
reaction and washing processes [19]. Furthermore, Figure 6(b) indicates the loss of several peaks in 
the spent K/EFBA600 compared to the fresh K/EFBA600, attributed to the calcination process, which 
decomposes organic compounds into carbon dioxide and water [26]. This loss of functional groups is 
due to the dehydration and deoxygenation of lignocellulosic materials (cellulose, hemicellulose, and 
lignin), resulting in the reduction of aliphatic structures and the formation of aromatic compounds 
[33]. 
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Fig. 6. FTIR analysis of fresh and spent catalyst of (a) K/EFBA and (b) 
K/EFBA600 

 
3.2 Transesterification of WCO 
 

The transesterification was conducted using a K/EFBA catalyst. Figure 7(a) displays the FTIR 
analysis for FAME, WCO, and glycerol. The FTIR analysis for FAME and WCO revealed similar 
functional groups, such as the carbonyl group, indicating a successful conversion to FAME due to 
their chemical similarity [34]. The absorption peaks for FAME around 2923.02 cm−1 and 2922.37 cm−1 
were attributed to the C-H asymmetric and symmetrical stretching vibrations of the saturated C-C 
bond, while the significant peaks around 1742.26 cm−1 and 1744.13 cm−1 were assigned to the C=O 
group of the triglycerides. Peaks observed in the range of 1000–1300 cm−1 were attributed to the C–
O stretching vibrations of the ester group. Additionally, peaks located at 722.06 cm−1 and 721.20 cm−1 
were attributed to the overlapping of the CH2 and the out-of-plane vibration CH wag of cis-di-
substituted olefins, suggesting that the product consisted of long-chain FAME [35,36]. The spectra of 
glycerol were also similar to those of FAME and WCO; however, glycerol exhibited an additional peak 
at 3307 cm−1, which was assigned to OH stretching [37,38]. The presence of carboxylic acids, ketones, 
and aldehydes groups further confirmed the successful conversion to FAME, correlating with GC-MS 
yield results [39]. 

The composition of FAME was determined using GC-MS analysis. WCO biodiesel was catalyzed 
under optimized conditions using K/EFBA. Figure 7(b) displays the GC-MS analysis of WCO biodiesel, 
revealing seven peaks for the compounds present in the biodiesel, with six peaks corresponding to 
methyl ester groups and one peak corresponding to internal standard. Table 4 showed details 
composition of methyl esters in WCO biodiesel: lauric acid methyl ester (0.43%), myristic acid methyl 
ester (1.18%), palmitic acid methyl ester (17.59%), oleic acid methyl ester (22.68%), and linoleic acid 
methyl ester (7.03%). 
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Fig. 7. (a) FTIR and (b) GC-MS chromatogram catalysed by K/EFBA 

 
Table 4 
Compound listed in GC-MS analysis for WCO biodiesel 
Retention time (min) Compound name Composition (%) 

16.798 Lauric acid methyl ester 0.43 
18.761 Myristic acid methyl ester 1.18 
20.832 Palmitic acid methyl ester 17.59 
21.639 Methyl heptadecanoate 13.12 
22.743 Oleic acid methyl ester 13.27 
22.944 Oleic acid methyl ester 9.41 
23.190 Linoleic acid methyl ester 7.03 

 
3.3 Optimization Parameter 
 

The optimization of the transesterification reaction assessed the efficacy of K/EFBA using the 
Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model. The parameters studied included the 
effects of methanol-to-oil molar ratio, reaction time, and catalyst loading. The investigation explored 
different effect on methanol-to-oil ratios, which are 9:1, 12:1, 15:1, and 18:1. In Figure 8(a), it is 
observed that the biodiesel yield percentage at a 9:1 ratio stood at 41.79% FAME, which increased 
to 58.82% at a 12:1 ratio. According to Farid et al., [40], insufficient methanol might impede FAME 
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conversion, requiring excess methanol to push the reaction towards equilibrium [35,40]. Therefore, 
at a 12:1 ratio, there was sufficient methanol for FAME conversion. However, elevating the ratio to 
15:1 and 18:1 led to diminished biodiesel yields of 46.5% and 34.93%, respectively. As indicated by 
Maniam et al., [41], transesterification reactions are fundamentally reversible. Hence, further 
increasing the molar ratio of methanol may reverse the reaction, reducing yield percentages. Thus, 
the optimal methanol-to-oil molar ratio was determined at 12:1, yielding 58.82% FAME. 

Figure 8(b) illustrates the effect of reaction time on transesterification (30, 45, 60, 75, and 90 
mins). Biodiesel yield increased from 30 to 45 minutes (51.43% to 58.82%) before gradually declining 
at 60 minutes (56.79%), 75 minutes (39.9%), and 90 minutes (36%). Optimal reaction time is crucial 
as short durations lead to poor feedstock and methanol mixing, while prolonged times may force 
equilibrium reversal [42,43]. Thus, 45 minutes was deemed the optimal reaction time. 

In Figure 8(c), the effect of catalyst loading (5 wt%, 7 wt%, 10 wt%, 13 wt%, and 15 wt%) was 
examined. A 1 wt% K/EFBA catalyst yielded up to 67.63% conversion, increasing to 70.51% at 2 wt%. 
This suggests that 2 wt% contains sufficient active sites for triglyceride conversion. However, further 
increases in loading (3 wt%, 4 wt%, and 5 wt%) reduced conversion to 66.34%, 66.13%, and 58.82%, 
respectively. This reduction is attributed to increased particle density leading to catalyst particle 
agglomeration, hindering stirring and methoxide ion mass transfer into the triglyceride layer, thereby 
decreasing methyl ester conversion [26,44]. Thus, the optimal catalyst loading was determined to be 
7 wt%, yielding 70.51% biodiesel. 
 

  

 
Fig. 8. Effect of optimization parameter on transesterification of WCO (a) Methanol to oil ratio (15 
wt% of catalyst loading, 45 min reaction time and 65°C reaction temperature), (b) Reaction time (12:1 
methanol to oil ratio, 15 wt% of catalyst loading and 65°C reaction temperature), and (c) Catalyst 
loading (12:1 methanol to oil ratio, 45 min reaction time and 65°C reaction temperature) 
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4. Conclusions 
 

The activation of EFBA as a heterogeneous basic catalyst using KOH via the co-precipitation 
method demonstrated outstanding catalytic performance, showcasing a strong basicity of 2215.05 
μmol/g compared to K/EFBA calcined at 600°C. This activation led to a remarkable conversion rate of 
up to 70.15% FAME under conditions of 7 wt% catalyst loading, 45 minutes of reaction time, and a 
12:1 methanol to oil ratio. Analysis of the resulting biodiesel via GC-MS identified six peaks 
corresponding to lauric acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester, oleic 
acid methyl ester, and linoleic acid methyl ester. The comprehensive characterization of the catalyst 
suggests that K/EFBA holds promise for further applications in biodiesel production, making it a 
suitable and efficient heterogeneous catalyst for transesterification reactions to produce a 
sustainable clean energy [45]. 
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