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In this study, the impacts of changing the liquid characteristics of the Bingham fluid are 
highlighted under MHD peristaltic transport. Conditions for convective and porous 
boundary conditions are taken into consideration. By using proper similarity 
transformations, the governing equations become dimensionless. For temperature, 
velocity, and streamlines, the series solution is found. The MATLAB 2019b programming 
offers a graphical depiction of relevant metrics on physiological flow parameters. The 
findings demonstrate that lowering the velocity and temperature profiles occurs when the 
magnetic parameter is increased. Furthermore, the effect of changing viscosity increases 
the trapped bolus size by a small amount. Once again, the results of the present 
investigation have significance for our knowledge of the complex rheological mechanisms 
governing blood flow via small arteries. 
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1. Introduction 

 
As seen in the human gastrointestinal system, peristalsis allows fluid to flow through a duct as a 

result of waves formed along the wall. The smooth muscle's contraction and relaxation propels the 
ball of the foot, which is commonly referred to as a bolus. Latham [1] coined the term "peristaltic 
waves" in physiological and mechanical studies. Peristaltic transport was studied by Ramachandra 
and Usha [2] under various physiological conditions. Hamid et al., [3] used a long wavelength as well 
as a small Reynolds number to study the non-linear peristaltic motion of a micropolar fluid. Eldesoky 
et al., [4] looked at how dynamic wall characteristics, relaxation time, and border slip circumstances 
affected the viscous non-Newtonian Maxwell fluid flow during peristalsis. 

MHD generators, aerospace engineering, the geothermal industry, nuclear reactors, astrophysics, 
engineering, medicine, and petroleum operations all make extensive use of Magnetohydrodynamic 
fluid flow. Researchers have been interested in flow-through channels in the MHD sector due to their 
many uses in medical engineering and the human organ system. The broad usage of magnetic particle 
flow during peristalsis, as shown in magnetic blood pumping, medication targeting, casting process, 
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bleeding reduction during surgery, and magnetotherapy, among other uses, has lately attracted a lot 
of researchers. Reddy [5] analysed the velocity slip of MHD porous peristaltic transport impact in 
mass and heat transfer, motivated by the application of MHD on biological fluids. To examine the 
consequences of joule heat and the velocity slip of MHD peristaltic transport under chemical 
reaction, Reddy and Kattamreddy [6] took into consideration the permeable channel. Avid et al., [7] 
analyse the magnetic effects of peristaltic flow in a curved complex wavy channel. Hayat [8] 
investigated the Johnson-Segalman fluid through an inclined channel with MHD peristalsis while 
taking convective boundary conditions into account. Divya et al., [9] study the Jeffrey liquid motion 
in a porous MHD conduit in peristalsis. The inclined channel has compliant walls with concentration 
slip and convective boundary conditions. To investigate the effects of different flow properties and 
slip circumstances under peristalsis, Manjunath et al.,[10] investigated the Jeffrey liquid flow in an 
axisymmetric conduit with compliant walls and the MHD impact. 

Although constant thermo-physical features including thermal conductivity and variable viscosity 
have been used to study the peristaltic process, isotropic fluids can’t use these properties as their 
fundamentals. As the temperature and viscosity fluctuate in blood, they become more significant. As 
a result, it is important to consider these effects. Temperature diversity can cause differences in the 
characteristics, particularly variable viscosity and thermal conductivity. The physical characteristics 
of the fluid are altered by the temperature and heat instability induced for lubricating fluids by the 
inner contacts, and cannot be recovered. The increasing usage of transportation is caused by the rise 
in temperature. Numerous conventional and biological fluids may be used because of variable liquid 
characteristics. Samreen et al.,[11] studied nanofluids. In a peristaltic channel with convective 
boundary parameters, porosity, and varying liquid characteristics, Hanumesh [12] analyse the 
Rabinowitsch fluid flow. For analysing the mass and heat transfer impact, Manjunatha [13] analyse 
the movement of a Jeffery fluid through a porous non-uniform conduit with varying parameters. To 
continue the study of mass and heat transferring properties of MHD peristaltic movement, 
Hanumesh et al., [14] investigated flow in a complaint channel with porosity in varied thermal 
conductivity and convective parameters. According to Khan et al., [15], the peristaltic process of 
magneto-Carreaunanofluid with irreversible heat transfer is affected by varying thermal viscosity and 
conductivity. 

Non-Newtonian behaviour is seen in a typical Bingham plastic and has a linear shear stress-
deformation rate. These fluids can transfer shear stress even in the absence of a velocity gradient. 
Under low stress, the fluid acts like a solid body; under high stress, it becomes viscous. Compared to 
Newtonian fluids, Bingham has a thicker covering. Clay, toothpaste, printing ink, paint, and edibles 
such as margarine, mayonnaise, yogurt, melted chocolate, and ketchup are traditional examples of 
Bingham fluids. When the yield stress in the core layer exceeds the applied shear stress, Bingham 
liquids behave like a solid medium. This implies that a solid plug is moving within the channel. 
Bingham fluids are useful in several situations, including the shallow flow of mud and soil, pulmonary 
mucus, avalanches, waxy crude oils, and ceramics. Through the use of the increased magnetic field, 
Akram et al., [16] investigate how the Bingham fluid flow behaves in terms of heat and mass transfer. 
The Soret and Dufour properties of Bingham plastic movement in the existence of a magnetic field 
were examined by Hayat et al., [17]. Using an inclined porous channel, Lakshminarayana [18] 
observed the results of Joule heat on the behaviour of fluid during peristaltic pumping. Bingham 
liquid transfer using the peristaltic mechanism is investigated by Manjunath et al., [19] in a 
convectively heated tube with pores and varied liquid characteristics. Recently, Tanveer et al.,[20] 
analysed how electro osmosis affected the peristaltic nanofluid flow using the Bingham liquid. 
Several researchers has calculated to the peristaltic transport medium with nonNewtonian fluids and 
nanofluids via different geometry [21-39]. 
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Based on the aforementioned research, a flow behaviour model of a Bingham fluid in a peristaltic 
channel with a compliant wall is designed to examine the implications of changing liquid parameters. 
In addition, the partial velocity slip and non-uniform geometry under the MHD effect are 
investigated. In the lubrication technique, the governing equations are resolved by MATLAB 
programming. 

 
2.  Problem Formulation  
 

Taking into account the two-dimensional Bingham fluid flow that conducts electricity in a non-
uniform channel via solid walls. This fluid is transmitted at a constant velocity c through the wave-
like movements that the peristaltic action causes. The channel about the axis is symmetric. This liquid 
is exposed to𝐵1a transverse magnetic field, and since we approximate the Reynolds number to be 
low, the induced charge is minimal. In the process of moving into the magnetic field, two important 
physical effects occur. First, the stream is stimulated by𝐸, an electric field. Due to the lack of sufficient 
charge thickness,𝛻. 𝐸 = 0. By neglecting the induced magnetic field, the induced electric field is 
rendered irrelevant𝛻 × 𝐸 = 0. The following impact is progressive, meaning that a Lorentz force 
(𝐽 × 𝐵1) follows the liquid and modifies its motion, where𝐽represents its current density. As a 
consequence, energy from the electromagnetic field is transferred to the fluid. The relativistic effects 
are neglected in the present study, and Ohm's law provides 𝐽 as 

 

𝐽 = 𝜎(𝑉 × 𝐵1)             (1) 
 

The peristalsis-induced channel wall deformation is 
 

“ℎ(𝑋, 𝑡) = 𝑙(𝑋) + 𝑏Sin [
2𝜋

𝜆
(𝑋 − 𝑐𝑡)],”           (2) 

 

Where width of the Nonuniform channel is given by 𝑙(𝑋), time by 𝑡, and wave amplitude by 𝑏. The 
formulas governing the flow are as given below [21-31] 
 

“

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,              (3) 

 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑋
+

𝜕𝜏
𝑋𝑋

𝜕𝑋
+

𝜕𝜏
𝑋𝑌

𝜕𝑌
− 𝜎1𝐵0

2𝑈 + 𝜌𝑔Sin𝛼,          (4) 

 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝑃

𝜕𝑌
+

𝜕𝜏
𝑋𝑋

𝜕𝑋
+

𝜕𝜏
𝑋𝑌

𝜕𝑌
− 𝜌𝑔Cos𝛼,        (5) 

 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
) =

𝜕

𝜕𝑋
(𝑘(𝑇)

𝜕𝑇

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑘(𝑇)

𝜕𝑇

𝜕𝑌
) + 𝜏𝑋𝑋

𝜕𝑈

𝜕𝑋
+ 𝜏𝑌𝑌

𝜕𝑉

𝜕𝑌
+ 𝜏𝑋𝑌 (

𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
) = 0,  (6) 

 
The elastic wall motion expression is represented as 

 
𝐿(𝑃) = 𝑃 − 𝑃0,             (7) 
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where 𝑃0(= 0) expresses the pressure exerted on outer wall as a result of muscle tension. The 
membrane stretching and viscous damping is the primary focuses of this 𝐿 linear operator, which is 
expressed as 
 

𝐿 = −𝜏
𝜕2

𝜕𝑥2
+ 𝑚1

𝜕2

𝜕𝑡2
+ 𝑛1

𝜕

𝜕𝑡
,            (8) 

 
where viscous damping coefficient is represented by 𝑛1, elastic tension by𝜏, and mass/unit area by 
𝑚1. 
 
𝜕𝑝

𝜕𝑥
= 𝐸1

𝜕3ℎ

𝜕𝑥3 + 𝐸2
𝜕3ℎ

𝜕𝑡2𝜕𝑥
+ 𝐸3

𝜕3ℎ

𝜕𝑡𝜕𝑥2.           (9) 

 
when in (𝑥, 𝑦) wave frame, (𝑢, 𝑣) denotes velocity variables and (𝑥, 𝑦) denotes coordinates then, 
 

“𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢(𝑥, 𝑦) = 𝑈(𝑋, 𝑌, 𝑡) − 𝑐, 𝑣(𝑥, 𝑦) = 𝑉(𝑋, 𝑌, 𝑡), 𝑇(𝑥, 𝑦) = 𝑇(𝑋, 𝑌, 𝑡), 𝑝(𝑥, 𝑦) =

𝑃(𝑋, 𝑌, 𝑡).                              (10) 

 
Dimensionless values can be expressed as 

 

𝑥 =
𝑥

𝜆
, 𝑦 =

𝑦

𝑙2
, 𝑢 =

𝑢

𝑐
, 𝑣 =

𝑣

𝑐𝛿
, 𝑐𝑝 =

𝑙2

𝜆
, 𝑝′ =

𝑝𝑙2
2

𝜇0𝜆𝑐
, 𝑅𝑒 =

𝑙2𝑐

𝜗
, 𝜗 =

𝜇0

𝜌
, 𝑀 = √

𝜎1

𝜇0
𝐵0𝑙2, 

𝜏𝑥𝑥 =
𝑙2𝜏𝑥𝑥

𝜇0𝑐
, 𝜀 =

𝑏

𝑙2
, 𝑡 =

𝑡𝑐

𝜆
, 𝜏𝑥𝑦 =

𝑙2𝜏𝑥𝑦

𝜇0𝑐
, 𝜏𝑦𝑦 =

𝑙2𝜏𝑦𝑦

𝜇0𝑐
, 𝜓′ =

𝜓

𝑙2𝑐
, 𝑆𝑐 =

𝜇0

𝜌𝑀𝐴
, 𝜇0 =

𝜇0

𝜇
, 

𝑃𝑟 =
𝜇0𝑐𝑝

𝑘0
, 𝐸1 =

−𝜏𝑙2
3

𝜇0𝜆3𝑐
, 𝐸2 =

𝑚1𝑙2
3𝑐

𝜇0𝜆3
, 𝐸3 =

𝑛1𝑙2
3

𝜇0𝜆3
, 𝜃 =

𝑇 − 𝑇0

𝑇0
, 𝐸𝑐 =

𝑐2

𝑐𝑝𝑇0
, 

𝑙(𝑥) = 𝑙2 + 𝑚1(𝑥), 𝐹 =
𝜗𝑐

𝑔𝑙2
2 , ℎ =

ℎ

𝑙2
= 1 +

𝜆𝑚1𝑥

𝑙2
+ 𝜀 𝑠𝑖𝑛( 2𝜋(𝑥 − 𝑡)).

                

(11) 

 
Using Eq. (10) and Eq. (11) in Eq. 3 to Eq. 6 the nondimensional governing equations assume the 
following form, supposing small Reynolds numbers for long and wavelength 

 

“

𝜕𝑝

𝜕𝑥
=

𝜕𝜏𝑥𝑦

𝜕𝑦
+

Sin𝛼

𝐹
− 𝑀2(𝑢 + 1),                        (12) 

 
𝜕𝑝

𝜕𝑦
= 0,                        (13)  

 
𝜕

𝜕𝑦
(𝑘(𝜃)

𝜕𝜃

𝜕𝑦
) + 𝐵𝑟𝜏𝑥𝑦 (

𝜕𝑢

𝜕𝑦
) = 0,”                     (14) 

 
where 𝜏𝑥𝑦 indicates the Bingham fluid’s fundamental equation which can be expressed as 

 

𝜏𝑥𝑦 = 𝜇(𝑦)
𝜕𝑢

𝜕𝑦
+ 𝜏0for𝜏 ≥ 𝜏0,                      (15) 

 
𝜏𝑥𝑦 = 0for𝜏 ≤ 𝜏0,                       (16) 
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where yield stress can be denoted by 𝜏0and variable viscosity by 𝜇(𝑦). 
The variable viscosity expressions can be written as 
 
𝜇(𝑦) = 1 − 𝛼1𝑦for𝛼1 << 1,                      (17) 
 
The thermal conductivity expressions can be written as 
 
𝑘(𝜃) = 1 + 𝛾𝜃for𝛾 << 1,        (8) 

 
where the coefficient of viscosity can be given by 𝛼1 and the thermal conductivity coefficient by 𝛾. 
Consequently, the dimensionless peripheral criteria are represented as 
 

“𝑢 +
√𝐷𝑎

𝛼

𝜕𝑢

𝜕𝑦
= −1 ;

𝜕𝜃

𝜕𝑦
+ 𝐵𝑖𝜃 = 0at𝑦 = ℎ = 1 + 𝑚𝑥 + 𝜀 𝑠𝑖𝑛[2𝜋(𝑥 − 𝑡)],                   (19) 

 
𝜕𝑢

𝜕𝑦
= 𝜏0 ;

𝜕𝜃

𝜕𝑦
= 0at𝑦 = 0”,                      (20) 

 
3. Method of Solution 

 
Because of the nonlinear nature of the equations, it is difficult to address the issue and come up 

with a closed-form solution. To get this solution, the perturbation approach is used. To velocity and 
temperature, we utilize (𝛼1) and (𝛾) as perturbation parameters, correspondingly. 

 
𝑢 = 𝑢0 + 𝛼1𝑢1 + 𝛼1

2𝑢2 + 𝑂(𝛼1
3),                     (21) 

 
𝜃 = 𝜃0 + 𝛾𝜃1 + 𝛾2𝜃2 + 𝑂(𝛾3),                     (22) 

 
The zeroth, first, and second orders of solutions for temperature and velocity have been solved 

using MATLAB 2019b programming. Additionally, a visual analysis of the influence of relevant factors 
of interest is provided. 

 
4. Results and Discussion 

 
Using graphical representations, this section examines the effects of streamlines (𝜓), velocity 

(𝑢), and temperature (𝜃). Specifically, the impact nature on the magnetic parameter (𝑀), wall 
parameters (𝐸1, 𝐸2, 𝐸3), variable viscosity (𝛼1), permeable parameter (𝐷𝑎), yield stress (𝜏0), non-
uniform parameter (𝑚), partial slip parameter (𝛽), Biotnumber (𝐵𝑖),and angle of inclination (𝛼) are 
studied. 

The results of the axial velocity in terms of various factors are mapped and depicted in Figure 1 
to Figure 3. The flow velocity marginally rises when the variable viscosity coefficient changes, as 
demonstrated in Figure 1(a). Growing values gradually reduce viscosity𝛼1, which enhances fluid 
velocity. As seen in Figure 1(b), changing the magnetic parameter causes the velocity to decrease. 
The radially directed magnetic field motion slows the flow of fluid. The reflection of flow through 
porous walls can be utilized to highlight the blood flow within arteries. Figure 1(c) shows that the 
flow velocity gradually rises with the increased Darcy number. The velocity falls when the partial slip 
parameter𝛽 is increased, as illustrated in Figure 1(d). The physical characteristics of the flexible wall 
are shown by the graphical representation of the elastic parameter effect 𝐸1and𝐸2on the flow 
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velocity. Figure 2(a)-(b), which demonstrate an incline in velocity with increasing elastic parameter 
values 𝐸1and𝐸2 in the non-uniform channel, help to visualize them as they provide low resistance to 
the fluid movement. According to physical analysis, that dampness has little impact on speed which 
is supported by the fact that the flow velocity drops when the damping wall value 𝐸3 is raised. 
Simultaneously, wall tension is preferred. Figure 3(a) demonstrates that decreasing the velocity while 
increasing the yield stress. The velocity of a fluid increases with non-uniform conditions, as illustrated 
in Figure 3(b). The impact of inclination angle elevation on the magnetic field is illustrated in Figure 
3(c), which also implies that the velocity profile decreases along the channel's sides but rises in the 
middle. 
 

  
(a) variable viscosity (b) magnetic 

  
(c) permeable (d) partial velocity slip 

Fig. 1. Velocity graphs for distinctive parameter values 
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Fig. 2. Velocity plots u(y) for distinctive elastic parameter values 

 

 

 
Fig. 3. Velocity graphs for distinctive parameter values i.e., (a) yield stress, (b) non-uniform 
(c) inclination angle 

 
The plot in Figure 4(a)–(d) demonstrates how different parameters respond to temperature. The 

decrease in velocity that occurs when the variable viscosity increases are seen in Figure 4(a). The 
temperature increases with increasing variable thermal conductivity values, according to the analysis 
of Figure 4(b). Figure 4(c) illustrated that the magnetic field's restricting properties cause the measure 
of temperature to decrease as the magnetic parameter's deviation increases. It is made clear in Figure 
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4(d) that raising the Biot number declines the temperature function because doing so reduces 
thermal conductivity and causes the temperature profile to drop. 

 

 

 
Fig. 4. Temperature graphs for distinctive values of (a) variable viscosity, (b) variable 
thermal conductivity, (c) magnetic parameters (d) Biot number 

 
The streamlines are essential for comprehending how the bolus moves via biological organs. It 

particularly assists in comprehending chyme motion in the thrombus formation and gastrointestinal 
tract. The bolus size is slightly enhanced by the fluctuation in the variable viscosity, as depicted in 
Figure 5. Figure 6 demonstrated that the bolus diminishes when the magnetic parameter increases. 
With a change in the magnetic parameter and varied viscosity, the formation of bolus may thus be 
controlled. 
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Fig. 5. Varying variable viscosity streamlines if (a) 𝛼1 = 0.01 
(b) 𝛼1 = 0.03 

 

 
Fig. 6. Variable magnetic parameter streamlines if (a) 𝑀 = 1.5 
(b) 𝑀 = 2 

 
5. Conclusions 

 
This investigation looks at how various liquid characteristics impact the MHD peristaltic Bingham 

fluid flow. The mass and heat transferring properties of a non-uniform channel with porous walls are 
investigated using the impacts of barrier and convective properties. The study's results also 
contribute to our understanding of how blood behaves in an external magnetic field. The following 
is a summary of these theoretical findings 
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i. Velocity rises in the presence of permeable parameters, variable viscosity, inclination 
angle, and non-uniform parameters. But the velocity is decreased by the magnetic 
parameter. 

ii. The velocity decreases with increasing partial slip and yield stress parameters. 

iii. Temperature increases with variable thermal conduction. 
iv. The variable viscosity and Biot number increase together with a decline in the 

temperature function. 
v. The magnetic parameter lowers the trapped bolus's size. 
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