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Convection-diffusion phenomena are fundamentally modelled in a variety of 
engineering fields and physical sciences. A suitable meshing strategy is needed in 
computational fluid dynamics to solve model problems numerically. Unintentional 
implementation of the approach could lead to subpar solutions such as erroneous 
oscillations, over- or under-predictions, and excessive computing time. This paper 
highlights the significance of the influence of mesh structure on the solution of 
convection-diffusion flow problem with quadratic source for flow parameters of 
interest. Particularly, it presents the accuracy of the solution of the flow problem at 
low Peclet number with respect to graded mesh number, where the expansion factor 
used is based on an established linear logarithmic model involving Peclet number 
derived in previous works. The problem is solved by assigning several mesh intervals 
to graded mesh against each Peclet number of interest. Based on the values of the 
interval and Peclet number, 16 test cases are considered. Quantitative results lead to 
orders of accuracy of the solution of the flow problem. The effect of graded mesh 
number on the accuracy thus serves as a reference for a more structured decision-
making and improves the heuristic process in choosing the computational domain 
mesh with expected order of accuracy for the numerical solution of the problem 
particularly in the calculation of scalar concentration. The orders of accuracy confirm 
the profiles of concentration. 
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1. Introduction 
1.1 Engineering Applications 
 

In fluid mechanics, the most fundamental phenomena include the transport of heat, mass and 
momentum since it is a universally and fundamentally natural problem [1,2]. It is extremely 
important to model and describe the phenomena in various engineering disciplines [3,4], aviation [5-
10], meteorology, and physical sciences [1,2,11,12]. The mathematical framework for heat and mass 
transfer are of same kind, and basically encompassed by advection and diffusion effects. An initially 
discontinuous profile is propagated by diffusion and convection (or advection), the latter with a 
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speed [1,11,12], in such general scalar transport equations. These equations are frequently used in 
computational simulations, such as wake vortex simulation in aviation [7,8], petroleum reservoir 
simulation, and global weather prediction. 

It is possible to utilise the convection-diffusion equation to describe the dynamics of aircraft wake 
vortices, which are a highly major aviation hazard [7]. These vortices are created as an aircraft takes 
off and flies through the air. More advanced study includes the wake vortex interaction with 
turbulent jet which shows that, by solving the convection–diffusion equation, the passive scalar of 
interest’s ability to penetrate inside the vortex core is recognized depending on the distance between 
the jet and the vortex axis [8]. 

Invasive sampling of jet engine exhaust gases is another use in aviation where particle losses due 
to convection, diffusion, and thermophoresis inside a particulate probe are studied and measured 
[9]. Additionally, the equation may be used to describe how well hot fluid injection works to melt ice 
off aircraft wings when combined with a nonlinear singular integro-differential equation and Stefan 
condition [10]. 

The equation regulates, for example, tracer transport as one of the most typical issues, and is 
particularly helpful in many aspects of petroleum reservoir engineering. By injecting the tracers into 
the subsurface porous medium, qualitative data on flow barriers, directional flow trends, and 
reservoir communication are gathered [13]. 

Given a velocity field which is known a priori, the method for solving convection-diffusion 
problem of the second order which initially appeared in 1990 in the environmental science and 
engineering literature is generic, linear, and of steady-state. It was then independently developed 
and published in engineering literature in 1993 [2]. 

If the expression of derivatives depends only on the local characteristic of the function, then the 
governing differential convection-diffusion equations are of integer order. In a more advanced 
method, nonlinear fractional differential equations have a so-called memory effect, where the whole 
information of the function is accumulated in a weighted form [12]. The equations’ efficient 
numerical solutions are a popular research topic due to its widespread usage [5]. 
 
1.2 Mesh Challenges 
 

The usage of graded mesh is mainly important in finite element (FEM) [14-18], finite-difference 
(FDM) [19], exponential B-spline [14], and Newton methods [18]. In particular, the mesh is highly 
useful in the numerical experiment of reaction-diffusion problems [14,16,17], singularly perturbed 
problems with two parameters [15], sub-diffusion problems with nonlocal diffusion term [18], and 
evolution problems with a weakly singular kernel [19]. Non-graded mesh on which these problems 
are solved might include, for instance, a local algorithm which has been proposed [20] to obtain an 
optimal shape parameter for the infinitely smooth Radial Basis Functions (RBF) under grid-free 
environment. 

In fact, the non-uniform mesh has long been taken into consideration for solving integro-
differential equations. For instance, research has been done on the numerical collocation on graded 
mesh solutions of weakly singular Volterra integral equations. The implicit finite difference with non-
uniform time steps in the time fractional diffusion equations has also been a subject of study up until 
recently [19]. 

The non-uniform, layer-adapted, exponentially graded mesh was created by optimising certain 
upper bounds on the error, among the many others meshes that have been presented [16]. These 
produced meshes [14-17] are graded rather than essentially equidistant. 
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The mesh is either exponentially graded and constructed optimally for the approximation of 
exponential layers in the numerical solution of the reaction-diffusion equation [16], with a stronger 
limitation on the graduation parameter [17], or it is produced iteratively using Newton's algorithm 
and some implicitly defined function [14]. A thorough comparison with different adaptive meshes 
was offered after several test samples were collected. Additionally, comparisons between different 
numerical approaches may be found in the literature. It has been demonstrated that parameter 
uniform convergence of the optimum order is possible. Researchers [14,16,17] established resilient, 
optimum convergence rates in a range of norms and used numerical calculations to demonstrate 
their theoretical conclusions. 

On a Shishkin mesh, the findings for one- and two-dimensional reaction-diffusion problems that 
were presented in smooth domains [16] were compared to FEM. In one-dimensional reaction-
diffusion and convection-diffusion problems given in the unit square, it was an extension of the 
development of resilient and optimum rates of convergence where the numerical testing revealed 
the mesh outperformed the similarly optimum Bakhvalov-Shishkin mesh. 

Using higher-order finite element methods, graded meshes are preferable than equidistant 
meshes for singularly perturbed reaction–diffusion problems [14]. In order to construct the mesh 
iteratively, some upper limits on the error were manipulated which leads to the optimum order 
parameter uniform convergence. Comparison of results was made with those attained over Shishkin 
mesh, Vulanovi´c mesh, Bakhvalov–Shishkin mesh, and modified Bakhvalov mesh. Further, the 
comparison of the results obtained with various finite difference techniques and exponential B-spline 
techniques were made. The benefit of a graded mesh is that a transition point is not necessary in 
order for it to function, contrary to, for instance, Shishkin mesh [21]. It should be noted, however, 
that one has to predefine mesh expansion factor 𝑟𝑒 in using graded mesh. The improved graded mesh 
appeared as the best in numerical trials and is therefore a viable option. 

Supercloseness results were demonstrated in the numerical solution of a model reaction-
diffusion problem using the conventional Q1 finite element approximation [17]. An essentially 
optimum order error estimate with a constant independent of the singularly perturbed parameter 𝜖 
was produced in a more comprehensive study on the usage of graded meshes for singularly 
perturbed model problems. The outcomes were evaluated against those found on Shishkin mesh. In 
numerical studies, it was shown that Shishkin meshes created for specific values of 𝜖 do not provide 
reasonable approximations for larger values of 𝜖, but graded meshes are independent of 𝜖 and may 
thus be utilised for a range of 𝜖. This can be useful, for instance, in the numerical approximation of 
equation systems with various order diffusion parameters. It should be noted, however, that one has 
to be very careful in selecting mesh expansion factor 𝑟𝑒 for different 𝜖. Some works even proposed 
the logarithmic relationship between both parameters to prevent spurious oscillation in the solution 
[22,23]. Furthermore, boundary conditions also play important roles on the accuracy of the 
relationship. It was found that it is more stringent for boundary conditions of 𝜉(0) = 0, 𝜉(1) = 1, in 
comparison to 𝜉(0) = 𝜉(1) = 0, where the mesh number has to be greater in the former case, for 
the same value of 𝑟𝑒. Note that 𝜉 is the concentration scalar. 

It was established that when the Duran-Lombardi and Duran-Shishkin type meshes used to solve 
the reaction-diffusion problem numerically, the solution is of first order error estimates and uniform 
convergence in an energy norm [15]. It was found that the numerical errors were small than those 
corresponding to the well-known Shishkin mesh. Therefore, the layer-adapted meshes offer 
intriguing options. It is reasonable to anticipate that a mesh created for a certain value of a small 
parameter would perform well for larger values of the parameter when a singularly perturbed 
problem is approximated using an a priori adapted mesh. The Duran-Lombardi and Duran-Shishkin 
type meshes exhibit even better performance in this regard. 
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In the second-order accurate numerical solution of partial differential evolution diffusion 
equations with nonlocal diffusion term, which generally exhibit a weakly singular kernel near the 
initial time, the use of L1 scheme on graded mesh was shown to be promising compared to uniform 
mesh [18,19]. A fully discrete difference scheme was constructed with space discretization by fourth-
order accuracy compact difference method, while the Riemann-Liouville fractional integral was 
approximately calculated using the product integration approach for the time discretization, and a 
generalised second order accuracy Crank-Nicolson compact difference scheme for time-stepping was 
taken into consideration for smoothness of the solution at 𝑡 = 0. Even second order accuracy, 
though, was not possible with uniform steps. With the right choice of 𝑟𝑒 for smaller time steps on the 
targeted section of the graded mesh, one may account for the solution's singular behaviour and 
recover the optimum convergence in the maximum norm with respect to time while analysing a 
problem that has an initial weak singularity at 𝑡 = 0. The efficacy of the approach is particularly 
demonstrated by the fact that the resultant difference scheme is stable and convergent, with 
convergence orders of 2 and 4 for time and space, respectively. The solution on uniform mesh, in 
contrary, gives lower order of convergence in maximum norm in time [18]. 

In general, the advantages of having graded mesh for the numerical calculations are as follows. 
First of all, it is regarded as a development of classic meshes like those in the Bakhvalov and Shishkin 
classes [14,16]. It has some desirable properties that the latter do not have [15], one of which is the 
achievement of optimum rate of convergence [18]. 

Secondly, it is simple to see that the logarithmic factor's impact on linear components is 
negligible. For instance, it was shown that for coefficient of diffusivity 𝜀 ≥ 0.32, 𝑟𝑒 = 1 is sufficient 
[14,22,23]. Thirdly, graded mesh is more resilient since the neighbouring intervals have comparable 
widths [14]. It is worth noting that in this case, 𝑟𝑒 must fulfil correct relationship with 𝜀. This ensures 
that numerical results are not strongly affected by variations of flow parameters. In other words, 𝑟𝑒 
compensates for especially singular behaviour of the solutions. 

Fourthly, the effectiveness of graded mesh is demonstrated by a comparison between the 
method on it and that on uniform mesh [19]. 
 
1.3 Model of Interest 
 

In differential form, we define general problem model of interest as 
 
𝐿𝑢: = − 𝜖𝜉″ + 𝑐(𝑥)𝜉′ + 𝑑(𝑥)𝜉 = 𝑒(𝑦), for 𝑥 ∈ (0,1), 𝑦 ∈ (0,1)       (1) 
 
where − 𝜖𝜉″, 𝑐(𝑥)𝜉′, 𝑑(𝑥)𝜉, and 𝑒(𝑦) are diffusive, convective, reactive, and sink/source terms, 
respectively, 𝑐(𝑥), 𝑑(𝑥), and 𝑒(𝑦) are sufficiently smooth functions, and parameter 𝜉 is unknown. It 
is assumed that 
 
𝜖 > 0, 
 
𝑑(𝑥) ≥ 0 in [0,1] 
 
𝑐(𝑥) > 0 for all 𝑥 ∈ [0,1], 
 
𝑒(𝑦) = −4𝑦2 + 4𝑦             (2) 
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The solution of Eq. (1) remains the same even if the variable transformation is applied to 𝑥 such 
that it becomes 1 − 𝑥, if 𝑐(𝑥) < 0 in [0,1]. It is obvious that the solution of Eq. (1) is spatially linear 
if there are no convection, reaction, and source. We are not interested in such pure diffusion process. 
The equation is important with regard to convection only if 𝑐(𝑥) is nonzero for all 𝑥 ∈ [0,1]. Singularly 
perturbed problem arises when the parameter of singular perturbation 𝜖 ≪ ‖𝑐‖𝐿∞(𝛺). 

A boundary layer can manifest in the solution of Eq. (1) and Eq. (2) at 𝑥 = 1 when 𝜖 is small. This 
has a huge impact on the stability and consistency of these equations, which show the error in the 
finite difference method. Enhancement of the consistency of the technique is possible if boundary 
values are given such that the boundary layer vanishes, but its stability is not guaranteed [24,25]. 

The reactive and source/sink terms being zero and quadratic, respectively, in this paper. Thus for 
𝑥 ∈ (0,1), Eq. (1) is simplified into 
 
𝐿𝑢: = − ϵ𝜉″ + 𝑐(𝑥)𝜉′ = 𝑒(𝑦)           (3) 
 

According to Eq. (3), the scalar concentration 𝜉 is dispersed in the fluids and transported away by 
the motion of the fluid element in diffusion and convection, respectively. It initially grows slowly in 
space when 𝜖 is small and with proper border conditions, and abruptly changes beyond a certain 
distance. The significant increase of 𝜉 provides challenges for computational fluid dynamics in the 
aspects of discretization method and computational domain mesh structure. 

In this work, we explore a model of a convection-diffusion problem with quadratic source that is 
discretized using finite difference method and solved on graded mesh with various mesh numbers 𝑁 
and expansion factors 𝑟𝑒. The outcomes of past numerical analysis justify the adoption of the mesh. 
We observe average error with respect to mesh number 𝑁 and Peclet number 𝑃𝑒 to determine the 
rate of convergence. Variation of 𝑁 determines average mesh width. The works on relationship 
between mesh structure and Peclet number as well as robustness of graded mesh that were debated 
in several other papers [22,23] are extended in the paper. The choice of 𝑟𝑒 for each 𝑃𝑒 of interests 
has to be made with care in order to prevent nonphysical solutions. 

Generally, the need to solve the system of equations have certainly sparked broad study on 
various mesh schemes and structures. The effect of mesh width in graded mesh with mesh expansion 
factor 𝑟𝑒 on the solution of 2-dimensional convection-diffusion flow problem with quadratic source 
at various Peclet numbers 𝑃𝑒, however, is an open question. Examining such effect is essential to 
challenge the claimed robustness of graded mesh in solving the governing equation of interest. 
Quantifying the rate of convergence of the solution is the aim of this research. 
 
2. Methodology 

 
The following are the boundary conditions for the model problem's formulation in Eq. (3) 

 
𝜉(0) = 0

𝜉(1) = 0
              (4) 

 
In the relevant domain of solution, graded mesh is employed. The interval number is given by 

(𝑁 − 1), where an odd integer 𝑁 is the mesh number. In order to define the atoms for the mesh, let 
first discretize a defined independent variable 𝑥 domain in such a way that 𝑥 = [0,1]. 

The atoms 𝑥0, … , 𝑥𝑁−1 for the mesh is defined as 
 
𝑥𝑖+1 = 𝑥𝑖 + 𝑟𝑒∆𝑥𝑖,             (5) 
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where 0 ≤ 𝑖 ≤ (𝑁 − 1), 𝑖 ∈ ℤ, and mesh expansion factor 𝑟𝑒 > 0. 
Clearly ∑𝛥𝑥𝑖 = 1. Illustration of the mesh is presented in Figure 1. 
 

  
(a) (b) 

Fig. 1. Plots of 𝜉 for 𝑃𝑒 = 3.125 with different boundary conditions 
(a) 𝜉(0) = 𝜉(1) = 0 (b) 𝜉(0) = 0, 𝜉(1) = 1 

 

 
Fig. 2. Graded mesh with computational atoms 

 
The algebraic equations can be used to approximate the solution of Eq. (3) by assigning a 

particular atom and its neighbors to the variables of interest. This is done by approximating partial 
derivatives at every single atom by nodal algebraic expression resulting from discretizing Eq. (3) as 
 
𝐶−+𝜉−+ + ∑ 𝐶𝑚𝜉𝑚𝑚 = 𝑄−+            (6) 
 

Assigned to Eq. (6) are the atoms indicated by ′ − +'. The instant left and right atoms are denoted 
by 𝑚. Three 𝑛 × 𝑛 array allocates the matrix 𝐶 elements, where 𝐶 is a bidiagonal matrix (the nonzero 
elements are represented by 𝐶𝑖𝑖, 𝐶−, and 𝐶+). Thus, Eq. (6) becomes 

 
𝐶−+𝜉−+ + 𝐶+𝜉𝑖+1 + 𝐶−𝜉𝑖−1 = 𝑄−+           (7) 

 
after using three-point computational atoms. 

The outer and inner derivatives of the diffusive term, as well as the derivative of the convective 
term in Eq. (3), may all be discretized using central difference approach [24,25]. 

By applying block elimination approach to solve the approximate algebraic Eq. (7), the scalar 
concentration 𝜉 in Eq. (3) is numerically determined. Note that Eq. (7) represents a linear system of 
differential equation, where it contains only linear terms. Thus, there is no requirement for 
linearization of Eq. (3) solution. We choose that 
 
𝑐 = 1.0, 
𝑁 = 11,21,41,81 
𝑃𝑒 = 3.125, 6.25, 12.5, 25            (8) 

It was found that the expansion factor 𝑟𝑒 is inversely proportional to the logarithm of the Peclet 
number 𝑃𝑒 [23] as shown in Figure 3, for a low Peclet number convection-diffusion flow with 
quadratic source. The relationship is expressed as [23] 

-- - -+ + ++
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𝑟𝑒 = 𝑚 lg 𝑃𝑒 + 𝑏,             (9) 
 
where 
 

𝑚 =
.5

(lg  .03125)
,                       (10) 

 
and 
 
𝑏 = 1. −(𝑚 lg 3.125),                       (11) 
 
are curve slope and a constant, respectively, in order to systematically set the values of 𝑟𝑒. The 
relationship in Eq. (9) was initially used for the solution of convection-diffusion equation with zero 
source, and boundary conditions of 𝜉(0) = 0, 𝜉(1) = 1. Generalization was successfully made [23] 
to extent the equation when quadratic source term and boundary conditions of 𝜉(0) = 𝜉(1) = 0 are 
considered. In this work, we test its validity against a wide range of 𝑁 given in Eq. (8). Using the 
ordered pairs 
 
{(𝑃𝑒1, 𝑟𝑒1), (𝑃𝑒2, 𝑟𝑒2), … . . , (𝑃𝑒4, 𝑟𝑒4)} = {(3.125, 1. ), (6.25, .9), (12.5, .8),(25, .7)}, 
 
there is no spurious oscillation in the solution [23]. The solution should neither have more than a 
turning point nor be negative when 𝑃𝑒 of interest is greater than one as considered in this paper. 
This is confirmed by Figure 4 showing the theory-based 𝜉∗ profiles for a few ranges of 𝑃𝑒, where 𝜉∗ =
𝜉 𝜉𝑚𝑎𝑥⁄ . 

 

 
Fig. 3. Logarithmic relation between 𝑟𝑒 and 𝑃𝑒 
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Fig. 4. Theory-based profiles where boundary conditions are 
fixed for a few ranges of 𝑃𝑒 

 
An instance of spurious oscillation in the solution of Eq. (3) is shown in Figure 5, caused by 

inappropriate choice of 𝑟𝑒 and/or 𝑁. 
 

 
Fig. 5. A physically accurate profile does not 
fluctuate, but an improper mesh expansion factor 
and/or mesh number results in an erroneous 𝜉 
profile over the computational domains 

 
3. Results  
 

Graded mesh is only applied in x-coordinates, while uniform mesh in both x- and y-coordinates. 
This is due to the derivatives in the Eq. (3) are those with respect to x only, thus non-uniform mesh 
in y-coordinates is unnecessary. Both mesh number 𝑁 and mesh expansion factor 𝑟𝑒 affect the 
distance between two neighboring computational atoms ∆𝑥 as illustrated in Figure 6 and Figure 7, 
respectively, of graded meshes. While Eq. (9) works well for a small 𝑁, there has been no attempt to 
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generalize it for larger values of 𝑁. The solutions on computational atoms in Figure 6 and Figure 7 
need to be analyzed to prove whether such generalization is valid and accurate. 

Meshes in Figure 6 show that the mesh width on both coarse and fine part of mesh increases 
when 𝑁 decreases and 𝑟𝑒 is fixed. On the other hand, the mesh width on coarse part of mesh 
increases, while that on fine part decreases when 𝑟𝑒 decreases and 𝑁 is fixed as shown in Figure 7. 
Generally, the change in the mesh width in each individual mesh is exponential. For 𝑟𝑒 = 1, graded 
mesh is identical to uniform mesh, where all neighboring computational atoms are equally spaced 
from one another for all 𝑁. 

Over-reduction of 𝑟𝑒 would result in significant lost of information on the coarse part. This occurs 
in two ways; firstly, the line curvature over the part is insufficient, and secondly, the overall profile 
of 𝜉 is under-predicted. Furthermore, under-reduction of 𝑟𝑒 would cause a more serious accuracy 
issue involving spurious fluctuation/s in the solution. Note that even for the smallest 𝑁 of interest 
(i.e. 𝑁 = 11), computational atoms on the fine part of mesh are extremely densed for 𝑟𝑒 = .5 such 
that they are not easily visually distinguishable (see Figure 7). For 𝑟𝑒 → 0 and 𝑟𝑒 → 1, (∆𝑥)𝑐𝑜𝑎𝑟𝑠𝑒 → 1 
and 𝑥 → 1 (𝑁 − 1)⁄ , respectively, where (∆𝑥)𝑐𝑜𝑎𝑟𝑠𝑒 is the mesh width on the coarse part. For 𝑁 → 2 
and 𝑁 → ∞, ∆𝑥 → 1 and ∆𝑥 → 0, respectively. 
 

 
𝑁 = 11  

 
𝑁 = 21  

 
𝑁 = 41  

 
𝑁 = 81  

Fig. 6. Computational atoms for various mesh numbers when 𝑟𝑒 = .9 

 

 
𝑟𝑒 = 1.  

 
𝑟𝑒 = .9  

 
𝑟𝑒 = .8  

 
𝑟𝑒 = .7  

 
𝑟𝑒 = .6  

 
𝑟𝑒 = .5 

Fig. 7. Computational atoms for various mesh expansion factors when 𝑁 = 11 

 
Two-dimensional scalar concentration 𝜉 was numerically and analytically calculated over graded 

meshes for 𝑁 = 11,21,41,81. The sample plots at (𝑥𝑖, 𝑦|𝑒(𝑦)=0.64) and (𝑥𝑖, 𝑦|𝑒(𝑦)=1) against 𝑥 

presented in Figure 8 correspond to the smallest and largest 𝑁 of interests (i.e. 𝑁 = 11 and 𝑁 = 81). 

Each plot generally involves six curves corresponding to; numerical solution at (𝑥𝑖 , 𝑦|𝑒(𝑦)=0.64) when 

𝑁 = 11; numerical solution at (𝑥𝑖 , 𝑦|𝑒(𝑦)=1) when 𝑁 = 11; exact solution at (𝑥𝑖 , 𝑦|𝑒(𝑦)=0.64); exact 
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solution at (𝑥𝑖, 𝑦|𝑒(𝑦)=1); numerical solution at (𝑥𝑖, 𝑦|𝑒(𝑦)=0.64) when 𝑁 = 81; numerical solution at 

(𝑥𝑖 , 𝑦|𝑒(𝑦)=1) when 𝑁 = 81. Note that the exact solutions serve as benchmarks for validation of the 

numerical calculations. The concentration at 𝑦|𝑒(𝑦)=0.64 and  𝑦|𝑒(𝑦)=1 represents that when the 

source is relatively small and maximum, respectively. The plot in the figure when 𝑃𝑒 = 3.125 
represents solutions when 𝑟𝑒 = 1 where graded mesh is trivial (i.e. it is identical to uniform mesh). 

During the gradual growth of 𝜉, the correct curvature of profiles decreases with the increment of 
𝑃𝑒 until the curves are close to linear. On the other hand, the second part of the curves whose 
beginnings are marked by maximum 𝜉 experience sharp drops with regard to 𝑃𝑒. 

Applying Eq. (9) for the determination of 𝑟𝑒 with regard to the Peclet number 𝑃𝑒, the resulting 
solutions of Eq. (3) on graded mesh corresponding to all 𝑁 of interests (i.e. 𝑁 = 11,21,41,81) are in 
very good agreement with the exact solutions. Closer probe confirmed that these numerical solutions 
are even free from spurious oscillations. 
 

ξ 

  

  

 x 
Fig. 8. Profiles of 𝜉; o numerical solution on graded mesh at (𝑥𝑖, 𝑦|𝑒(𝑦)=0.64) when 

𝑁 = 11; Δ Numerical solution on graded mesh at (𝑥𝑖, 𝑦|𝑒(𝑦)=1) when 𝑁 = 11; exact 

solution at (𝑥𝑖, 𝑦|𝑒(𝑦)=0.64); exact solution at (𝑥𝑖, 𝑦|𝑒(𝑦)=1); x numerical solution on 

graded mesh at (𝑥𝑖 , 𝑦|𝑒(𝑦)=0.64) when 𝑁 = 81; + Numerical solution on graded mesh 

at (𝑥𝑖 , 𝑦|𝑒(𝑦)=1) when 𝑁 = 81 

 

Further investigation on accuracy due to the decrement of average graded mesh width is detailed 
in Table 1 and Table 2. The average errors are generally related to 𝑃𝑒 and mesh interval number 
(𝑁 − 1). The following can be observed if average mesh width is reduced by the factor two 
corresponding to 𝑦|𝑒(𝑦)=0.64 and  𝑦|𝑒(𝑦)=1. When 𝑃𝑒 = 3.125,6.25, the average error is reduced by 

the factor four. This behaviour is second order convergence. However, first and a half order 
convergence behaviour is observed when 𝑃𝑒 = 12.5. Finally, when 𝑃𝑒 = 25, the rate of convergence 
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is of first order. It is generalized that the rate of convergence corresponding to all 𝑦 decreases with 
Peclet number. 

 
  Table 1 
  Numerical errors at 𝑦|𝑒(𝑦)=0.64 

 𝑁 − 1 = 10 𝑁 − 1 = 20 𝑁 − 1 = 40 𝑁 − 1 = 80 

𝑃𝑒 Error Error Error Error 

3.125 8.0 x 10-4 2.1 x 10-4 5.4 x 10-5 1.4 x 10-5 

6.25 1.6 x 10-3 2.6 x 10-4 5.7 x 10-5 2.8 x 10-5 

12.5 2.1 x 10-3 4.3 x 10-4 1.9 x 10-4 9.9 x 10-5 

25 2.1 x 10-3 6.2 x 10-4 3.1 x 10-4 1.6 x 10-4 

 
  Table 2 
  Numerical errors at 𝑦|𝑒(𝑦)=1 

 𝑁 − 1 = 10 𝑁 − 1 = 20 𝑁 − 1 = 40 𝑁 − 1 = 80 

𝑃𝑒 Error Error Error Error 

3.125 1.3 x 10-3 3.3 x 10-4 8.5 x 10-5 2.2 x 10-5 

6.25 2.5 x 10-3 4.1 x 10-4 8.9 x 10-5 4.3 x 10-5 

12.5 3.2 x 10-3 6.8 x 10-4 3.0 x 10-4 1.6 x 10-4 

25 3.3 x 10-3 9.7 x 10-4 4.9 x 10-4 2.5 x 10-4 

 
2-d plots of concentration 𝜉 are given in Figure 9. The scalar quantity is initially concentrated 

about the centre of the computation domain especially when 𝑃𝑒 = 3.125, and moves in the flow 
direction with respect to 𝑃𝑒. This is due to relatively low diffusivity at higher 𝑃𝑒 such that convection 
becomes more dominant.  
 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Plot of 𝜉 on graded mesh for 𝑁 = 11 (a) 𝑃𝑒 = 3.125 
(b) 𝑃𝑒 = 6.25 (c) 𝑃𝑒 = 12.5 (d) 𝑃𝑒 = 25 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 103, Issue 1 (2023) 179-191 

190 
 

Note that in the case of extremely high 𝑃𝑒, the scalar would form a boundary layer. It is also 
interesting to note that the maximum value of 𝜉 (i.e. 𝜉𝑚𝑎𝑥) increases with 𝑃𝑒. For instance, 𝜉𝑚𝑎𝑥 is 
maximum at 𝑃𝑒 = 25. 
 
4. Conclusions 
 

Graded mesh numbers 𝑁 for solving convection-diffusion flow problem in Eq. (1) with quadratic 
source in Eq. (2) and boundary conditions in Eq. (3) for small Peclet number 𝑃𝑒 have been 
comparatively studied. The findings help us better understand how graded mesh number 𝑁 affects 
the rate of convergence as 𝑃𝑒 rises, when Eq. (9) is used to determine mesh expansion factor 𝑟𝑒. 

In the case of lower 𝑃𝑒, the rate of convergence is of second order, and reduced to first order at 
higher 𝑃𝑒. Further study might include high range of Peclet number (i.e. 𝑃𝑒 > 25) to more fully 
profile the rate of convergence. Whether or not zero order rate of convergence is achievable is still 
an open question. 
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