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In this study, a perturbation iteration scheme (PIS), is used to investigate the flow and 
heat transfer of a nanofluid through a convergent or divergent channel in a porous 
medium for the Jeffrey Hamel flow problem. Under the influence of the magnetic field, 
the nanofluid continuously flows through the channel. Modeling of the motion of 
different nanofluids is done with the aid of momentum and energy equations. The 
effect of some variables such as opening channel angle, Reynolds number (ℜ), Darcy 
number (𝐷𝑎), Hartmann number (ℋ), Prandtl number (𝑃𝑟), and Eckert number (Ec), on 
nanofluidic flows through non-parallel plates has been discussed. It has been observed 
that as velocity rises, fluid viscosity increases with a higher Reynolds number. The 
internal friction also decreases as the Darcy number rises because of an increase in 
flow and an increase in heat transfer. Additionally, when the results of the remaining 
variables were examined and their effects on the velocity and temperature profiles 
were compared with those of related studies in the literature, a satisfactory level of 
agreement was found. This is clear from the tables and drawings mentioned in this 
manuscript, and it also shows that this approach gives us a good study for examining 
the Jeffrey Hamel problem. 
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1. Introduction 
 

Between 1915 and 1916, Jeffery and Hamel suggested a diverging and convergent channel flow. 
Even though this subject has been studied for a long time, little has been done. However, flow 
through this porous medium does have important and useful applications, such as blood flow through 
arteries and veins, which are tubes that carry blood to and from the heart. In contrast to arteries, 
veins widen as blood leaves the heart and returns to them. Both convergent and divergent behaviour 
is displayed here. Environmental engineering applications include channels like dams and irrigation 
canals, among many others, and these structures can all be seen to have similar transport 
phenomena. The particle composition was described using this information by Chen et al., [1]. As 
porous media, clusters serve a purpose. The existence of tiny pore clusters is shown by this. In 
reservoir beds, waste removal, catalytic converters, and geothermal systems, porous medium flows 
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are used. The range of the Darcy number [2-12], governs the flow of a porous medium. Low Reynolds 
numbers show the validity of Farad et al., Darcy's theory, and values in the range of one to ten are 
also low. According to Alfven et al., [13], conducting flowing nanofluid produces electromotive force, 
which alters the velocity distribution profile. Electric forces are produced by induced current flows. 
As a result, magnetohydrodynamic fluid flow through porous media has discovered a variety of 
fascinating applications in contemporary engineering, including plasma physics, nuclear reactors, and 
the extraction of renewable energy, to name a few [14-19]. Other researchers have conducted 
studies based on this ground-breaking work. Raftari and Vajravelu [20] presented a method for 
calculating the flow and heat transfer through stretching walls while taking the magnetic field's 
influence into account. Hatami et al., [21], investigation into the movement of nanofluids on a flat 
plate in a magnetic force field that is always present. Sheikholeslami et al., [22-26] investigated heat 
transfer, entropy production, and nanofluid flow using a variety of flow channels. The localized 
heated natural convective flow was demonstrated by Hussein and Mustafa [27] using a water-copper 
nanofluid. In their study Prabhakar et al., [28], took slip and thermal radiation into account as they 
looked at the stagnation point flow of an MHD nanofluid over a convective surface. Al-Mdallal [29], 
investigated the entropy generation analysis of a wavy sinusoidal channel containing a nanofluid 
made of methanol. In his paper Ganesh [30], investigated second order thermal slip and Newtonian 
fluid flow with entropy. Aman et al., [31] studied the MHD Maxwell fluid's slip effect and heat transfer 
in a porous medium. Ganesh et al., [32] looked into the Maragoni boundary layer flow over a 
stretching sheet under non-linear thermal radiative conditions. because nonlinear systems of 
equations are a common representation of real-world problem. Analyzing these problems requires 
the use of a suitable, dependable, and accurate method of solution. As a result, in the analysis of 
these problem, researchers have gradually adopted approximative analytical, semi-analytical, and 
numerical solution methods. There are several methods for finding solutions, including the Variation 
of Parameters Method (VPM), Differential Transform Method (DTM), Differential Transform-Pade 
Method (an extension solution of DTM), Collocation, Least-square, and Galerkin methods of 
weighted residuals, Adomian Decomposition Method (ADM), Homotopy Perturbation Method 
(HPM), Variational Iteration Method (VIM), and Perturbation Iteration Scheme (PIS) [33-61]. 
Rounding errors and limitations apply to the methods mentioned above. The PIS was chosen as the 
practical, accurate approach in this article because it does not rely on linearization, discretization, or 
small perturbation parameters. Applying this algorithm allows for the definition of new initial 
conditions to solve the Jeffrey Hamel flow problem. The theoretical framework of this study is to 
study the flow problem of the ordinary non-linear equation and its importance in addressing the 
problems that occur when flowing nanofluids using approximate analytical numerical methods, and 
one of these methods is the perturbed scheme, as in this method we take it upon ourselves to find 
approximate analytical solutions to the problem of the flow of Jeffrey Hamel Through diverging / 
converging channels and also controlling the physical parameters to obtain the best results through 
changing the parameters of viscosity, density, volume fraction coefficient, Reynolds number, 
Hartmann number, Darcy number, open angle and other parameters as changing these parameters 
gives us a better view of the How the flow flows through the channels, and also do not forget to 
review previous literature and compare them for better results [63]. Physical parameters like the 
Hartmann parameter, Reynold number, Darcy number, Prandtl number, and Eckert number are 
contained in these series and can be compensated for by constants. The effects of these parameters 
on the velocity and temperature profiles will be examined. An electrically conducting 
magnetohydrodynamic MHD nanofluid is flowed through a diverging or convergent channel with a 
porous medium in this study to examine the effects of heat transfer and flow while taking internal 
heat production into account. Moreover, using the Runge-Kutta method of fourth order (RK~4), this 
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study includes addressing the non-linear Jeffrey Hamel equation in nanofluids using PIS, as the 
solution to this equation has not been previously addressed in this way, the new analytical solutions 
were compared to the obtained numerical solutions. Here is a quick rundown of the paper's 
consistency: The governing statement problem is illustrated in Section 2 of the paper. The application 
of by PIS has been written in Section 3. Results and discussions are clarified in Section 4. Finally, the 
conclusions are introduced in Section 5.  

 

 
Fig. 1. Diagram of the problem [56] 

 
2. Mathematical Formulation 

 
The nanofluid flow that is being thought about in this situation is incompressible, two-

dimensional, and electrically conducting. In order to describe the flow through the channel, 
cylindrical coordinates  (𝑟, θ, z) are used because intersecting planes are in the 𝑧 axis. Pure radial 
motion is assumed because the fluid parameters do not change. The fluid is therefore moving at axis 
𝑟. This is shown in Figure 1. The terminology used by Naiver Stokes to describe the viscous flow 
governing equation system comes from the nomenclature discussed in [22,56]. 
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∂ũ

∂r
=

−1

ρn.f

∂P

∂r
+ vn.f [

∂2ũ
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where ũ is the velocity in the radial direction, P is the fluid pressure,  ρn.f the nanofluid viscosity 
coefficient density, and Kn.f  is thermal conductivity of the nanofluid, Kf  and  Ks are the thermal 
conductivity of the base fluid and the solid of fraction, respectively. The dynamic viscosity that is 
effective μn.f  and the effective density ρn.f, the nanofluid calculated as follows [56] 

 
i. ρn.f = (1 − φ)ρf + φρs  , 

 

ii. μn.f =
μf

(1−φ)2.5  , 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 103, Issue 1 (2023) 105-132 

 

108 
 

iii. vn.f =
μf

ρn.f
 , 

 

iv. 
σn.f
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= 1 +
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 .                                                                                              (5) 

 

The nanoparticle concentration is denoted by φ,  (ρCρ)
n.f

 is the heat capacity of the nanofluid, 

and ρf and ρs are the densities of the base fluid and the solid fractions, respectively.  If uθ = 0 for 

purely radial flow, the velocity parameter can from Eq. (1), by product both sides by (
r

ρ
) ≠ 0  and 

then integration for (r) and put the integration constant for θ 
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(rũ) = 0,                    rũ(r, θ) = ℏ(θ).                                (6) 

 
Also, derivative Eq. (2) and Eq. (3) with respect to (r) and (𝜃) respectively, gets 
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∂ũ

∂θ
,                    (7) 

 

−
1

rρn.f

∂2P

∂r ∂θ
+

1

r2ρn.f

∂P

∂θ
+

2vn.f

r2

∂2ũ
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After arrangement for Eq. (7) and Eq. (8), the following equation are given as 
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∂r2 ∂θ
−

1

r

∂2ũ

∂r ∂θ
+

1

r2

∂3ũ
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since 
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also 
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Now, find the partial derivative of Eq. (9) and Eq. (4), by using Eq. (10) and Eq. (11) 
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Substituting Eq. (10) into Eq. (9) and Eq. (4) become 
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Simplify Eq. (13) more to get 
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Product both sides by (
κ3r3

ucvn.f
≠ 0), and by using Eq. (5) to get after simplify 
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Also, from Eq. (4) and by substituting Eq. (12), yield 
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by using Eq. (5), the Eq. (16) become as 
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Physically, these boundary constraints imply that maximum velocity values are seen at the 

centreline (ϰ = 0), and consider the velocity profile to be completely developed, therefore the rate 
of velocity is zero at (ϰ = 0). The no-slip requirement is also used in fluid dynamics. The equation for 
fluid states that the fluid will have zero pressure at a solid barrier related to the boundary velocity at 
all fluid–solid interfaces, the fluid velocity it can observe that the solid boundary border is equal to 
the solid boundaries. Numerous processes, including large-scale chemical reactions involving 
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catalyst, filter, and adsorbent, as well as the modelling of physiological processes, involve flow 
through porous media. These processes include geophysical flow, the recovery of oil, gas, and 
minerals from the earth, the transport and sequestration of contaminants in the subsurface, and 
many others. Due to the rapidly expanding use of magnetohydrodynamic (MHD) flows of viscous 
fluids in many areas of technology and engineering, such as MHD power generation, MHD flow 
meters, and MHD pumps, numerous theoretical investigations involving these flows have been 
conducted in recent decades. The behaviour of the viscous MHD flow under various conditions has 
been explained by several mathematical models [64,65]. To account for the effects of an external 
magnetic field on conducting fluid, the original Jeffery-Hamel problem was expanded. For fluids with 
a moderate Prandtl number and moderate velocities, small wall-to-fluid temperature differences, 
low wall heat fluxes, and flowing through parallel walls, the effect of viscous dissipation on heat 
transfer is particularly important. Then in general flow through porous media has a myriad of 
applications ranging from geophysical flow and recovery of oil, gas, minerals and other nanofluids to 
large-scale chemical processes involving catalyst and filtrate as well as modelling of physiological 
processes. Many theoretical investigations dealing with MHD flows have been conducted. of viscous 
fluids during the past decades due to its rapidly increasing applications in many areas of technology 
and engineering such as MHD power generation, MHD flow meters, MHD pumps. Undoubtedly the 
viscous dissipation yields an appreciable rise in fluid temperature. This is because of the conversion 
of kinetic motion of fluid to thermal energy and characteristics of source term in the fluid flow. 
Especially such situation is prominent for fluid flow with heat transfer in microchannels where length-
to-diameter ration is very large [66-68]. 
      
3. Implementation Perturbation Iteration Scheme for Solving heat transfer on Jeffery-Hamel 
Nanofluid Flow 
 

We carried out this study to obtain an approximate analytical solution to the Jeffrey Hamel 
equation and to examine the behaviour of the physical parameters when taking different values of 
them and the behaviour of the nanofluid flow through the divergent/convergent channels. This study 
dealt with the flow of nanofluids for different materials such as (copper, silver, titanium and 
aluminium) as the use of this method was used for the first time on this type of equation and proved 
its effectiveness when obtaining excellent results and compared with other results in the previous 
literature and its efficiency is clear and accurate. The application of the PIS (1,1) [62], to nonlinear 
differential equations using the stages of its method in order to obtain approximate analytical 
solutions. The following is an illustration of the auxiliary perturbation parameter δ can be given as: 
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where ℏ is an unknown function and special dependent variable. Q is a function of ℏ and its 
derivatives. The auxiliary perturbation parameter 𝛿 was added to Eq. (21), as indicated in the 
equation above. The following are perturbation expansions that only include one correction term 
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ℏn+1 = ℏn + δ(ℏc)n,                                   (23) 
 
Θn+1 = Θn + δ(Θc)n ,                      (24) 
 
where ℏ𝐶  and Θc is the correction term in the perturbation expansion, substituting Eq. (22) and Eq. 
(24) in Eq. (21) and Eq. (22), respectively and expanding in Taylor series with first -order derivative 
with term of (δ = 0) to get 
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from Eq. (21) and Eq. (22), the following derivatives 
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𝐵∗ 2Prκ2Θ(ϰ) +
PrEc

ℜ𝐵∗(1−φ)2.5 𝛿(8κ2(ℏ(ϰ))𝑛) +
PrEcℋ

𝐵∗ 2δ(ℏ(ϰ))𝑛, 

Q2(Θ(ϰ))n
= δ 4κ2 + δ

𝐴∗

𝐵∗
2Prκ2ℏ(ϰ) + δξ  

Q
2(

dℏ(ϰ)

dϰ
)n

=
PrEc

ℜ𝐵∗(1−φ)2.5
𝛿((

d(ℏ(ϰ))𝑛

dϰ
)2) , 

Q
2(

d2Θ(ϰ)

dϰ2 )n

= 1,                        (28) 

 
Note that all derivatives in Eq. (27) and Eq. (28), are calculated at 𝛿 = 0, the solution in Eq. (16) 

and Eq. (17) is an ordinary differential equation (ODE). The boundary condition and initial condition 
are used to solve this ordinary differential equation, yielding (ℏ𝑐)𝑛(ϰ) and (Θ𝑐)𝑛(ϰ). In Eq. (21) and 
Eq. (22), the value of  (ℏ𝑐)𝑛(ϰ) and (Θ𝑐)𝑛(ϰ) is replaced to obtain on  (ℏ𝑐)𝑛+1(ϰ) and (Θ𝑐)𝑛+1(ϰ) 
respectively. Which it is the approximate analytical answer, in the form of a power series, that is 
required. The following non-linear ordinary differential equations are obtained by computing all 
derivatives at (δ = 0) and inserting the results into Eq. (25) and Eq. (26) 
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((
d3ℏ(ϰ)

dϰ3 )c)n = −
1

𝛿

d3(ℏ(ϰ))𝑛

dϰ3 + κ [(𝐵∗ℋ(1 − φ)1.25)
1

𝐷𝑎
− 4]

d(ℏ(ϰ))
𝑛

dϰ
− 2𝐴∗ℜκ  

                            (1 − φ)2.5(ℏ(ϰ))𝑛
d(ℏ(ϰ))𝑛

dϰ
.                                           (29) 

 

((
d2Θ(ϰ)

dϰ2 )c)n = −
1

𝛿

d2(Θ(ϰ))
𝑛

dϰ2 −  4κ2(Θ(ϰ))𝑛 −
𝐴∗

𝐵∗ 2Prκ2(ℏ(ϰ))𝑛(Θ(ϰ))𝑛 −
PrEc

ℜ𝐵∗(1−φ)2.5  

                           (4κ2((ℏ(ϰ))𝑛)2 + (
d(ℏ(ϰ))

𝑛

dϰ
)2)) −

PrEcℋ

𝐵∗
((ℏ(ϰ))𝑛)2 − ξ(Θ(ϰ))𝑛,                             (30) 

 
assume that the initial condition 
 

ℏο(ϰ) = το + τ1ϰ +
τ2

2
ϰ2,                       (31) 

 
Θο(ϰ) = ℓο + ℓ1ϰ,                       (32) 
 
where 
 

ℏ(0) = το,                      
dℏ(0)

dϰ
= τ1,                        

d2ℏ(ϰ)

dϰ2 = τ2, 

Θ(0) = ℓο,                     
dΘ(ϰ)

dϰ
= ℓ1.                                 (33) 

 
From boundary conditions of Eq. (18) 
 

ℏο = 1 +
τ2

2
ϰ2,                       (34) 

 
Θο = ℓο,                         (35) 
 
The prerequisite condition for solving the problem using τ2 and ℓο is unknown. The analytical 
approximate solutions of Eq. (15) and Eq. (18), at (ϰ = 1) may be used to derive the values of τ2  and 
ℓο.The analytical approximate solutions to the following equations are obtained by creating the 
iteration scheme 
 

ℏ𝟏 = 1 +
τ2

2
ϰ2 − [(

1

24
𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4) τ2 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2] ϰ4 −

1

120
  

         κℜ𝐴∗(1 − 𝜑)2.5τ2
2ϰ6.                      (36) 

 

𝚯𝟏 = ℓο −
1

2
(4κ2ℓο +

2𝐴∗𝑃𝑟κ2ℓο

𝐵∗ +
4𝑃𝑟𝐸𝑐κ2

ℜ𝐵∗(1−𝜑)2.5 +
𝑃𝑟𝐸𝑐ℋ

𝐵∗ + 𝜉ℓο)ϰ4 −
1

12
(

𝐴∗𝑃𝑟κ2τ2ℓο

𝐵∗   

          +
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5
+

𝑃𝑟𝐸𝑐ℋτ2

𝐵∗
)ϰ4 − (

1

30

𝑃𝑟𝐸𝑐κ2τ2
2

ℜ𝐵∗(1−𝜑)2.5

1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗
)ϰ6                                                     (37) 

 

ℏ𝟐 = 1 +
τ2

2
ϰ2 − [

1

6
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

3
κℜ𝐴∗(1 − 𝜑)2.5τ2 −

3.33333333×10−11

4
  

         κℜ𝐴∗(1 − 𝜑)2.5]ϰ4 − [
1

120
κℜ𝐴∗(1 − 𝜑)2.5τ2

2 −
1

720
κ2(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)2τ2 −  

         
2

360
κ2ℜ𝐴∗(1 − 𝜑)2.5(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

180
κ2ℜ𝐴∗(1 − 𝜑)2.5τ2

2]ϰ6 −  

         [
0.001190476191

8
κ2ℜ𝐴∗(1 − 𝜑)2.5(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2

2 −
0.002380952382

8
κ2ℜ2𝐴∗2  

        (1 − 𝜑)5τ2
2 +

0.002380952382

8
κ2ℜ𝐴∗(1 − 𝜑)2.5(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2

2 −
1

24
κ2ℜ2𝐴∗2  
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(1 − 𝜑)5τ2
2 +

0.04761904764

192
κ2ℜ𝐴∗(1 − 𝜑)2.5 (𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2

2 −
0.04761904764

96
 

κ2ℜ2𝐴∗2(1 − 𝜑)5τ2
2]ϰ8 − [(

1

10800
κ2ℜ2𝐴∗2(1 − 𝜑)5τ2

3 +
1

360
κℜ𝐴∗(1 − 𝜑)2.5 τ2)  

(
1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2)(

1

6
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2  

−
1

3
κℜ𝐴∗(1 − 𝜑)2.5 τ2))]ϰ10 −

1

12
[

1

1100
(κ2ℜ2𝐴∗2(1 − 𝜑)5(

1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)  

τ2
3 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2

2) −
1

6600
κ2ℜ2𝐴∗2(1 − 𝜑)5τ2

3(
1

6
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)  

−
1

3
κℜ𝐴∗(1 − 𝜑)2.5 τ2)]ϰ12 − 3.815628816 × 10−7κ3ℜ3𝐴∗3(1 − 𝜑)7.5τ2

4ϰ14.                            (38) 

 

𝚯𝟐 = ℓ𝜊 − (4κ2ℓ𝜊 +
2κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗ +
4κ2𝑃𝑟𝐸𝑐

ℜ𝐵∗(1−𝜑)2.5 +
𝑃𝑟𝐸𝑐ℋ

𝐵∗ + 𝜉ℓ𝜊) ϰ2 −
1

3
(

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ −
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5   

                −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ )ϰ3 + [−
1

12
(

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ +
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 +
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ ) −
1

4
(

4

3
κ2(−2κ2ℓ𝜊  

                −
κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗
−

2κ2𝑃𝑟𝐸𝑐

ℜ𝐵∗(1−𝜑)2.5
−

𝑃𝑟𝐸𝑐ℋ

𝐵∗
−

1

2
𝜉ℓ𝜊) +

1

𝐵∗
(

2

3
κ2𝑃𝑟(−2κ2ℓ𝜊 −

γ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗
−

2κ2𝑃𝑟𝐸𝑐

ℜ𝐵∗(1−𝜑)2.5
  

                −
1

2

𝑃𝑟𝐸𝑐ℋ

𝐵∗ −
1

2
𝜉ℓ𝜊)) +

1

3
(

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ +
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 +
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ + 𝜉)(−2κ2ℓ𝜊  

                −
κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗
−

2κ2𝑃𝑟𝐸𝑐

ℜ𝐵∗(1−𝜑)2.5
−

𝑃𝑟𝐸𝑐ℋ

𝐵∗
−

1

2
𝜉ℓ𝜊)]ϰ4 −

1

5
[−

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5
−

1

4

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗
]ϰ5  

                   +[(−
1

6
(

1

5

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 +
1

20

𝑃𝑟𝐸𝑐ℋ

𝐵∗ )) −
1

6
(

4

60
κ2(−

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ −
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ )  

                   +
1

𝐵∗ (
2

60
κ2𝐴∗𝑃𝑟(−

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ −
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ )) +
1

𝐵∗ (
1

5
κ2𝐴∗𝑃𝑟τ2(−2κ2ℓ𝜊  

                   −
κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗ −
2κ2𝐴∗𝑃𝑟Ec

ℜ𝐵∗(1−𝜑)2.5 −
1

2

𝑃𝑟𝐸𝑐ℋ

𝐵∗ −
1

2
𝜉ℓ𝜊)) +

1

𝐵∗ (
2

5
κ2𝐴∗𝑃𝑟(

1

24
κ((𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎4)τ2 −   

                 
1

12
κℜ𝐴∗(1 − 𝜑)2.5 τ2)ℓ𝜊) +

1

ℜ𝐵∗(1−𝜑)2.5 (
1

5
𝑃𝑟𝐸𝑐(4κ2(

1

12
(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

6
 

                ℜ𝐴∗(1 − 𝜑)2.5 τ2 + 2τ2(
1

6
(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

3
κℜ𝐴∗(1 − 𝜑)2.5 τ2)))  

                   
1

𝐵∗ (
1

5
𝑃𝑟𝐸𝑐ℋ (

1

12
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

6
κℜ𝐴∗(1 − 𝜑)2.5 τ2 +

1

4
τ2

2)) +  

                 
1

60
𝜉(−

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ −
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ ))]ϰ6 −
1

8
(0.5714285716κ2(−

1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 −  

                 
1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗
) +

1

𝐵∗
(0.2857142858 κ2𝐴∗𝑃𝑟 (−

1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5
−

1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗
)) +

1

𝐵∗
(

0.1428571429

12
  

                  κ2𝐴∗𝑃𝑟τ2(−
κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ −
𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ )) +
1

𝐵∗ (0.2857142858 κ2𝐴∗𝑃𝑟(
19

600
κ  

                 (𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −
1

12
κℜ𝐴∗(1 − 𝜑)2.5 τ2)(−2κ2ℓ𝜊 −

κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗ −
2κ2𝐴∗𝑃𝑟Ec

ℜ𝐵∗(1−𝜑)2.5 −  

                   
1

2

𝑃𝑟𝐸𝑐ℋ

𝐵∗
−

1

2
𝜉ℓ𝜊)) − 0.002380952382

κ3𝐴∗2
𝑃𝑟ℜ(1−𝜑)2.5 τ2

2ℓ𝜊

𝐵∗
+

1

ℜ𝐵∗(1−𝜑)2.5
  

                 (0.1428571429 𝑃𝑟𝐸𝑐4κ2(−
1

60
κℜ𝐴∗(1 − 𝜑)2.5 τ2

2 + τ2(
1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −  

                   
1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2))  −

1

10
κℜ𝐴∗(1 − 𝜑)2.5τ2

3 + (
1

6
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −  

                    
1

3
κℜ𝐴∗(1 − 𝜑)2.5τ2)2)) +

1

𝐵∗
 (0.1428571429 𝑃𝑟𝐸𝑐ℋ(−

1

60
κℜ𝐴∗(1 − 𝜑)2.5τ2

2 + τ2  

                   (
1

6
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2))) + 0.1428571429 𝜉 

                  (−
1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 −
1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗ )]ϰ8 −
1

10
(

1

𝐵∗ (
1

9
κ2𝐴∗𝑃𝑟τ2(−

1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 −
1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗ )) +  

                  
1

𝐵∗ (
2

9
κ2𝐴∗𝑃𝑟(

1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

144
κℜ𝐴∗(1 − 𝜑)2.5τ2)(−

κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗ − 
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𝑃𝑟𝐸𝑐(4κ2τ2+τ2

2)

ℜ𝐵∗(1−𝜑)2.5 −
𝑃𝑟𝐸𝑐ℋτ2

𝐵∗ )) −
1

𝐵∗ (
1

540
κ3𝐴∗2𝑃𝑟ℜ(1 − 𝜑)2.5τ2

2(−2κ2ℓ𝜊 −
κ2𝐴∗𝑃𝑟ℓ𝜊

𝐵∗ −  

                    
2κ2𝑃𝑟𝐸𝑐

ℜ𝐵∗(1−𝜑)2.5 −
1

2

𝑃𝑟𝐸𝑐ℋ

𝐵∗ −
1

2
𝜉ℓ𝜊)) +

1

ℜ𝐵∗(1−𝜑)2.5 (
1

9
𝑃𝑟𝐸𝑐(4κ2(

1

120
κℜ𝐴∗(1 − 𝜑)2.5 τ2

3  

                + (
1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2)2) −

1

10
(

1

6
κ  

                  (𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −
1

3
κℜ𝐴∗(1 − 𝜑)2.5τ2)κℜ𝐴∗(1 − 𝜑)2.5τ2

2)) +  

                  
1

𝐵∗
(

1

9
𝑃𝑟𝐸𝑐ℋ(−

1

120
κℜ𝐴∗(1 − 𝜑)2.5τ2

3 + (
1

24
(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗  

                   (1 − 𝜑)2.5τ2)2))]ϰ10 − [
1

12
(

1

𝐵∗ (κ2𝐴∗𝑃𝑟(
1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗ 

                   (1 − 𝜑)2.5τ2)(−
1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 −
1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗ )) −
1

𝐵∗ (
1

7920
κ3𝐴∗2𝑃𝑟ℜ(1 − 𝜑)2.5τ2

2  

                   (−
κ2𝐴∗𝑃𝑟τ2ℓ𝜊

𝐵∗
−

𝑃𝑟𝐸𝑐(4κ2τ2+τ2
2)

ℜ𝐵∗(1−𝜑)2.5
−

𝑃𝑟𝐸𝑐ℋτ2

𝐵∗
)) +

1

ℜ𝐵∗(1−𝜑)2.5
(

1

11
𝑃𝑟𝐸𝑐(−

1

15
κ3(

1

24
κ   

                  (𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −
1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2)ℜ𝐴∗(1 − 𝜑)2.5τ2

2 +

                  
1

400
κ2𝐴∗2ℜ2(1 − 𝜑)5  

                   τ2
4 −

1

𝐵∗
(

1

660
𝑃𝑟𝐸𝑐ℋ(

1

24
κ(𝐵∗ℋ(1 − 𝜑)1.25𝐷𝑎 − 4)τ2 −

1

12
κℜ𝐴∗(1 − 𝜑)2.5τ2)κℜ𝐴∗ 

                  (1 − 𝜑)2.5τ2
2)]ϰ12 − 0.07142857143[−

1

𝐵∗ (
641

500000
κ3𝐴∗2𝑃𝑟ℜ(1 −

                  𝜑)2.5τ2
2(−

1

30

κ2𝑃𝑟𝐸𝑐τ2
2

ℜ𝐵∗(1−𝜑)2.5 −   

                    
1

120

𝑃𝑟𝐸𝑐ℋτ2
2

𝐵∗ )) +
21367

10000

κ4𝐴∗2
𝑃𝑟𝐸𝑐ℜ(1−𝜑)2.5τ2

4

𝐵∗ +
53418

100000

κ2𝐴∗2
𝑃𝑟𝐸𝑐ℋℜ2(1−𝜑)2.5τ2

4

𝐵∗ ]ϰ14               (39) 

 
4. Results and Discusses 
 

In this section, we will present tables, charts, and drawings that discuss the increase and 
decrease, as well as the approximate analysis of the mentioned method, as shown below. This section 
discusses the results of the flow and heat transfer analysis. The flow and heat transfer through a 
diverging/converging channel with a porous medium are depicted here at constant parametric values 
for physical parameters. The behaviour of physical parameters as well as their values in density, 
specific heat, thermal conductivity, and electrical conductivity, where (𝜉): The heat 
generation/absorption Parameter is non-dimensional and depends on the amount of heat generated 
or absorbed in the fluid. (𝜅), the flow between two planes that meet at an angle, (𝜈) the viscous flow 
equation describes accurately the flow conditions for a relatively small range corresponding to low 
Reynolds numbers. Such flows are characterized by layers of fluid gliding over each other near solid 
boundaries. (𝐾𝑛.𝑓) The kinematic viscosity is defined as the absolute viscosity of a liquid divided by 

its density at the same temperature. As an example biodiesel presents greater viscosity than diesel 
due to a higher degree of unsaturation and by oxidation reactions that can modify the fatty acid 
composition during storage, transportation, and temperature change. Viscous flow takes place when 
there is a crack or a defect into membrane structure and gases can pass through the membrane 
without separation. (ℜ), it is a dimensionless quantity in fluid mechanics that helps predict fluid flow 
patterns in different situations by measuring the ratio between inertial forces and viscous forces. 
Whereas at lower Reynolds numbers the flows tend to be dominated by laminar flow, while at higher 
Reynolds numbers the flows tend to be turbulent. (ℋ), it is the ratio of the electromagnetic force to 
the viscous force, (𝑃𝑟) is a dimensionless number, the ratio of momentum diffusivity to thermal 
diffusivity, (𝐸𝑐) is a dimensionless number used in continuum mechanics. It expresses the relationship 
between a flow’s kinetic energy and the boundary layer enthalpy difference, and is used to 
characterize heat transfer dissipation. (𝜑), the ratio of the volume of a constituent to the volume of 

https://www.sciencedirect.com/topics/engineering/biodiesel
https://www.sciencedirect.com/topics/engineering/fatty-acid-composition
https://www.sciencedirect.com/topics/engineering/fatty-acid-composition
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the whole. In practice, it may be difficult to determine the volume fraction because differences in the 
molecular sizes of the constituents may produce a total volume that differs from the sum of the in 
dividual volumes of the mixture. When materials of similar physio chemical characteristics (such as 
multiple aqueous solutions) are combined this is not a problem. As shown in Table 1, the convergence 
values for the nanoparticle materials 𝐶𝑢, 𝐴𝑔, 𝐴𝑙2𝑂3, 𝑎𝑛𝑑 𝑇𝑖𝑂2 at 𝜑 = 0.01  and various values of  
ℜ, ℋ, 𝑃𝑟 , 𝐸𝑐 and 𝜅, at both converge/diverge channels are shown in Table 2-7. The Table 8–15 display 
the outcomes of applying various values for the four materials and demonstrate convergence in 
outcomes when compared with the Range–Kutta of fourth order (RK–4). Additionally, by comparing 
the residual error between the numerical method and the presented method, we discover a good 
reading and an excellent error rate. We observe in Table 16 that the impact of altering the values of 
𝑃𝑟 , 𝐸𝑐 and  𝜉 about the temperature profile when examining the produced absolute values, we 
discover that the increase is linear, with higher values indicating a direct increase of 𝑃𝑟 , 𝐸𝑐 and  𝜉, the 
temperature profile values of Cu material increase. In Table 17, we discussed the effect of the 
difference of the Reynolds number (ℜ) and the Hartmann number (ℋ) on the temperature profile 
and the velocity profile of the (Ag) material, where when taking the absolute values resulting from 
the various of the ℜ, with an increase in the ℜ we notice a decrease in the values of both the velocity 
and temperature profiles, but an increase in the ℋ, leads to an increase in the velocity profile and 
temperature profile. In Table 18, the effect on each of the velocity and temperature profiles of the 
𝐴𝑙2𝑂3material when various values of each of the Nanoparticle concentration (𝜑), and the Darcy 
number (𝐷𝑎). An increase in the values of 𝜑 leads to an increase in the velocity and temperature 
profiles, and an increase in the (𝐷𝑎), leads to a decrease in both the velocity and temperature profiles. 
This comparison takes place when take absolute values. Finally, in Table 19, when various the open 
angle (𝜅) of each of the diverging and converging channels, we notice a decrease in both the velocity 
and temperature profiles when taking the absolute value of the values for titanium. 
 

Table 1 
Physical parameter of nanoparticles materials 
Material Density 

(𝐾𝑔/𝑚3) 
Specific heat capacity 
(J/kgK) 

Thermal conductivity 
(W/mk) 

Electrical conductivity 
(Ω. 𝑚)−1 

Water  
Copper 
silver 
Aluminum 
Titanium 

997.1 
8933 
10500 
3970 
4250 

4179 
385 
235 
765 
686.2 

0.613 
401 
429 
40 
8.9538 

0.05 
5.96 × 107 
6.3 × 107 
3.4 × 107 
2.38 × 106 

 
Table 2 
The convergence values for the nanoparticle material of Cu and Ag 
when φ = 0.01 

Order 

ℜ = 10, ℋ = 15 
κ = 1ο 

𝐶𝑢               𝐴𝑔 

τ2 ℓο τ2 ℓο 
Order1 -2.012224743 

-2.012242473 
-2.012242473 
-2.012242473 
-2.012242473 

1.000665090 
1.001399850 
1.002056780 
1.001896445 
1.001362713 

-2.138315311 
-2.135923140 
-2.135948805 
-2.135948633 
-2.135948633 

1.000629000 
1.001283927 
1.001911396 
1.002235595 
1.002437234 

Order2 

Order3 

Order4 

Order5 
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Table 3 
The convergence values for the nanoparticle material when φ =
0.01 

Order 

ℜ = 10, ℋ = 15 
κ = −1ο 

𝐶𝑢               𝐴𝑔 

τ2 ℓο τ2 ℓο 
Order1 -1.987787217 

-1.987804151 
-1.987804152 
-1.987804152 
-1.987804152 

1.000665266 
1.001399656 
1.002055991 
1.001909112 
1.001381777 

-1.987794735 
-1.987811675 
-1.987811676 
-1.987811676 
-1.987811676 

1.000665266 
1.001399655 
1.002055991 
1.001909109 
1.001381776 

Order2 

Order3 

Order4 

Order5 

 
Table 4 
The convergence values for the nanoparticle material when 
φ = 0.01 

Order 

ℜ = 50, ℋ = 50 
κ = 3ο 

𝐴𝑙2𝑂3              𝑇𝑖𝑂2 

τ2 ℓο τ2 ℓο 
Order1 -2.27682822 

-2.27928547 
-2.27929357 
-2.27929407 
-2.27929407 

1.00570190 
1.01173035 
1.01755397 
1.01999921 
1.02123011 

-2.27670125 
-2.27916071 
-2.27916877 
-2.27916927 
-2.27916927 

1.00570190 
1.01173033 
1.01755395 
1.01999946 
1.02123050 

Order2 

Order3 

Order4 

Order5 

 
Table 5 
The convergence values for the nanoparticle material when 
φ = 0.01 

Order 

ℜ = 50, ℋ = 50 
κ = −3ο 

𝐴𝑙2𝑂3              𝑇𝑖𝑂2 

τ2 ℓο τ2 ℓο 
Order1 -1.74842081 

-1.74637522 
-1.74637488 
-1.74637511 
-1.74637511 

1.00571588 
1.01171349 
1.01750100 
1.02096935 
1.02273433 

-1.74851569 
-1.74647561 
-1.74647533 
-1.74647556 
-1.74647556 

1.00571587 
1.01171348 
1.01750099 
1.02096918 
1.02273411 

Order2 

Order3 

Order4 

Order5 

 
Table 6 
The convergence values for the nanoparticle material when φ =
0.01 

Order 

ℜ = 10, ℋ = 10 
κ = 5ο 

𝐶𝑢               𝑇𝑖𝑂2 

τ2 ℓο τ2 ℓο 
Order1 -2.140303425 

-2.138924673 
-2.138937129 
-2.138937070 
-2.138937070 

1.015548388 
1.031648435 
1.048225856 
1.064215609 
1.078853067 

-2.140607552 
-2.139220784 
-2.139233345 
-2.139233285 
-2.139233285 

1.015548461 
1.031648669 
1.048226099 
1.064215359 
1.078851629 

Order2 

Order3 

Order4 

Order5 
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Table 7 
The convergence values for the nanoparticle material when φ =
0.01 

Order 

ℜ = 10, ℋ = 10 
κ = −5ο 

𝐶𝑢               𝑇𝑖𝑂2 

τ2 ℓο τ2 ℓο 
Order1 -1.870300818 

-1.868803052 
-1.868790736 
-1.868790671 
-1.868790671 

1.015551323 
1.031642939 
1.048227799 
1.064354891 
1.079164690 

-1.870046681 
-1.868540967 
-1.868528551 
-1.868528486 
-1.868528486 

1.015551405 
1.031643157 
1.048228057 
1.064354982 
1.079164119 

Order2 

Order3 

Order4 

Order5 

 
Table 8 
The results of velocity and temperature profiles for Cu and comparing with Range-Kutta of 
forth order at φ = 0.01 

ϰ 

ℜ = 10, ℋ = 15  

κ = 1ο  

𝐶𝑢  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9899400507 
0.9597740233 
0.9095413309 
0.8393007561 
0.7491206055 
0.6390625195 
0.5091691507 
0.3594305973 
0.1897684996 
0.0000000000 

1.000000000 
0.989940056 
0.959774043 
0.909541349 
0.839300835 
0.749120200 
0.639063583 
0.509167254 
0.359428524 
0.189768944 
0.000009441 

0.000000000 
5.3 × 10−9 
1.9 × 10−8 
1.8 × 10−8 
7.8 × 10−8 
4.0 × 10−7 
1.0 × 10−6 
1.8 × 10−6 
2.0 × 10−6 
4.4 × 10−7 

0.000000000 

1.000665090 
1.000658245 
1.000637739 
1.000603658 
1.000556140 
1.000495362 
1.000421536 
1.000334885 
1.000235628 
1.000123954 
1.000000000 

1.000665090 
1.000658246 
1.000637741 
1.000603665 
1.000556159 
1.000495409 
1.000421631 
1.000335057 
1.000235916 
1.000124412 
1.000000696 

0.000000000 
1 × 10−9 
2 × 10−9 
7 × 10−9 
1.9 × 10−8 
4.7 × 10−8 
9.5 × 10−8 
1.7 × 10−7 
2.8 × 10−7 
4.5 × 10−7 

0.000000000 

 
Table 9 
The results of velocity and temperature profiles for Ag and comparing with Range-Kutta of forth 
order at φ = 0.01 

ϰ 

ℜ = 30, ℋ = 15  

κ = 3ο  

𝐴𝑔  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9883329368 
0.9536134423 
0.8966617186 
0.8187618246 
0.7215372593 
0.6067767767 
0.4762104361 
0.3312358846 
0.1725948722 
0.0000000000 

1.0000000000 
0.9883330055 
0.9536127808 
0.8966500537 
0.8186964324 
0.7213065874 
0.6061657731 
0.4748976135 
0.3288649603 
0.1689717473 
0.0000000000 

0.00000000 
6.8 × 10−8 
6.6 × 10−7 
1.1 × 10−5 
6.5 × 10−5 
2.3 × 10−4 
6.1 × 10−4 
1.3 × 10−3 
2.3 × 10−3 
3.6 × 10−3 

      0.00000000 

1.005580663 
1.005524592 
1.005356420 
1.005076261 
1.004684305 
1.004180793 
1.003566013 
1.002840267 
1.002003855 
1.001057036 
1.000000000 

1.005580663 
1.005524594 
1.005356429 
1.005076305 
1.004684436 
1.004181099 
1.003566619 
1.002841348 
1.002005642 
1.001059838 
1.000000000 

0.000000000 
2.0 × 10−9 
9.0 × 10−9 
4.4 × 10−8 
1.3 × 10−7 
3.0 × 10−7 
6.0 × 10−7 
1.0 × 10−6 
1.7 × 10−7 
2.8 × 10−6 

  0.0000000000 
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Table 10 
The results of velocity and temperature profiles for Cu and comparing with Range-Kutta of forth 
order at φ = 0.01 

ϰ 

ℜ = 10, ℋ = 15  

κ = −1ο  

𝐶𝑢  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9900599037 
0.9602259580 
0.9104591917 
0.8407013147 
0.7508847113 
0.6409464302 
0.5108461726 
0.3605882772 
0.1902477008 
0.0000000000 

1.0000000000 
0.9900598981 
0.9602259510 
0.9104591089 
0.8407010571 
0.7508840277 
0.6409449630 
0.5108437141 
0.3605854277 
0.1902470674 
0.0000000000 

0.00000000 
5.6 × 10−9 
5.1 × 10−9 
8.2 × 10−8 
2.5 × 10−7 
6.8 × 10−7 
1.4 × 10−6 
2.2 × 10−6 
2.4 × 10−6 
6.3 × 10−7 

      0.00000000 

1.000665266 
1.000658421 
1.000637915 
1.000603833 
1.000556308 
1.000495521 
1.000421679 
1.000335004 
1.000235714 
1.000124000 
1.000000000 

1.000665266 
1.000658422 
1.000637917 
1.000603839 
1.000556328 
1.000495569 
1.000421778 
1.000335189 
1.000236031 
1.000124508 
1.000000000 

0.000000000 
1.0 × 10−9 
2.0 × 10−9 
6.0 × 10−9 
2.0 × 10−8 
4.8 × 10−8 
9.9 × 10−8 
1.8 × 10−7 
3.1 × 10−7 
5.0 × 10−7 

0.0000000000 

 
Table 11 
The results of velocity and temperature profiles for Ag and comparing with Range-Kutta of forth 
order at φ = 0.01 

ϰ 

ℜ = 30, ℋ = 15  

κ = −1ο  

𝐴𝑔  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9913629754 
0.9652434077 
0.9210293418 
0.8577459408 
0.7741231184 
0.6686902243 
0.5398977818 
0.3862662800 
0.2065620179 
0.0000000000 

1.0000000000 
0.9913629378 
0.9652425589 
0.9210196899 
0.8576936947 
0.7739359585 
0.6681776595 
0.5387441910 
0.3840506640 
0.2028725979 
0.0000000000 

0.000000000 
3.7 × 10−8 
8.4 × 10−7 
9.6 × 10−6 
5.2 × 10−5 
1.8 × 10−4 
5.1 × 10−4 
1.5 × 10−3 
2.2 × 10−3 
3.6 × 10−3 

0.000000000 

1.005586407 
1.005530335 
1.005362148 
1.005081934 
1.004689833 
1.004186031 
1.003570754 
1.002844253 
1.002006792 
1.001058629 
1.000000000 

1.005586407 
1.005530337 
1.005362160 
1.005081981 
1.004689978 
1.004186391 
1.003571521 
1.002845713 
1.002009342 
1.001062789 
1.000000000 

0.000000000 
1 × 10−9 
12 × 10−8 
47 × 10−8 
1.5 × 10−7 
3.6 × 10−7 
7.7 × 10−7 
1.5 × 10−6 
2.5 × 10−6 
4.2 × 10−5 

0.000000000 
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Table 12 
The results of velocity and temperature profiles for 𝐴𝑙2𝑂3 and comparing with Range-Kutta of 
forth order at φ = 0.01 

ϰ 

ℜ = 50, ℋ = 50  

κ = 3ο  

𝐴𝑙2𝑂3  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9886405318 
0.9548529497 
0.8994703346 
0.8237498646 
0.7291758795 
0.6171841711 
0.4888074995 
0.3442423356 
0.1823368284 
0.0000000000 

1.0000000000 
0.9886406412 
0.9548523634 
0.8994582712 
0.8236838979 
0.7289561317 
0.6166526325 
0.4878208547 
0.3428778096 
0.1812877158 
0.0000000000 

0.00000000 
1.0 × 10−7 
5.8 × 10−7 
1.2 × 10−5 
6.5 × 10−5 
2.1 × 10−4 
5.3 × 10−4 
9.8 × 10−4 
1.3 × 10−3 
1.0 × 10−3 

       0.00000000 

1.005701908 
1.005644138 
1.005470943 
1.005182662 
1.004779831 
1.004263152 
1.003633436 
1.002891533 
1.002038253 
1.001074270 
1.000000000 

1.005701908 
1.005644138 
1.005470950 
1.005182699 
1.004779940 
1.004263386 
1.003633855 
1.002892204 
1.002039268 
1.001075798 
1.000000000 

0.000000000 
   0.000000000 

7.0 × 10−9 
3.7 × 10−8 
1.0 × 10−7 
2.3 × 10−7 
4.1 × 10−7 
6.7 × 10−7 
1.0 × 10−6 
1.5 × 10−6 

    0.00000000 

 
Table 13 
The results of velocity and temperature profiles for 𝑇𝑖𝑂2 and comparing with Range-Kutta of 
forth order at φ = 0.01 

ϰ 

ℜ = 50, ℋ = 50  

κ = 3ο  

𝑇𝑖𝑂2  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9886411572 
0.9548553408 
0.8994753098 
0.8237577427 
0.7291863564 
0.6171962736 
0.4888196376 
0.3442524742 
0.1823428043 
0.0000000000 

1.0000000000 
0.9886412666 
0.9548547551 
0.8994632554 
0.8236918246 
0.7289667740 
0.6166651521 
0.4878338267 
0.3428892923 
0.1812953440 
0.0000000000 

0.000000000 
1.× 10−7 
5.8 × 10−7 
1.2 × 10−5 
6.× 10−5 
2.× 10−4 
5.× 10−4 
9.× 10−4 
1.1 × 10−3 
1.0 × 10−3 

0.000000000 

1.005701907 
1.005644137 
1.005470942 
1.005182661 
1.004779831 
1.004263152 
1.003633435 
1.002891533 
1.002038253 
1.001074270 
1.000000000 

1.005701907 
1.005644137 
1.005470949 
1.005182698 
1.004779939 
1.004263386 
1.003633856 
1.002892206 
1.002039270 
1.001075800 
1.000000000 

0.00000000 
0.00000000 

1 × 10−9 
3.7 × 10−8 
1.0 × 10−7 
2.3 × 10−7 
4.2 × 10−7 
6.7 × 10−7 
1.0 × 10−6 
1.5 × 10−6 

0.00000000 

 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 103, Issue 1 (2023) 105-132 

 

120 
 

Table 14 
The results of velocity and temperature profiles for 𝐴𝑙2𝑂3and comparing with Range-Kutta of 
forth order at φ = 0.01 

ϰ 

ℜ = 50, ℋ = 50  

κ = −3ο  

𝐴𝑙2𝑂3  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9912389297 
0.9647312204 
0.9198266038 
0.8555187209 
0.7705612556 
0.6636305201 
0.5335344942 
0.3794683178 
0.2013162369 
0.0000000000 

1.0000000000 
0.9912388651 
0.9647301655 
0.9198156340 
0.8554620006 
0.7703684985 
0.6631397145 
0.5325426473 
0.3778651182 
0.1993822407 
0.0000000000 

0.000000000 
6.4 × 10−8 
1.0 × 10−6 
1.0 × 10−5 
5.6 × 10−5 
1.9 × 10−4 
4.9 × 10−4 
9.9 × 10−4 
1.9 × 10−3 
1.9 × 10−3 

     0.000000000 

1.005715886 
1.005658113 
1.005484882 
1.005196457 
1.004793256 
1.004275839 
1.003644870 
1.002901082 
1.002045220 
1.001077993 
1.000000000 

1.005715886 
1.005658114 
1.005484892 
1.005196505 
1.004793418 
1.004276264 
1.003645812 
1.002902929 
1.002048519 
1.001083433 
1.000000000 

0.000000000 
1 × 10−9 
1 × 10−8 
4.8 × 10−7 
1.6 × 10−7 
4.2 × 10−7 
9.4 × 10−7 
1.8 × 10−6 
3.2 × 10−6 
5.4 × 10−6 

   0.000000000 

 
Table 15 
The results of velocity and temperature profiles for 𝑇𝑖𝑂2and comparing with Range-Kutta of 
forth order at φ = 0.01 

ϰ 

ℜ = 50, ℋ = 50  

κ = −3ο  

𝑇𝑖𝑂2  

ℏ(ϰ) RK~4 Residual error Θ(ϰ) RK~4 Residual error 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

1.0000000000 
0.9912384603 
0.9647294044 
0.9198227460 
0.8555124256 
0.7705525364 
0.6636199012 
0.5335230986 
0.3794579414 
0.2013094037 
0.0000000000 

1.0000000000 
0.9912383959 
0.9647283502 
0.9198117830 
0.8554557411 
0.7703599069 
0.6631294428 
0.5325320234 
0.3778561880 
0.1993777053 
0.0000000000 

0.000000000 
6.4 × 10−8 
1.0 × 10−6 
1.0 × 10−5 
5.6 × 10−5 
1.9 × 10−4 
4.9 × 10−4 
9.9 × 10−4 
1.6 × 10−3 
1.9 × 10−3 

        0.00000000 

1.005715879 
1.005658106 
1.005484875 
1.005196450 
1.004793249 
1.004275833 
1.003644866 
1.002901077 
1.002045217 
1.001077991 
1.000000000 

1.005715879 
1.005658107 
1.005484885 
1.005196499 
1.004793412 
1.004276258 
1.003645806 
1.002902924 
1.002048515 
1.001083430 
1.000000000 

0.00000000 
1.0 × 10−9 
1.0 × 10−8 
4.9 × 10−8 
1.6 × 10−7 
4.2 × 10−7 
9.4 × 10−7 
1.8 × 10−6 
3.2 × 10−6 
5.4 × 10−6 

  0.000000000 

 
Table 16 

Variation in 
𝑑Θ(1)

𝑑𝜘
 with varying 𝑃𝑟, 𝐸𝑐𝑎𝑛𝑑 𝜉 when ℜ =

30, ℋ = 25, 𝜅 = 1𝜊  and   φ = 0.04 for Cu 
𝑃𝑟  𝑑Θ(1)

𝑑𝜘
 

𝐸𝑐  𝑑Θ(1)

𝑑𝜘
 

𝜉 𝑑Θ(1)

𝑑𝜘
 

0.1 
0.5 
0.7 
0.9 

-0.00705864823 
-0.02546210306 
-0.03462516897 
-0.04376251138 

0.1 
0.5 
0.7 
0.9 

-0.0474297702 
-0.2273333328 
-0.3172851142 
-0.4072368952 

0.1 
0.5 
0.7 
0.9 

-0.272329924 
-1.282357059 
-2.034040955 
-3.035099216 
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Table 17 

Variation in
dℏ(1)

dϰ
 and 

dΘ(1)

dϰ
 with varying ℜ and  ℋwhen 𝑃𝑟 = 0.01, 𝐸𝑐 =

0.001, 𝜅 = 1𝜊  and  φ = 0.04 for Ag 
ℜ 𝑑ℏ(1)

𝑑𝜘
 

𝑑Θ(1)

𝑑𝜘
 

ℋ 𝑑ℏ(1)

𝑑𝜘
 

𝑑Θ(1)

𝑑𝜘
 

30 
50 
70 
100 

-1.975120129 
-1.914490763 
-1.853731605 
-1.762555091 

-0.002903634606 
-0.002899162416 
-0.002893812489 
-0.002884068494 

30 
50 
70 
100 

-1.990634043 
-2.052207818 
-2.112939752 
-2.2-2274227 

-0.002994687629 
-0.003361734892 
-0.003732622214 
-0.004294359156 

 
Table 18 

Variation in 
dℏ(1)

dϰ
 and 

dΘ(1)

dϰ
with varying 𝜑, 𝐷𝑎 and when ℜ = 30, ℋ =

25,  𝑃𝑟 = 0.01, 𝐸𝑐 = 0.001, 𝜅 = 1𝜊 and  φ = 0.04 for 𝐴𝑙2𝑂3 
𝜑 𝑑ℏ(1)

𝑑𝜘
 

𝑑Θ(1)

𝑑𝜘
 

𝐷𝑎  𝑑ℏ(1)

𝑑𝜘
 

𝑑Θ(1)

𝑑𝜘
 

0.1 
0.5 
0.7 
0.9 

-1.998970567 
-2.097927895 
-2.113577360 
-2.115800240 

-0.002832272360 
-0.002571960694 
-0.002506068965 
-0.002456475728 

0.1 
0.5 
0.7 
0.9 

-2.610348384 
-2.052145775 
-2.008244551 
-1.983681768 

-0.002921400176 
-0.002907558576 
-0.002905400925 
-0.002904107772 

 
Table 19 

Variation in 
dℏ(1)

dϰ
 and 

dΘ(1)

dϰ
  with 

varying 𝜅 when ℜ = 30, ℋ =
25, 𝑃𝑟 = 0.01, 𝐸𝑐 = 0.001  and  φ =
0.04  for 𝑇𝑖𝑂2 
𝜅 𝑑ℏ(1)

𝑑𝜘
 

𝑑Θ(1)

𝑑𝜘
 

−5ο 
−3ο  
  3ο 
 5ο 

-2.131355431 
-2.077918650 
-1.924611450 
-1.875764598 

-0.06622805050 
-0.02302097556 
-0.02300030658 
-0.06616318441 

 
Figure 2-7, illustrate different Prandtl values. The diagrams below show how each velocity file 

and temperature file behave when we use different values for the physical parameters, noting the 
increase and decrease in speed and temperature when using the analytical method used to produce 
good, efficient, and close results. Each of the diagrams below will be discussed in relation to its values 
and changes number. 

This figure shows the behaviour of velocity profile and temperature profile when taken different 
values of Prandtl number and fixed other parameters (ℜ = 25, ℋ = 10, 𝜑 = 0.01, 𝜅 = 1𝜊) it clears 
how it increasing in velocity profile and almost constant at temperature profile. 
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Fig. 2. Various Prandtl number values 

 
At this figure the plane shows how the different values of Hartman number made the velocity 

profile decreasing and fixed in temperature profile when we take the values of physical parameter 
(ℜ = 25, 𝜑 = 0.01, 𝜅 = 1𝜊). 
 

 
Fig. 3. Various Hartman number values 

 
As seen in this figure when take a different values of nanoparticle volume fraction, the behaviour 

of velocity profile is decreasing and fixed along the temperature profile when (ℜ = 25, ℋ = 10, 𝜅 =
1𝜊). 
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Fig. 4. Various nanoparticle volume fraction values 

 
When take different values of Reynolds number there is an increasing in velocity profile as clear 

in plan above and fixed in temperature profile when (ℋ = 10, 𝜑 = 0.01, 𝜅 = 1𝜊). 
 

 
Fig. 5. Various Reynolds number values 

 
At this plan when we take different values of Eckert number shows how the velocity profile are 

wobbling between increasing and decreasing, and the temperature profile was increasing clearly as 
shown above when (ℜ = 25, ℋ = 10, 𝜑 = 0.01, 𝜅 = 1𝜊). 
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Fig. 6. Various Eckert number values 

 
In this plan when take different type of open angle shows how increasing in both velocity and 

temperature profiles when (ℜ = 25, ℋ = 10, 𝜑 = 0.01). 
 

 
Fig. 7. Various open angle values 

 
Figure 8-12, take many states of the four nanoparticle materials as shown where, Figure 8, see 

how increasing in velocity profile and temperature profile when we change in Reynolds number. 
Figure 9, shows increasing in velocity profile and temperature profile at different values of Hartman 
number. Figure 10, various values of nanoparticle concentration (𝜑) make increasing in velocity 
profile and temperature profile. Figure 11, shows increasing at temperature profiles when take 
different values of Prandtl and Eckert number. Figure 12, shows how temperature profile was 
decreasing at different values of Da, and increasing when take different values of 𝜉. Figure 13, shows 
the effective of channel angle on velocity profile and temperature profile, where it decreases and 
increases respectively. 
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Fig. 8. Effect of Reynolds number normalized velocity profile and normalized temperature for nanoparticles 
nanofluid Cu when ℋ = 2  ,   𝜅 = 3𝜊 , φ = 0.01 

 

 
Fig. 9. Effect of Hartman number on normalized velocity profile and normalized temperature for 
nanoparticles nanofluid Cu when ℜ = 30  ,   𝜅 = 3𝜊 , φ = 0.01 
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Fig. 10. Effect of nanoparticle concentration normalized velocity profile and normalized temperature for 
nanoparticles nanofluid Cu when ℋ = 10  , ℜ = 30 ,   𝜅 = 3𝜊 

 

 
Fig. 11. Effect of Prandtl number and Eckert number on normalized temperature for nanoparticles 
nanofluid Cu when ℋ = 15, ℜ = 30  ,   𝜅 = 3𝜊 , φ = 0.03 
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Fig. 12. Effect of Darcy number and Dimensionless heat generation parameter on Normalized temperature 
for nanoparticles nanofluid Cu when ℋ = 15, ℜ = 30  ,   𝜅 = 3𝜊 , φ = 0.03 

 

 
Fig. 13. Effect of channel angle on normalized velocity profile and normalized temperature for 
nanoparticles nanofluid Cu when ℋ = 15, ℜ = 30 , φ = 0.03. 

 
Figure 10, depicts the effect of nanoparticle concentration (𝜑) on temperature distribution. This 

demonstrates that the addition of nanoparticles to fluid raises the temperature. The plot shows the 
heat transfer effect without nanoparticles through the Jeffery Hamel channel when 𝜑 is zero. As seen 
in Figure 8, increasing represents an improvement in the temperature distribution. The effect of 
Prandtl number (𝑃𝑟) and Eckert number (𝐸𝑐) on temperature is shown in Figure 11. As seen in the 
figures, the effect of (𝑃𝑟) and (𝐸𝑐) on heat transfer is significant. When the (𝑃𝑟) and (𝐸𝑐)  parameter 
is increased, the kinematic viscosity becomes more dominant over the thermal diffusivity, implying a 
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larger momentum boundary layer than a thermal boundary layer. The effect of Darcy number (𝐷𝑎) 
and Dimensionless heat generation parameter(𝜉) on temperature distribution is shown in Figure 12, 
where temperature distribution decreases as 𝐷𝑎 increases, and increases as (𝜉)  increases. Internal 
generated heat decreases due to decreased flow through the Jeffery Hamel channel as flow with 
porous media becomes obstructed as porosity increases. Temperature distribution decreases as Da 
decreases, as illustrated in the Figure 12. As a result, Table 6, shows the rate of approximation for 
the PIS's convergence. The numerical solution obtained by Runge-Kutta fourth order is used to 
validate the varying order of the approximate solution obtained using the PIS. The PIS solution 
improves with increasing order of approximation. Khan et al., [57] demonstrates the solution for PIS 
convergence.  By working in the PIS method on the usual non-linear Jeffrey Hamel equation and by 
looking at the results obtained in the tables and charts when controlling the values of physical 
parameters and showing full compatibility when comparing the presented method with a numerical 
method such as the fourth-order Range Kutta, as well as it can be said that this method is important 
for work In order to solve the turbulent flow problem of the Jeffrey Hamel equation, the tables show 
good agreement and excellent flow results in both divergent and convergent channels, that is, 
nanofluids with good viscosity and a certain density show good flow. 
 
5. Conclusion 
 

The effect of nanofluid flow through a converging/diverging channel with a porous medium on 
internally generated heat was investigated in this study. The momentum and energy equations were 
used to calculate the flow and heat transfer. Because most practical problems were nonlinear, the 
perturbation iteration scheme (PIS) was chosen as the appropriate method of analysis. In this work, 
the impacts of   heat transfer on the Jeffery-Hamel nanofluid flow have been discussed. The collected 
findings demonstrate that PIS is an extremely handy, convenient, practical tool and strategy for 
obtaining a very precise solutions to nonlinear problems. Furthermore, the obtained solutions 
utilizing the proposed methodology were compared to approach numerical Range-Kutta of fourth 
order. PIS findings show a high level of agreement with numerical values. Working in this way gives 
us new solutions, starting with imposing new initial conditions with more constants to get results 
that have clear convergence and high accuracy that can be noticed when compared with other 
numerical methods previously studied on the same model in previous literature. The analytical 
results obtained in the presented tables indicate that they are fully compatible, and this appears 
when comparing them with the numerical methods and taking the error between them. Also, when 
displaying the diagrams and drawings and working on controlling the physical parameters, both the 
speed and temperature file indicate the good fluidity of the flow of nanofluids as well as the viscosity 
and density It takes a good turn in flow and ease of control when working practically in its 
applications. Also, the results of the analysis were used to investigate the effect of nanofluid rheology 
on transport performance. The obtained results show that 

 
i. Reynolds number variation has a significant effect on fluid flow. The velocity of fluid 

transport is reduced when the Reynolds number is high. 
ii. As the channel angle increases at the entrance, the flow at the exit decreases. 

iii. The effect of Darcy number on radial fluid velocity shows that fluid velocity decreases 
as it approaches the center plate, but fluid velocity increases as it approaches the center 
plate. 

iii. Heat transfer analysis shows that as the Darcy number increases, the temperature 
decreases due to less flow through the channel. Blood flow through arteries and veins, 
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environmental flows through canals, molten polymer extrusion, and cold drawing 
operation through converging dies are all practical applications relevant to the study.  

 
The future study of this method is done by expanding the horizons of working on nanofluids by 

taking fluids with higher densities. For example, we can replace water with oil or alcohol, or a mixture 
between oil and water, and so on, with different nanoparticles to obtain a more complex fluid and 
an advanced issue that can be used in various fields. 
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