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Numerical predictions of heat transfer have been made for laminar free and mixed 
convective heat transfer from non-isothermal vertical plane surface to supercritical water. 
Variation of all the thermo-physical properties of the supercritical fluid under investigation 
have been considered. The numerical scheme employed in the present investigation is 
first validated with respect to experimental data for isothermal wall conditions and good 
agreement is achieved with maximum deviation not exceeding 15 %. Linear and parabolic 
variation of wall temperatures are considered for the present investigation. Computations 
are made for two pressures of 225 Bar and 235 Bar, for wide range of temperature 
difference from 4K to 20K. The values of temperature difference are chosen. Based on the 
results obtained, correlations have been proposed to evaluate the Nusselt numbers for 
both free and mixed convection with pressure ratios of P/Pc = 1.02 (p = 225 bar) and P/Pc 
= 1.065 (p = 235 bar). The correlations cover a range of Rayleigh numbers, Rax from 106 to 
109 for Free Convection and grashoff Number/Reynolds Number2 ranging from 0.4 to 8 for 
Mixed convection. The proposed correlations for local Nusselt numbers do not exceed 
maximum deviation of 15% from the predicted values. It has been found that the 
maximum deviation occurs for those cases for which the pseudo-critical temperature, T* 
is within the boundary layer. It is further observed that for these cases both the velocity 
and temperature profiles are distorted at locations where the temperature is close to the 
pseudo-critical temperature thereby affecting the gradients at the wall, which in turn 
influences the heat transfer coefficient. 
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1. Introduction 
 

Heat transfer problems can be divided in into four regimes: gaseous, liquid, two-phase and near 
critical. Supercritical fluids (fluids in the near critical region) can be termed as fluids which do not 
possess two distinct phases above a certain temperature and above a certain pressure [1]. The 
necessity of a comprehensive study on heat transfer in fluids beyond their critical temperature and 
pressure is of a great scope in recent times due to their extensive applications in numerous fields. 
Supercritical water is utilized in multidisciplinary areas like oxidation, hydrolysis, gasification, power 

 
* Corresponding author. 
E-mail address: rajendra.prasad@manipal.edu 
 
https://doi.org/10.37934/arfmts.106.2.2253 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 106, Issue 2 (2023) 22-53 

 

23 
 

generation and many more. Fluids like carbon dioxide, helium and nitrogen in the near critical region 
also have been used in many industrial applications. Kakac [2], Polyakov [3], and Hall [4] have 
reported that, the studies on the problem of free convection to the supercritical fluids have been 
very complex due to the severe variation of various thermophysical properties in the near critical 
region, especially near the pseudo-critical temperature, T*. Numerous experiments have been carried 
out, considering carbon dioxide, water and helium as the primary working fluids.  

The variation of thermophysical properties (cp, k, μ and ρ) of water at three different supercritical 
pressures, namely 225 bar, 235 bar and 245 bar are obtained from NIST thermo-physical database 
[5] and plotted as shown in Figure 1 to Figure 4. It can be observed from these figures, the severe 
variation of the properties, which are generally non-linear in nature, occur at temperatures close to 
T*. and this type of variation of the properties make the governing equations nonlinear and this poses 
additional difficulty in solving these equations. Figure 1 shows that for 225 bar cp varies by a factor 
14 near T*, whereas for 245 bars, the factor reduces to about 5.  

 

 
Fig. 1. Variation of cp with respect to temperature and 
pressure for water 

 

Figure 2 indicates that there is a significant spike in the value of k near T* for 225 bars, whereas 
the spike becomes insignificant for 245 bars. 

The thermal conductivity shown in Figure 3 and Figure 4 show that, there are no spikes in the 
values of viscosity and density, but there is steep reduction in their values near T*. It has been 
established by almost all the earlier investigators, that the correlations to calculate the heat transfer 
coefficients, based on constant property solutions are significantly different from the experimental 
data for near-critical fluids. It is therefore necessary to solve the governing equations for supercritical 
fluids, taking into account the actual variation of all the required fluid properties. 
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Fig. 2. Variation of k with respect to temperature and 
pressure for water 

 

 
Fig. 3. Variation of μ with respect to temperature and pressure 
for water 

 
A number of investigations (theoretical and experimental) on the problem of free convection to 

supercritical fluids [6-10] have been reported in literature. Almost all theoretical investigations [6-
10] are carried out either by using principle of similarity or using integral method to solve the 
governing equations. In all these cases, the values of ΔT (ΔT = Tw − T∞) is less than 16 K. 
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Fig. 4. Variation of ρ with respect to temperature and pressure 
for water 

 
Seetharam and Sharma [11,12] have numerically solved the problem of laminar free convective 

heat transfer from a plane vertical surface to carbon dioxide (P/Pc= 1.02 to 1.35)   and water (P/Pc= 
1.02 to 1.11) in the near critical region using Patankar-Spalding implicit finite different scheme [11-
12] with suitable modifications to account for the severe variation of the all the required properties 
of the fluid. They have also proposed correlations for local Nusselt number. Their investigation is 
restricted to uniform heat flux (qw=1000 W/m2 to 50000 W/m2) and constant wall temperature (∆T ≤ 
20K) boundary conditions. Seetharam and Sharma [13] have also investigated the problem of 
turbulent free convection from a plane vertical surface with uniform wall heat flux (qw= 1000 W/m2 
to 25000 W/m2) to supercritical carbon dioxide at 75 Bar.  

In the literature, the problem of forced and mixed convective heat transfer to near critical fluids 
from vertical plane surface is sparse. Boundary layer velocity as well as temperature profiles have 
been determined in the turbulent flow regime for forced convective heat transfer to supercritical 
nitrogen from a plane isothermal vertical surface [14]. Seetharam et.al., [15] have numerically solved 
the problem of laminar forced and mixed convection heat transfer from a plane vertical isothermal 
surface (∆T ≤ 30K) to supercritical carbon dioxide (P/Pc= 1.02 to 1.35) using the modified Spalding 
and Patankar implicit FDM [11,12]. They have investigated both aiding flow and opposing flow 
situations. 

Very little information is available on the problem of free convection to supercritical fluids from 
plane vertical surfaces with non-uniform wall temperature or non-uniform heat flux conditions 
Teymourtash and Ebrahimi Warkiani [16] have investigated numerically, the problem of laminar free 
convection with uniform or non-uniform prescribed wall temperature (linear variation) and 
Teymourtash et al., [17] have investigated the problem of free convection for vertical flat plate with 
uniform or non-uniform prescribed wall heat flux (linear variation) to a  supercritical fluid. For both 
the problems, the authors have derived a new equation for thermal expansion coefficient in a 
supercritical fluid based on Redlich–Kwong [21] equation of state, as a function of pressure, 
temperature, and the compressibility factor. Calculated values of thermal expansion coefficient have 
been compared with the experimental results which show better accuracy in comparison with van 
der Waals equation of state. The governing systems of partial differential equations were solved 
numerically using the finite difference method. The local Nusselt number was calculated and plotted 
as a function of the local Rayleigh number. Using supercritical fluids in constant heat flux free 
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convection, decrease the wall temperature in comparison with sub critical fluids. It is observed that 
positive and negative slopes of surface heat flux distribution increases and decreases the heat 
transfer coefficient respectively. In the linear wall temperature case, they have found that a positive 
slope of temperature distribution (dTw/dx >  0) will increase the heat transfer rate, and a negative 
one (dTw/dx < 0) will decrease the heat transfer rate.  

In both the investigations the authors have assumed that Boussinesq approximation is completely 
valid, by stating that for the supercritical condition far from the critical point with more temperature 
differences, the Boussinesq approximation is completely valid. In addition, they have assumed that 
the other fluid properties, namely fluid viscosity, thermal conductivity and specific heat at constant 
pressure are constants in the flow field. These assumptions are not valid for fluids in the near critical 
region, especially for pressures close to critical pressure and temperatures in the flow field, is in the 
neighbourhood of T*. They have obtained solutions for carbon dioxide for p = 110.7 bar (p/pcr = 1.5) 
where the property variation is not very severe and hence their solutions seem to be valid using 
Boussinesq approximation. They could not compare their predictions with experimental data as no 
such data is available, but compared their predictions with correlation proposed by Churchill and Chu 
[22] which is based on predictions for constant property fluids, to know how far their predictions 
deviate from the correlation proposed by Churchill and Chu [22]. It should be pointed out that, 
whether, their solution using Boussinesq approximation is valid for pressures close to critical pressure 
(p/pcr ≤ 1.4 for carbon dioxide) and temperatures in the neighbourhood of T*. The velocity and 
temperature profiles presented by them do not indicate any distortion, whereas Seetharam and 
Sharma [8] have predicted that, whenever T* lies within the boundary layer, distortion of the profiles 
occur and hence affect the velocity and temperature gradient at the wall, thereby influencing the 
drag coefficient and Nusselt number respectively. From this comparison, it can be concluded that the 
cases studied by Teymourtash and Ebrahimi Warkiani [16] and Teymourtash et al., [17], T* did not 
lie within the boundary layer. They have not proposed any correlation to predict the heat transfer 
coefficient. Further Basha et al., [20] carried out thermodynamic analysis of natural convection 
supercritical water flow past a stretching sheet and concluded that the RK-EOS is the suitable method 
to find convection properties. Using the developed EOS approach Basha et al., [21] were successful 
in the analysis of supercritical free convection in Newtonian and couple stress fluids. Basha et al., [22] 
have also contributed to find heat transfer characteristics of supercritical nitrogen using the Redlich-
kwong equation of state.  

Regardless of lot of research in this area, there is a need for accurate investigations on the 
problems of free, forced, and mixed convective heat transfer to near critical fluids from plane vertical 
surfaces with varying wall temperature and varying wall heat flux conditions. 

In the present investigation, numerical predictions have been made for free and mixed convective 
heat transfer to supercritical water from a plane vertical non-isothermal surface. Linear surface 
temperature variation and parabolic variation of surface temperature are chosen for two 
supercritical pressures of water (225 Bar and 235 Bar). Based on the results obtained, a correlation 
to determine the local Nusselt number is proposed for each case. 

 
2. Problem Statement 

 
Buoyancy-driven convection to supercritical water over a vertical plate with variable wall 

temperature is considered for investigation. Steady, two-dimensional laminar boundary layer flow 
with negligible viscous dissipation is assumed. Numerical predictions are made using the CFD package 
FLUENT.  
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2.1 Physical Model  
 
Figure 5 represents a two-dimensional rectangular plate with acceleration due to gravity in the 

negative x direction (g= -9.81 m/s2). Top and bottom walls are insulated (zero heat flux). Walls are 
solid and subjected to no slip boundary conditions (zero velocity components). The plate acts as a 2-
D vertical plane surface (with no porosity) in x-y plane. The length of the wall varies for different wall 
temperatures (Tw) as the study is confined to laminar flow of the fluid. The effective length of the 
wall till which the fluid remains laminar also varies for various non-isothermal walls (with different 
values of ∆TL). Beyond the effective length of the wall, the fluid becomes turbulent. 

 

 
Fig. 5. Rectangular 2D vertical plane surface 

 
2.2 Meshing  

 
Figure 6 represents the structured fine mesh of vertical plate with 82511 elements. Mesh is 

refined with the face refinement option. All triangular elements are converted to quad elements to 
ensure uniform corner angle.  

 

 
Fig. 6. Mesh configuration of plate 
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Figure 7 represents mesh inflation in the near wall region to ensure an effective boundary layer 
mesh with greater number of elements. The average orthogonal quality was found to be as high as 
0.9997 and average skewness was as low as 3.275e-003. 

 

 
Fig. 7. Mesh in the near wall 
region 

 
Grid independence study was carried out for free and mixed convection cases (P/Pc= 1.02) with 

non-isothermal walls, Nusselt number with respect to x was computed for 3 mesh sizes of 57507 
elements, 82511 elements and 107503 elements. Based on the study, mesh size of 82511 elements 
is selected, as the error for Nux with respect to other mesh sizes did not exceed ±1%. Mesh size of 
107503 elements showcased significantly higher computing time. Also, based on mesh studies for 
isothermal formulation from an existing literature [10], a mesh with 82511 elements is selected as 
the most appropriate mesh size, as results are validated for the same fluid (supercritical water) at the 
same pressures (225 Bar and 235 Bar) and similar boundary conditions (T∞=643.16K and ∆T up to 
20K).  

 
2.3 Numerical Method 

 
The numerical analysis is carried out with computational fluid dynamics method of solving, where 

FLUENT is employed. FLUENT is a computational fluid dynamics software package that contains the 
extensive physical modelling abilities essential for modelling supercritical fluid flow and enhance heat 
transfer. Thermophysical property variations are taken into consideration and fed into the model. All 
the required properties are taken from NIST [5] and polynomials are fitted which give properties at 
any desired temperature which are within ±1% from the NIST data. 
 
2.4 Validation of Numerical Predictions with Experimental Data 
 

The numerical method used in the present investigation is first validated with respect to 
experimental data of Fritsch and Grosh [6] for laminar free convection from plane vertical isothermal 
surface to supercritical water, since no experimental data is available for variable wall temperature 
conditions, Table 1 shows the comparison of numerically predicted surface heat flux variation with 
ΔT at a particular location (x = 0.3 m) with available experimental data for a pressure of 234.5 Bar (T* 
=652.32 K) at three different  average values of  T∞. It can be concluded from Table 1 that, for most 
of the cases studied, the maximum deviation does not exceed ±15 % and the numerically predicted 
valuesof surface heat flux is comparatively higher than those obtained by experiments. The deviation 
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may be attributed to experimental errors and also to the different sources used to obtain the 
properties of supercritical water at this pressure (P = 234.5 Bar).  
 
 

Table 1 
Validation of numerical results with experimental data of 
Fritsch and Grosh [6] 

SL No T∞ (K) ∆T (K) qNum(W/m2) qExp(W/m2) Error (%) 

1 651.50 1.71 3264.29 3265.00 -0.02 
2 651.44 2.77 5307.19 5088.35 4.30 
3 651.49 4.04 7360.79 7126.22 3.29 
4 651.48 5.41 9099.36 8769.76 3.76 
5 651.52 6.27 9715.19 9738.22 -0.24 
6 651.57 6.91 10576.68 10574.19 0.02 
7 652.12 1.80 3164.40 2757.11 14.77 
8 652.05 3.62 5836.71 5050.50 15.57 
9 651.98 5.58 8445.96 7340.73 15.06 
10 651.99 6.59 9470.11 8321.81 13.80 
11 652.03 7.87 10472.79 9574.18 9.39 
12 652.13 8.51 11873.03 10552.10 12.52 
13 652.04 1.88 2433.93 2230.30 9.13 
14 652.38 2.84 3995.79 3482.67 14.73 
15 652.11 3.21 4789.04 4255.54 12.54 
16 652.09 4.77 6869.30 6119.90 12.25 
17 652.37 6.68 8223.05 7239.78 13.58 
18 652.12 7.61 10026.37 8990.58 11.52 

 
To know the exact nature of variation of surface heat flux with respect to ΔT the tabulated values 

are shown graphically in Figure 8 to Figure 10. It is observed from these figures that the nature of 
variation is similar for both experimental and numerical investigations. It should be noted that Figure 
10 shows a variation different from those indicated in Figure 8 and Figure 9, but similar to the 
experimental predictions. 

 

 
Fig. 8. Variation of q with ∆T for average T∞= 651.50 Kat x = 0.3 
m for 234.5 Bar 
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This is due to the fact that in all the cases shown in Figure 8 and Figure 9, T* lies outside the 
thermal boundary layer, whereas in Figure 10 for data points 14 and 17 in Table 1, the pseudo critical 
temperature T* lies inside the thermal boundary layer, whereas for the remaining data points, T* lies 
outside the thermal boundary layer. Based on this comparison it was concluded that the numerical 
scheme used for validation can also be used for the present investigation. 

 

 
Fig. 9. Variation of q with ∆T for average T∞= 652.05 K atx = 0.3 
mfor 234.5 Bar 

 
The present study is a laminar steady state 2D planar formulation with buoyancy driven aiding 

flow (Tw>T∞). Pressure based solver is employed for the current work, where the primary variables 
remain pressure and momentum and a cell-based approach is used to solve the governing equations. 
SIMPLEC algorithm is implemented for velocity and pressure coupling. PRESTO is selected as the 
interpolation scheme for determining cell-face pressures. The upwind scheme of the second order is 
applied for the discretization of equations. To obtain a well converged solution, the under-relaxation 
factors for the energy and density are reduced to 0.8 from 1 (default value) to smoothen the variation 
in temperature and its dependent properties in between iterations. The absolute convergence 
criterion for the present simulation is that the RMS residual values must be less than 10-7 for energy 
and for the other variables like continuity; the RMS residuals should be less than 10-4. 
 

 
Fig. 10. Variation of q with ∆T for average T∞= 652.20 K at x = 
0.3 mfor 234.5 Bar 
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2.5 Boundary Conditions 
 
The inlet free stream temperature is 643.16 K (T∞) for all the simulations. Inlet free stream 

velocity varies for free and mixed convection. For free convection u∞= 10−5 m/s (
Gr

Re2
> 10), and for 

mixed convection u∞ = 0.070 m/s (
Gr

Re2  lies between 0.1 and 10). 

 
2.6 Wall Temperature Variation  

 
Wall temperature is a function of distance measured parallel to the direction of motion of fluid 

(x).  
(a) Linear variation of wall temperature 
The general form of linear variation of wall temperature can be written as 

 
ΔT(x)

ΔTL
= ax + b                               (1) 

 
where ΔT(x) =Tw(x) −  T∞ 

If we assume that ΔT(x) = 0 at x = 0, and if ΔT(x) = ΔTLat x= L, then Eq. (1) reduces to a simple form 
as 
 
𝚫𝐓(𝐱)

𝚫𝐓𝐋
=

𝐱

𝐋
 

 
Or,                                  
 

ΔT(x) =Tw(x) −  T∞= ΔTL (
x

L
)                                                (2) 

 
(b) Parabolic variation of wall temperature: 
The parabolic variation of wall temperature with ΔT(x) = 0 at x =0 gives the wall temperature 

distribution as, 
 

ΔT(x) =Tw(x) −  T∞= ΔTL (
x

L
)

2

                                                (3) 

 
Expressions for wall temperature as a function of distance from the leading edge Eq. (2) and Eq. 

(3) are incorporated as the wall temperature boundary conditions in numerical simulations.  
 

3. Results and Discussion 
3.1 Results for Free Convection 
3.1.1 Velocity and temperature profiles for linear wall temperature variation case 

 
Figure 11 and Figure 12 show the velocity profiles for linear wall temperature variation, for water 

at 225 bar and 235 bar and at x = 0.06 m, for five different values of ΔTL It can be seen from these 
figures that, the maximum velocity in the boundary layer increases with increase in ΔTL and the 
location at which this maximum occurs shifts towards the wall. 
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Fig. 11. Velocity profiles for different values of ΔTL at x = 0.06 m for 
water at 225 bars for free convection with linear wall temperature 
variation 

 
Similar profiles are obtained for the case of parabolic variation of wall temperature also (not 

shown), except that for linear variation of wall temperature, the maximum velocity in the boundary 
layer increases from 0.015 for ΔTL = 4 K  to 0.052 m/s for ΔTL = 20 K  , while for parabolic variation of 
wall temperature, the corresponding maximum velocity decreases to 0.01 m/s  for ΔTL = 4 K  to 0.049 
m/s  for ΔTL = 20 K .This is obvious because, for the same value of   ΔTL and for same x, parabolic wall 
temperature variation gives lower value of Tw than that for linear variation of wall temperature at any 
x between 0 and L , thereby reducing the buoyancy force and hence the velocity. 

 

 
Fig. 12. Velocity profiles for different values of ΔTL at x = 0.06 m for water 
at 235 bars for linear wall temperature variation 
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Fig. 13. Temperature profiles for different values of ΔTL at x = 0.06 m for 
water at 225 bars for linear wall temperature variation 

 
The temperature profiles for different values of ΔTL (ΔTL = [𝑇𝑤]𝑥=𝐿 − T∞) for water at 225 bar and 

235 bar respectively for x = 0.06 m for linear wall temperature variation are shown in Figure 13 and 
Figure 14. It can be seen from these figures that as ΔTL increases the temperature gradient at the wall 
increases and hence increases the wall heat flux, resulting in higher heat transfer coefficients. Further, 
the temperature gradient at the wall for all values of ΔTL is higher for 225 bar than that for 235 bar 
pressure resulting in higher wall heat flux, and hence higher heat transfer coefficient. Similar profiles 
are obtained for parabolic variation of wall temperature also. 
 

 
Fig. 14. Temperature profiles for different values of ΔTL at x = 0.06 m for water at 235 
bars for linear wall temperature variation 
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3.1.2 Wall heat flux and heat transfer coefficient for linear wall temperature case 
 
The variation of wall heat flux with x for different values of ΔTL for free convection for linear wall 

temperature variation are shown in Figure 15 and Figure 16 respectively. It can be seen from Figure 
15 that, for values of ΔTL equal to 4 K and 8 K, the wall heat flux increases with x for the entire length 
considered. But for the remaining values of ΔTL, the wall heat flux increases with x up to a certain 
length and then remains practically constant over a certain length and then once again increases with 
x. This effect will persist up to a certain length. This nature of variation can be attributed to the fact 
that for all these cases T* lies in the boundary layer. For the case of ΔTL= 12 K, Tw ≈ T* for x equal to 
about 0.008m and one can expect the distortion of the velocity and temperature profiles for this value 
of x and this distortion will result in decreasing the temperature gradient and hence the wall heat 
flux. This effect will persist up to certain value of x, with the result, there is hardly any variation of 
wall heat flux with x. Beyond this value of x, the location of T* will be considerably away from the wall 
and presence of T* will not affect the temperature gradient at the wall and hence the wall heat flux.  

 

 
Fig. 15. Variation of wall heat flux with x for free convection for different values of ΔTL for water at 225 
bars for linear wall temperature variation 

 
Similar nature of variation of will heat flux with x is predicted for 235 bar also as shown in Figure 

16, except that the effect of T* is not so significant as for the case for 225 bar pressure. 
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Fig. 16. Variation of wall heat flux with x for different values of ΔTL for free convection for water 
at 235 bars for linear wall temperature variation 

        
In order to know the influence of the nature of wall temperature distribution on the wall heat 

flux, a plot of wall heat flux versus x for two different values of ΔTL, namely, ΔTL = 4 K, for which T* 
does not lie within the boundary layer, and ΔTL = 16 K for which T* lies within the boundary layer, is 
shown in Figure 17 for 225 bar pressure for both linear wall temperature and parabolic variation of 
wall temperature. It can be seen from this figure, that for the case of ΔTL = 4 K, T* does not lie within 
the boundary layer, the wall heat flux is higher for the linear wall temperature for all values of x, 
though the difference in magnitude is not very significant. On the other hand, for ΔTL = 16 K, where 
T* lies within the boundary layer, the plot shows that the wall heat flux for linear wall temperature 
case is significantly different from that for the parabolic wall temperature case till a value of x (say x*) 
is reached. At x = x*, for the liner wall temperature case there is a sudden change in the slope, such 
that (dqw/dx) is practically zero and this persists up to a certain value of x, beyond which qw increases 
with x. But this type of variation is not observed for the parabolic wall temperature case and further 
the rate of increase of qw is quite large for parabolic wall temperature case.     
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Fig. 17. Variation of wall heat flux with x for two values of ΔTL for free convection for water at 225 bars 
for both linear and parabolic wall temperature variations 

              
Figure 18 and Figure 19 show the variation of heat transfer coefficient, h with x for five different 

values of ΔTL at x = 0.06 m for water at 225 bar and 235 bar respectively, for linear wall temperature 
variation. It can be seen from Figure 18, that, for ΔTL = 4 K and 8 K, h increases with x continuously, 
where as   for other values of ΔTL, h initially increases with x, reaches a maximum and then decreases 
with increase in x. This due to the effect of T* on the temperature profile. It can also be seen from 
Figure 18, that the value of x at which the maximum heat transfer coefficient occurs decreases with 
increase in ΔTL.  

 

 
Fig. 18. Variation of h with x for different values of ΔTL for free convection for water at 
225 bars with linear wall temperature variation 
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The plot for 235 bar shown in Figure 19, indicates a similar behavior of h with respect to x, but 
the variation is smoother than that for 225 bar pressure. It can also be seen from this figure that for 
235 bar pressure, for ΔTL = 4 K (for this case T* does not within the boundary layer), h remains 
practically constant, whereas for the remaining cases, the rate of increase of h with x is significantly 
lower than that for 225 bar pressure.         

         

 
Fig. 19. Variation of h with x for different values of ΔTL for water at 235 bars for free convection 
with linear wall temperature variation 

 
Figure 20 shows the variation of heat transfer coefficient with x for both linear and parabolic 

variation of wall temperature cases two different values of ΔTL and for 225 bars. This plot is shown to 
know the influence of the nature of wall temperature variation on the heat transfer coefficient. It can 
be seen from this figure, for ΔTL = 4 K, where T* does not lie within the boundary layer, h remains 
practically constant for linear wall temperature case, whereas for the parabolic wall temperature 
variation, h remains constant up to a certain value of x and then increases with increase in x. 
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Fig. 20. Variation of h with x for two values of ΔTL for water at 225 bars for free convection for both 
linear and parabolic wall temperature variations 

 
Also, the heat transfer coefficient will be higher for the linear wall temperature case up to a 

certain value of x and then h will be higher for the parabolic wall temperature case. For ΔTL = 16 K 
when T* lies within the boundary layer, the heat transfer initially increases with x, reaches a maximum 
and then decreases with increase in x. for both linear wall temperature and parabolic wall 
temperature cases. The location of maximum value of h occurs at a value of x at which Tw ≈ T*. The 
maximum value of h occurs at lower value of x for the linear wall temperature case. Further it should 
be noted that, up to a certain value of x, the linear wall temperature case gives higher value of h than 
that for the parabolic wall temperature case. Beyond this value of x, the parabolic wall temperature 
gives higher value of h than that for the linear wall temperature case.  

 
3.1.3 Nusselt number for linear wall temperature case 

 
Figure 21 and Figure 22 shows the variation of local Nusselt number with x/L for five different 

values of ΔTL for water at 225 bar and 235 bar pressure respectively for linear wall temperature 
variation. It can be seen from Figure 17, that for ΔTL = 4 K (ΔTL < ΔT*), Nux increases almost linearly 
with x. For cases When ΔTL= 8, 12, 16 and 20 K, ΔTL > ΔT*, T* lies within the boundary layer and hence 
the variation of Nux will be different from the case when ΔTL = 4 K. For these cases, Nux increases with 
x up to around x* (x* is the value of x at which Tw = T*) and then remain practically constant up to a 
wall temperature several degrees higher than T* and then once again increases with increase in x. 
Similar variation is predicted for 235 bar pressure, except that for all the values of ΔTL, there is no 
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sudden change in the rate of change of Nux with x, but the change is more gradual. This is because at 
235 bar pressure the cp with respect to T is not so severe as for the case when the pressure is 225 bar. 

 

 
Fig. 21. Variation of Nussekt number with x for five different values of ΔTL for water at 225 bar 
for free convection with linear wall temperature variation 

    

 
Fig. 22. Variation of Nussekt number with x for five different values of ΔTL for water at 225 bars for 
free convection with linear wall temperature variation 

 
Figure 23 shows the variation of Nusselt number with x for both linear and parabolic variation of 

wall temperature variations for two different values of ΔTL and for 225 bars. This plot is shown to 
know the influence of the nature of wall temperature variation on the Nusselt number. It can be seen 
from this figure for ΔTL equal to 4 K, where T* does not lie within the boundary layer for both the 
linear wall temperature case and the parabolic wall temperature case, Nux increases continuously 
with x, the variation being quite smooth. Also, the difference in Nux between the linear wall 
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temperature case and the parabolic wall temperature case is not very significant. For the linear wall 
temperature case, Nux varies linearly with x, whereas, for the parabolic wall temperature case the 
variation is nonlinear resulting in higher values of Nux for large values of x in comparison with linear 
wall temperature case. For the case when ΔTL = 16 K, T* lies within the boundary layer and this has 
significant influence on the variation of Nux with x. For the linear wall temperature case, Nux, 
increases initially with x up to a certain value and then remains practically constant and finally 
increases with x. But for the parabolic wall temperature case, the variation of Nux is smooth but there 
is a change of slope at x ≈ 0.0125 m. 
 

 
Fig. 23. Variation of Nussekt number with x for two different values of ΔTL for water at 225 
bars for free convection with linear wall temperature and parabolic wall temperature 
variations 

 
3.1.4 Correlations for free convection for linear wall temperature case and for parabolic wall 
temperature case 

 
Two correlations to evaluate the Nusselt numbers are proposed based on numerical predictions, 

using multiple regression analysis. One correlation is for the case of linear wall temperature variation  
and the other for parabolic variation of wall temperature. The form of correlation is based on the 
recommendations of Ghorbani aand Gajjar [23] who have recommended that all the propertry ratios, 
namely,ρ*,μ*,k* and cp* shuld be taken into account in the correlation. 

Using multiple regression analysis and using 70 data points, the correlation for free convection 
from vertical flat plate with linear wall temperature is given by with maximum deviation being ± 10 
percent.and R2 value of 0.997. 
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(Nufl)c = 0.563(𝑅𝑎𝑥)0.253(𝜌∗)−0.56(𝑐𝑝
∗)

0.423
(𝜇∗)0.099(𝑘∗)0.095                     (4) 

 
Figure 24 shows the deviation of all the data points from correlation curve for linear wall 

temperature variation. 
 

 
Fig. 24. Comparison between Nusselt number calculated using Eq.(4), (Nufl)c and predicted Nusselt 
number, (Nufl)p 

 
The correlation for Nusselt number for the parabolic variation of wall temperature is given by 

 

(Nufp)c = 0.849 (𝑅𝑎𝑥)0.223(𝜌∗)−0.56(𝑐𝑝
∗)

0.214
(𝜇∗)1.417(𝑘∗)−0.07                     (5) 

 
with maximum deviation being ± 11 percent. Except for two data points for which the deviation is ± 
15 percent and R2 value is 0.996. The comparison between the Nusselt number calculated using Eq. 
(5) and the one predicted is shown in Figure 25. 
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Fig. 25. Comparison between Nusselt number calculated using Eq.(5), (Nufp)c and 
predicted Nusselt number, (Nufp)p for free convection 

 
3.2 Results for Mixed Convection 
3.2.1 Velocity and temperature profiles for parabolic variation of wall temperature 

 
The velocity profiles for five different values of ΔTL and for 235 bar pressure and at x = 0.06 m, is 

shown in Figure 26 for parabolic variation of wall temperature. It can be seen from this figure that 
for the case of ΔTL = 4 K, the velocity profile is smooth without any distortion. It should be noted that 
for this case T* does not lie within the boundary layer. For other cases, there is distortion of the 
velocity profile as, T* lies within the boundary layer. The amount of distortion and the value of y at 
which this distortion occurs depends on how close this location is to the wall. For ΔTL = 20 K, this 
location is very close to the wall, where as for other values of ΔTL the distortion occurs at a much 
higher value of y. The distortion in the profile will influence the velocity and temperature gradients 
at the wall, which in turn influence the drag coefficient and the heat transfer coefficient. Similar 
nature of variation is predicted for linear wall temperature variation also. 
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Fig. 26. Velocity profiles for different values of ΔTL and for 235 bar at x = 0.06 m for parabolic variation 
of wall temperature 

 
Figure 27 shows the temperature profile for five different values of ΔTL and for 235 bar pressure 

at x = 0.06 m for parabolic variation of wall temperature. It can be seen from Figure 27 that,the 
temperature gradient at the wall increses as ΔTL increases,indicating that higher the value of ΔTLwill 

give higher wall heat flux.Also the rate of change of T with respect to y,(
𝑑𝑇

𝑑𝑦
) at any y increases with 

increase in ΔTL. Similar nature of variation is predicted for linear wall temperature case also. 
 

 
Fig. 27. Temperature profiles for different values of ΔTL and for 235 bar at x = 0.06 m for parabolic 
variation of wall temperature 
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3.2.2 Wall heat flux and heat transfer coefficient for mixed convection with parabolic wall 
temperature variation 

 
The variation of wall heat flux with x for five different values of ΔTL is shown in Figure 28  and 

Figure 29 for 225 bar and 235 bar pressures respectively, for parabolic variation  of wall temperature. 
Figure 28 indicates that for all cases except for thae case, ΔTL = 20 K, wall heat flux increases with x 
smoothly, where as for the case of ΔTL = 20 K, wall heat flux increases smoothly with x up to about x 
= 0.009 m, beyond which the rate of increse of wall heat flux decreses with increases in x. This sudden 

change in the slope (
𝑑𝑞𝑤

𝑑𝑥
)  at  x ≈ 0.008 may be attributed  to the fact that at this value of x, T* is 

closer to the wall to influence the temperature gradient at the wall and hence the wall heat flux.  
 

 
Fig. 28. Variation of wall heat flux  with x for five different values of of ΔTL for water 
at 225 bars for mixed convection with parabolic wall temperature variation 

 

For 235 bar pressure (Figure 29), the nature of variation of wall heat flux with x is similar to the 
case of 225 bar pressure, except that, for  225 bar pressure ,it is higher than that for 235 bar pressure 
and this is true for all values of ΔTL.  

In order to know the influence  of the nature of wall temperature distribution on wall heat flux, 
plot of wall heat flux with respect to x is shown in Figure 30 for two values of  ΔTL., namely, ΔTL = 4 K 
for which T* does not lie within the boundary layer, and ΔTL = 16 K for which T* lie within the 
boundary layer .It can be seen from this plot that the wall heat flux for linear wall temperature case 
is higher than the parabolic wall temperature case , though the difference is insignificant  for ΔTL = 4 
K for which T* does not lie within the boundary layer. However, for ΔTL = 16 K, T* lies within the 
boundary layer and its effect on the temperature profile and hence the wall heat flux can be seen for 
the linear wall temperature case at x ≈ 0.0125.m. From this value of x onwards, the wall heat flux 
remains practically constant up to a certain value of x and then qw increases with increase in x. This 
trend is observed for free convection case also. As far as the parabolic wall temperature case is 
concerned, abrupt change in the value of (dqw/dT) is not predicted for values of x up to about 0.0175 
m. 

 
 

0

10000

20000

30000

40000

50000

60000

70000

0 0.005 0.01 0.015 0.02

W
al

l H
ea

t 
Fl

u
x 

(W
/m

2
)

x (m)

4K

8K



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 106, Issue 2 (2023) 22-53 

 

45 
 

 
Fig. 29. Variation of wall heat flux  with x for five different values of of ΔTL for water at 235 bars for 
mixed convection with parabolic wall temperature variation at any x, (dqw/dx)  

 

 
Fig. 30. Variation of wall heat flux with x for two values of ΔTL for 225 bar pressure for linear 
wall temperature and parabolic wall temperature cases 
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The variation of the heat transfer coefficient with x is shown in Figure 31 and Figure 32 for five 
different values of ΔTL for 225 bar and 235 bar pressures respectively, for parabolic variation of wall 
temperature. It can be seen from Figure 30, that for 225 bar pressure, for ΔTL equal to 4 K (for this 
case, T* does not lie within the boundary layer), h decreses with x, reaches a minimum and then 
gradually increases with respect to x. However for 235 bar pressue for the same value of ΔTL = 4 K, 
the nature of variation is similar to that for 225 bar pressure, but the rate of change of h with x is 
higher. This is true for ΔTL equal to 8 K and 12 K for both the pressures. However, for   ΔTL equal to 
16 K and 20 K, the nature of variation of h with x is quite different, but similar for the two pressures. 
For these two values of ΔTL, h decreases with increase in x, reaches a minimum and then increases 
with x, reaches maximum and then once again decreases with increase in x. This nature of variation 
of h with x can be attributed to the location of T* in the boundary layer with respect to the wall. 
Similar nature of variation is predicted for linear wall temperature case also. 

The influence of the nature of wall temperature distribution on the heat transfer coefficient is 
illustrated in Figure 33. In this figure variation of h with x is plotted for two values of ΔTL, namely ΔTL 
= 4 K for which T* does not lie within the boundary layer, and ΔTL = 16 K for which T* lies within the 
boundary layer. It can be seen from this plot for the case for which T* does not lie within the 
boundary layer, for the linear wall temperature case, h remains practically constant with respect to 
x, whereas for the parabolic wall temperature case, h remains constant, but less than h for the linear 
wall temperature case up to a certain value of x and then h increases with x and become higher than 
that for linear wall temperature case. For the case of ΔTL = 16 K for which T* lies within the boundary 
layer, h for linear wall temperature case is higher than for the parabolic wall temperature case up to 
x ≈ 0.0125 m, beyond which, h for linear wall temperature case become less than that for the 
parabolic case. In addition, for the linear wall temperature case h is practically constant for certain 
range of x and then it decreases significantly with increase in x. The range of x in which h remain 
constant is the range in which the wall temperature is in the neighborhood of T* at which the 
property variations are very severe and this could be the cause for sudden change in the value of h. 
 

 
Fig. 31. Variation of h   with x for five different values of ΔTL for water at 225 bars for mixed convection 
with parabolic wall temperature variation 
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Fig. 32. Variation of h   with x for five different values of ΔTL for water at 235 bars for mixed convection 
with parabolic wall temperature variation 

 

 
Fig. 33. Variation of h with x for two values of ΔTL for 225 bar pressure for linear wall 
temperature and parabolic wall temperature cases 
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The variation of Nu with x is shown in Figure 34 for five different values of ΔTL for water at 235 
bars for mixed convection with parabolic variation of wall temperature. It can be seen from this figure 
that, except for ΔTL = 20 K Nu increases with x. continuously. But for the case of ΔTL = 16 K, at x ≈ 
0.0075 m, the slope of (d(Nu)/dx) indicating that the location of T* is close to the wall. For ΔTL = 20 K 
Nu increases with x up to a certain value of x (x ≈ 0.0075 m) beyond which the slope (d(Nu)/dx) 
becomes negative and Nu starts decreasing with increase in x.  

 

 
Fig. 34. Variation of Nu with x for five different values of of ΔTL for water at 225 bars for mixed 
convection with parabolic wall temperature variation 

 
The variation of Nu with x is shown in Figure 35 for 235 bar pressure. The nature of variation of 

Nu is similar to the case of 225 bar pressure except that for ΔTL = 20 K Nu remains constant with 
respect to x beyond x ≈ 0.00115 m. 

The influence of the type of variation of wall temperature on the Nusselt number is shown in 
Figure 36, where Nu is plotted against x for both linear wall temperature case and the parabolic wall 
temperature case, for two different values of ΔTL, namely, ΔTL = 4 K, for which T* does not lie within 
the boundary layer and ΔTL = 16 K for which T* lies within the boundary layer. It can be seen from 
this plot that when T* does not lie within the boundary layer, Nu is practically the same for both the 
linear wall temperature variation and the parabolic wall temperature variation, up to a certain value 
of x (x≈ 0.01), beyond which Hu is higher for the parabolic wall temperature case. For the case when 
ΔTL = 16 K, Nu for the linear wall temperature case increases with x up to a certain value of x ≈ 0.0125 
m and is higher than that for the parabolic wall temperature case and then it becomes constant. But 
for the parabolic wall temperature case Nu continuously increases with x, with the result at x ≈ 
0.0125, NU will be same for both the type of wall temperature variations and beyond this value of x, 
the parabolic wall temperature case gives higher value of Nu at any x than the linear wall temperature 
case. 

 
 

0

20

40

60

80

100

120

140

160

0 0.005 0.01 0.015 0.02

N
u

x

x (m)

4K

8K

12K

16K

20K



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 106, Issue 2 (2023) 22-53 

 

49 
 

 
Fig. 35. Variation of Nu with x for five different values of of ΔTL for water at 235 bars for mixed 
convection with parabolic wall temperature variation 

 

 
Fig. 36. Variation of Nu with x for two values of ΔTL for 225 bar pressure for linear wall 
temperature and parabolic wall temperature cases 
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3.1.4 Correlations for mixed convection for linear wall temperature case and for parabolic wall 
temperature case 

 
Two correlations to evaluate the Nusselt numbers for mixed convection  are proposed based on 

numerical predictions, using multiple regression analysis. One correlation is for the case of linear wall 
temperature variation and the other for parabolic variation of wall temperature. The form of 
correlation is based on the recommendations of Ghorbani and Gajjar [23] who have recommended 
that all the propertry ratios, namely, ρ*, μ*, k* and cp* should be taken into account in the 
correlation. Using multiple regression analysis and using 70 data points, the correlation for mixed 
convection from vertical flat plate with linear wall temperature is given by        
       

(Numl)c = 0.575(Rax)0.184 (Rex)0.161(ρ∗)−0.865(cp
∗ )

0.283
(μ∗)0.864(k∗)0.137               (6)      

 
with maximum deviation being ± 10 percent.and R2 value of 0.996.The deviation of all data points 
with respect to Eq. (6) is shown in Figure 37.  
 

 
Fig. 37. Comparison between Nusselt number calculated using Eq. (6), (Numl)c 

and predicted Nusselt number, (Numl)p for linear  wall temperature variation 

 
Similarly, the correlation for Nusselt number for mixed convection with parabolic wall temperature 
is given by 
 

(Numl)c = 1.455(Rax)0.184 (Rex)0.11(ρ∗)0.213(cp
∗ )

0.978
(μ∗)−2.065(k∗)0.317               (7)      

 
with maximum deviation being ± 15 percent.and R2 value of 0.992.The deviation of all data points 
with respect to Eq. (7) is shown in Figure 38. 
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Fig. 38. Comparison between Nusselt number calculated using Eq. (6), 
(Nump)c and predicted Nusselt number, (Numl)p for paravbolic wall 
temperature variation 

 
4. Conclusions 

 
The problem of free and mixed convection heat transfer from a plane non isothermal vertical 

surface to supercritical water has been carried out for 225 bar and 235 bar pressures. The variation 
of all the properties of the fluid is taken into account by fitting polynomials using NIST property data. 
The numerical method employed for the present investigation is first validated with corresponding 
experimental data and it is found that numerical results are in good agreement with experimental 
values, the maximum deviation not exceeding ± 15 %. Two types of wall temperature variations 
namely linear variation and parabolic variation of wall temperature are chosen for investigation.  

Based on the numerical predictions the following conclusions can be drawn 
 

i. In all the cases studied for both linear variation and parabolic variation of wall 
temperature, the Nusselt number increases with increase in distance along the plate. 

ii. The variation of Nu is found to be smooth for those cases for which T* does not lie within 
the boundary layer, whereas for cases when T* lies within the boundary layer there is 
distortion in the plot of Nux versus x. The distortion in the plot of Nux is found to occur for 
those cases for which the pseudo critical temperature lies within the boundary layer. The 

slope of 
𝑑𝛽

𝑑𝑇
 changes sign across T* and this influences the buoyancy force, which in turn 

affects the temperature gradient at the wall and hence the Nusselt number. This effect 
will persist up to wall temperatures several degrees higher than the pseudocritical 
temperature. 

iii. The velocity profiles for the cases for which T* does not lie within the boundary layer are 
found to be smooth, whereas for cases for which T* lies within the boundary layer, the 
velocity profiles get distorted at locations where T ≈ T*. This distortion influences both the 
velocity gradient and the temperature gradient at the wall, thereby affecting the drag 
coefficient and the wall heat flux. 

 
Based on the predictions, four correlations have been proposed. Two correlations for free 

convection [one for linear wall temperature variation and another for parabolic wall temperature 
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variation] and two for mixed convection. These correlations give Nusselt numbers which agree with 
actual predictions and deviation does not exceed ± 10 % for free convection with linear wall 
temperature, ± 11 % for free convection with parabolic wall temperature variation, ± 10 % for mixed 
convection with linear wall temperature variation and  ± 15 % for mixed convection with parabolic 
wall temperature variation. 
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