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In the study of the flow of gas-liquid mixture over circular vertical pipe rising from the 
deep zone to ground level, it is observed that, the velocity on surface of tube is much 
more than in the center of flow. Such a picture is seen also in the water filtration 
process in sands ordering from high permeability zone to lower. Same phenomena 
occur in transportation of the water carbon nana-tubes.  In order to predict behavior 
of those processes in this paper, we have studied the compressible liquid flow over the 
circular vertical pipe ordered from the deep zone to the ground surface for some 
concrete inlet and outlet regimes of the pipe. The Navier-Stokes equations system as a 
model of study. For certain inlet and outlet regimes of the flow splitting the equation 
into the cross section and axes variables, the pressure and velocity distribution are 
found. The Lane-Emden equation arises for determining the pipe cross section velocity 
distribution, which is also justified by our calculations on the used model.  
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1. Introduction 
 

There are several physical phenomena in the mass transportation theory which are surprisingly 
in point of view the classical liquid flow theory. According to the classical theory, the cross-section 
velocity distribution is a parabola with maximum value at the center of pipe and zero value on the 
surface of pipe. (Tough several authors are relevant to the power type velocity profiles: 
 

𝑣 =  𝑣𝑚𝑎𝑥 [1 −
𝑟

𝑅
]

1
𝑛

 

 
where the coefficient n depends on Reynold’s number, v max is the maximal velocity [1, 2]). However, 
in the flow of gas-liquid mixture over circular vertical pipe from the deep zone to the ground level it 
was observed experimentally that flow velocity on the pipe surface may be much higher than the 
velocity in center of pipe [3-6]. Such a picture is seen also in the the water filtration process in sands 
ordered from high permeability zone to lower [7-8], and in the transportation of water over carbon 
nana tubes [9-12]. 
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To explain the mentioned experimental results, in this paper, we have considered a flow of 
compressible liquid over vertical pipe from deep zone to the ground surface. These unfortunately 
consistently to the particular outlet and and inlet regimes (see, (1)). Also, here it surprises that the 
well-known Lane-Emden Eq. (2) is raised for determining the velocity distribution on cross section.  
Earlier such equations arise in the study of astronomy problems, but for the compressible liquid flow, 
given here, are in the first time.  In our studies, we concern mostly to the velocity increase as 
approaching to the pipe surface. Such a profile as it just was noted is compatible with the water 
filtration in sands and extraordinary fast transportation of water in carbon nana tubes. 

There is a lot of study the one-dimensional flow of compressible viscous liquid in a circular pipe 
(see, e.g. [13-18]). In those studies, were illustrated different methods for finding the pressure and 
velocity distribution over the pipe length, where mainly a constant velocity (the average) was taken 
for the velocity on cross section. Some authors take proportional to velocity term -µv in place of the 
term with Laplace’s operator -µ∆v in the Navier-Stokes (NS) equations system in their models (the 
I.A. Charny equation). In general, a variable velocity over cross section of pipe complicates the 
splitting of pressure and velocity variables in NS equations system to solve numerically those 
equations. Because we seek for a concrete outlet p_0 and inlet -p_1 pressure regime to achieve the 
splitting (see, paragraph 2): 
 

𝑙𝑛 
𝑝1
𝑝2
=
𝜌0𝑔𝐻

𝑝0
                                                                                                                                                      (1) 

 
      After splitting of the pipe axes x and pipe cross section variables y, z (or) we get the Lane-Emden 
(LE) of the type to determine the velocity distribution V = V (y, z) over cross section. 
 
∆𝑉  + 𝐶1𝑉 =  𝐶2 𝑉

2                                                                                                                                          (2) 
 

Here −𝐻 < 𝑥 < 0 ,   0 < 𝑟 < 𝑅, 𝑎𝑛𝑑 ∆=
𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
is the Laplace operator.  The positive solution of 

(2) is the subject of this study (the "ground state solution" in the literature, see e.g. [19]). Note, the 
Lane-Emden equations appear in the different models of mathematical physics and astrophysics [20-
23], such as, the theory of stellar structure, the thermal behavior of a spherical cloud of gas, 
isothermal gas spheres or theory of thermionic currents (see, e.g. [24-30]). Those are modeled by the 
following Lane-Emden equation 
 

𝑦"(𝑥) +
𝑎

𝑥
𝑦′(𝑥) + 𝑓(𝑥, 𝑦) = 𝑔(𝑥),         0 ≤  𝑥 ≤  1,        𝛼 ≥  0 

 
with the Cauchy initial dates    y(0)=a,y^' (0)=0,   Many methods have been used to solve this problem  
(see,  e.g. [31-38]). We have taken a linear law of dependence of the density from pressure 
 

𝜌 =
𝜌0
𝑝0
𝑝. 

 
2. Appearance of The LE Equation 
 

Consider a flow of compressible viscous liquid in the pipe from bottom to top. Assume that, liquid 
moves parallel to the pipe axis. Locate the x axis parallel to pipe, center it on the top of pipe and 
order outside to the pipe. So, in our case x is negative. Denote v(t, x, r) the velocity of liquid (ordered 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 89, Issue 2 (2022) 150-159 

152 
 

parallel to x axis) in the point with  coordinates (x, r). Here r is the distance from center of cross 
section; −x is depth on vertical (see, Figure 1). 
 

 
Fig. 1. Flow of 
compressible liquid 
over vertical pipe 

 
Denote p(x) the pressure of liquid at the point x (We assume the pressure to be constant over the 

cross section of pipe).  The motion equation of compressible viscous liquid in vertical pipe reads as 
 

𝜌
𝜕𝑣

𝜕𝑡
+ 𝜌𝑣

𝜕𝑣

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
= 𝜇 (

𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
+
𝜕2𝑣

𝜕𝑥2
) − 𝜌𝑔                                                                                    (3) 

 
To obtain a complete system of equations we must to attach (3) the next continuity equation 

 
𝜕𝜌

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑣) = 0                                                                                                                                                (4) 

  

Since we consider a steady flow, it holds that 
𝜕𝑣

𝜕𝑡
= 0 𝑎𝑛𝑑 

𝜕𝜌

𝜕𝑡
= 0 , therefore the system of equations 

(3) and (4) is reduced to the system of  
 

{
  
 

  
 𝜌𝑣

𝜕𝑣

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔 = 𝜇 (

𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
+
𝜕2𝑣

𝜕𝑥2
)  

𝜕

𝜕𝑥
(𝜌𝑣) = 0,

𝜌 =
𝜌0
𝑝0
𝑝.

                                                                                            (5) 

 
In order to determine the density, velocity and pressure distribution in the pipe. We search for a 

solution of (5) the following expressions for velocity and pressure 
 

𝑝 = 𝑝0 (
𝑝1
𝑝0
)
−
𝑥
𝐻
,       𝑣 = 𝑉(𝑟) (

𝑝1
𝑝0
)

𝑥
𝐻
                                                                                                               (6) 
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where 𝑉 = 𝑉(𝑟) is unknown function, 𝑟 = √𝑦2 + 𝑧2,    0 ≤  𝑟 ≤ 𝑅,   − 𝐻 < 𝑥 ≤ 0. 
   
      The second condition (5) is fulfilled since the production ρv does not depend on x: 
 

𝜌𝑣 =
𝜌0
𝑝0
∙ 𝑝0 (

𝑝1
𝑝0
)
−
𝑥
𝐻
∙ 𝑉(𝑟) (

𝑝1
𝑝0
)

𝑥
𝐻
= 𝜌0𝑉(𝑟) 

 
Using (6) from (5) it follows 
 

−
𝑝0
𝐻
(
𝑝1
𝑝0
)
−
𝑥
𝐻
𝑙𝑛
𝑝1
𝑝0
+ 𝜌0𝑔 (

𝑝1
𝑝0
)
−
𝑥
𝐻
+
𝜌0𝑉(𝑟)

2

𝐻
(
𝑝1
𝑝0
)

𝑥
𝐻
𝑙𝑛
𝑝1
𝑝0
= 𝜇 (

𝑝1
𝑝0
)

𝑥
𝐻
(∆𝑉 +

1

𝐻2
𝑉(𝑟)𝑙𝑛2

𝑝1
𝑝0
) 

 
Using this, (1), and the expressions for C1, C2   
 

𝐶1 =
1

𝐻2
𝑙𝑛2

𝑝1
𝑝0
,    𝐶2 =

𝜌0
𝜇𝐻

𝑙𝑛
𝑝1
𝑝0
   

Hence, we get the next equation  
 

 
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
+ 𝐶1𝑉 = 𝐶2𝑉

2 

 
for determining the unknown function V in the ball  𝐵𝑅 = {(𝑥, 𝑦): 𝑥

2 + 𝑦2 < 𝑅2} .This is well-known 
LE equation. 
 
3. The Darcy-Weisbach Law  
 
As it follows from the above said content, in order to determine the velocity distribution over cross 
section of pipe we need to find a solution for the equation (2)   
  
𝜕2𝑉

𝜕𝑦2
+
𝜕2𝑉

𝜕𝑧2
+ 𝐶1𝑉 = 𝐶2𝑉

2     ,             𝑦2 + 𝑧2 < 𝑅2 

 
under suitable additional boundary conditions. In polar system of coordinates this implies that for 
the function V =V (r, ϕ) it holds 
 
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑉

𝜕𝑟
) + 𝐶1𝑉 = 𝐶2𝑉

2                                                                                                                                (7) 

  
0 ≤ r < R, 0 ≤ φ < 2π. 
 
We search for a symmetric solution of equation (7). That means,   ∂V/∂r=0. 
 There are a lot of numerical techniques to employ on solving of equation (7) (see. e.g. [29, 30]). 
Also, it is known that the solution of LE equation exists and it is an analytic function of radius r (see, 
e.g., in [37]). In order to get a unique solution of equation (7) two additional conditions also is needed. 

One is the symmetry of solution as 
𝜕𝑉

𝜕𝜙
= 0.  Another is the usually taken no-slip condition V(R)=0 on 

the boundary. In the most engineer approximations, the no-slip condition does not hold always in 
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reality. Because many authors use the boundary slip condition 𝛽
𝜕𝑉

𝜕𝑟
+ 𝑉 = 0 in 𝑟 = 𝑅for a second 

condition.  
 For a second condition on equation (7) we make use the Darcy-Weisbach law [3, 15, 16] on friction 

of liquid with the boundary of pipe in 𝑥 = −
𝐻

2
 . By that law,  

 

−
𝜕𝑝

𝜕𝑥
⌋
𝑥=−

𝐻
2

= 𝑓𝑐
𝜌�̅�2

4𝑅
⌋
𝑥=−

𝐻
2

                                                                                                                                (8) 

 
Where fc is the friction factor, �̅�⌋

𝑥=−
𝐻

2

 is an average of velocity over the cross section of pipe in 𝑥 =

−
𝐻

2
: 

 

�̅�⌋
𝑥=−

𝐻
2
= 

1

𝜋𝑅2
∬ 𝑣 (−

𝐻

2
𝑦2+𝑧2<𝑅2

, 𝑦, 𝑧) 𝑑𝑦𝑑𝑧 = (
𝑝1
𝑝0
)
−
1
2 2

𝑅2
∫ 𝑟𝑉(𝑟)𝑑𝑟

𝑅

0

 

From the Eq. (8) and (6) in 𝑥 = −
𝐻

2
, it follows that  

 

𝑝0
𝐻
(
𝑝1
𝑝0
)

1
2
ln
𝑝1
𝑝0
= (

𝑝1
𝑝0
)
−1

(
𝑝1
𝑝0
)

1
2
𝑓𝑐𝜌0

�̅�2

4𝑅
 

 
Therefore, 
 

�̅�2 =
4𝑝1𝑔𝑅

𝑓𝑐𝑝0
 

                 
Where 
 

�̅� =
2

𝑅2
∫ 𝑟𝑉(𝑟)𝑑𝑟

𝑅

0

                                                                                                                                              (9) 

 
4. Approximate Solution of LE Equation  
 

Since LE is a nonlinear equation, the separation of variables method does not work,1 and we 
normally must use a numerical approach, or some asymptotic methods like perturbation method. 
We have used here the series method.  

In reality, C1 is very small in comparison with C2 in (7):  
  
𝐶1
𝐶2
=
𝜇𝑔

𝑝0
~
10−4 ∙ 10

107
= 10−10 

 
Using it in (7), we may neglect the term C1 V: 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑉

𝜕𝑟
) = 𝐶2𝑉

2,      0 ≤ 𝑟 ≤ 𝑅 
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To find an approximate solution of (7) we set  
 
𝑉(𝑟) =  𝑎0 + 𝑎1𝑟 + 𝑎2𝑟

2 + 𝑎3𝑟
3 + 𝑎4𝑟

4 +⋯                                                                                        (10) 
 
Then 
 
1

𝑟
(𝑟𝑉′(𝑟))

′
=
𝑎1
𝑟
+ 4𝑎2 + 9𝑎3𝑟 + 16𝑎4𝑟

2 + 25𝑎5𝑟
3 + 36𝑎6𝑟

4 +⋯ 

 
Also,  
 

𝑉(𝑟)2 = 𝑎0
2 + 2𝑎0𝑎1𝑟 + (𝑎1

2 + 2𝑎0𝑎2)𝑟
2 + (2𝑎1𝑎2 + 2𝑎0𝑎3)𝑟

3 + (𝑎2
2 + 2𝑎1𝑎3 + 2𝑎0𝑎4)𝑟

4 +⋯ 
 
Inserting last equations in (7), we get  
 
𝑎1
𝑟
+ 4𝑎2 + 9𝑎3𝑟 + 16𝑎4𝑟

2 + 25𝑎5𝑟
3 + 36𝑎6𝑟

4 +⋯ = 𝐶2𝑎0
2 + 2𝐶2𝑎0𝑎1𝑟 + 𝐶2(𝑎1

2 + 2𝑎0𝑎2)𝑟
2

+ 𝐶2(2𝑎1𝑎2 + 2𝑎0𝑎3)𝑟
3 + 𝐶2(𝑎2

2 + 2𝑎1𝑎3 + 2𝑎0𝑎4)𝑟
4 +⋯ 

 
Equating the terms with same powers of r from there we infer 
 

{
 
 
 

 
 
 

𝑎1 = 0

4𝑎2 = 𝐶2𝑎0
2,

9𝑎3 = 𝐶2𝑎0𝑎1,

16𝑎4 = 𝐶2(𝑎1
2 + 2𝑎0𝑎2)

25𝑎5 = 𝐶2(2𝑎1𝑎2 + 2𝑎0𝑎3)

36𝑎6 = 𝐶2(𝑎2
2 + 2𝑎1𝑎3 + 2𝑎0𝑎4)

…          …         …

 

 
Therefore,  
 

{
  
 

  
 

𝑎1 = 0

4𝑎2 = 𝐶2𝑎0
2,

𝑎3 = 0,
16𝑎4 = 2𝐶2𝑎0𝑎2

𝑎5 = 0

36𝑎6 = 𝐶2(𝑎2
2 + 2𝑎0𝑎4)

…          …         …

                                                                                                                               (11) 

 
In order to determine the coefficients of series (10) uniquely we have to attach one equation else 

to the system (11). We derive it from (9). 
 Determine V  ̅from expression (10): 
 

�̅� = 𝑎0 +
2

3
𝑎1𝑅 +

2

4
𝑎2𝑅

2 +
2

5
𝑎3𝑅

3 +
2

6
𝑎4𝑅

4 +  .  .  .  , 

 
therefore, 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 89, Issue 2 (2022) 150-159 

156 
 

�̅�2 = 𝑎0
2 +

4

3
𝑎0𝑎1𝑅 + (𝑎0𝑎2 +

4

9
𝑎1
2)𝑅2 + (

2

3
𝑎1𝑎2 +

4

5
𝑎0𝑎3)𝑅

3 + (
2

3
𝑎0𝑎4 +

1

4
𝑎2
2 +

8

15
𝑎1𝑎3)𝑅

4

+  .  .  .                                                                                                                                      (12) 
 
Therefore, from (12), and since   𝑎1 = 𝑎3 = 𝑎5 = 0, we get 
 
4𝑔𝑅𝑝1
𝑝0𝑓𝑐

= 𝑎0
2 + 𝑎0𝑎2𝑅

2 + (
2

3
𝑎0𝑎4 +

1

4
𝑎2
2)𝑅4 +⋯                                                                                 (13) 

 
Gathering (11) and (13) together we get a number system of equations for the unknowns   

𝑎0 , 𝑎2, 𝑎4, . . . , 𝑎6 , … as following 

{
 
 
 
 

 
 
 
 𝐶2 =

𝜌0
2𝑔

𝜇𝑝0
4𝑔𝑅𝑝1
𝑝0𝑓𝑐

= 𝑎0
2 + 𝑎0𝑎2𝑅

2+.  .  .

4𝑎2 = 𝐶2𝑎0
2

16𝑎2 = 2𝐶2𝑎0𝑎2
36𝑎6 = 𝐶2(𝑎2

2 + 2𝑎0𝑎4)
.  .  .             .  .  .             .  .  .

                                                                                                                      (14) 

 
The approximate solution of (14) is located from the system 
 

𝜌0
2𝑔𝑅2

4𝜇𝑝0
𝑎0
3 + 𝑎0

2 =
4𝑔𝑅𝑝1
𝑝0𝑓𝑐

 

 
Therefore, we get the cubic equation for unknown a0 

 

𝑎0
3 +

4𝜇𝑝0

𝜌0
2𝑔𝑅2

𝑎0
2 −

16𝜇𝑝1

𝜌0
2𝑅𝑓𝑐

= 0 

 
Present it in the form 
 
𝐴𝑥3 + 𝐵𝑥2 + 𝐶𝑥 + 𝐷 = 0 
 
This equation has one real and two complex or three real roots 

concerning unknown a0 . Inserting here 𝑎 =
𝐵

𝐴
, 𝑏 =

𝐶

𝐴
, 𝑐 =

𝐷

𝐴
 we get 

 
𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 
 
Denote  
 

𝑝 = 𝑏 −
𝑎2

3
, 𝑞 =

2𝑎3

27
−
𝑎𝑏

3
+ 𝑐, 𝐷 =

𝑞2

4
+
𝑝3

27
 

 
     If   D>0 then the cubic equation (15) has one real and two complex solutions. If D<0  the (15) have 
three distinct real solutions.  
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     In our case of equation (4) we use the computer calculations (see e.g. www.1728.org/cubic.htm) 

and the coefficients are 𝐴 = 1, 𝐵 =
4𝜇𝑝0

𝜌0
2𝑔𝑅2

, 𝐶 = 0, 𝐷 = −
16𝜇𝑝1

𝜌0
2𝑅𝑓𝑐

 A=1.  The value of reasonable root 

gives  𝑎0  (  i.e.   𝑥1 = 𝑎0) and   𝑎2 =
𝑎0
2𝜌0

2𝑔

4𝜇𝑝0
, 𝑎4 =

𝜌0
2𝑔

8𝜇𝑝0
𝑎0𝑎2, … .Notice, in our considerations, the value 

of p1 is associate with p0  by the formula           
 

𝑝1 = 𝑝0𝑒
𝜌0𝑔𝐻
𝑝0  

 
Inserting the funded values  𝑎0 , 𝑎2, 𝑎4, . . . , 𝑎6  into the expansion (10), we get the velocity 

distribution over cross section of the well. A further using of expression for cross section velocity 
profile V(r) into (6) we finally, find the pressure, density, and velocity distribution low in the pipe. 
 
5. Results 
 

We study the velocity and pressure distribution in the one-dimensional flow of compressible 
viscous liquid in vertical pipe from bottom to top. A variable velocity over cross section of the pipe is 
considered. Also, to take into account boundary friction of the liquid with pipe wall the Darcy-
Weisbach law is used. Truthfulness of our approach justified with successfully splitting of the 
variables in solving process of NS equations system: one is the Lane-Emden equation over cross 
section of pipe, another is an ODE over the well axis. Really, we have restricted on the particular 
depression as the (1), but it is justified by the fact that, an exact solution is found. 
 
6. Conclusions 
 

In many real well conditions, the oil, gas and water mixture move from the depth of the well to 
the ground surface over the vertical pipe. This is a mixture which obeys the compressible liquid 
ability.  Its viscosity looks like the gas viscosity. Also, the velocity distribution in the cross section of 
pipe is not constant in reality.  Our considerations keep this reality, taking the variable velocity profile, 
even increasing from center to the boundary of pipe. The profile with zero boundary velocity is not 
suitable, in this case. We take the Darcy-Weisbach law in place, in order to take into the account, the 
friction of liquid with boundary of pipe. Applying splitting allows to find the exact solution of NS 
equations system, and therefore to determine the velocity, density and pressure distribution in pipe. 
Along the way, we came to the LE equation, which earlier arose in problems of astronomy. Also, these 
results open a new view to the LE equation in the sense of applications. 
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