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Various experiments on the pressure drop of a two-phase flow boiling in a mini channel 
tube have been carried out. This study is aimed at characteristics of the pressure drop of 
a two-phase flow boiling using a refrigerant R290. The experiment uses a horizontal, 
stainless steel, 2-m-long mini-channel tube with a 3-mm inner diameter. The experiment 
has been carried out using various data with the vapor qualities ranging from 0.1 to 0.9, 
the mass fluxes ranging 50 kg/m2s to 180 kg/m2s, and the heat fluxes ranging from 5 
kW/m2 to 20 kW/m2. Furthermore, several homogeneous and separated methods were 
used to predict the experimental data. Li and Hibiki’s correlation give the best overall 
deviation pressure drop value is the most accurate with its deviation amounting 19.47%. 
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1. Introduction 
 

Flow tube-related discussions do not preclude the study of a pressure drop since the pressure 
drop will affect the increased energy required by the circulating fluid. The pressure drop can occur in 
the flowing of a two-phase flow in a horizontal tube. Ghiaasiaan et al., [1] concluded that it was 
difficult to measure and correlate the frictional pressure drop in a small channel due to several 
reasons, namely there was an uncertainty in the wall roughness, in the inlet and outlet pressure, and 
in the acceleration pressure, and the occuring of laminar flow in a mini channel and a microchannel.  

Many studies on the pressure drop [2-10] have been published. Lee et al., [11] and Bashar et al., 
[12] pointed out that, since a friction occurred at a certain mass flux, the pressure drop characteristics 
had been better enhanced in a small diameter tube. An increased saturation temperature would 
reduce the pressure drop [13]. Moreover, Padilla et al., [14] and Qu et al., [15] also observed that, in 
the low vapor quality region, the pressure drop increased slightly, and, in various mass fluxes, the 
pressure drop linearly increased. 

Natural refrigerants play an important role in the cooling system technology. This study used 
R290 or propane as the working fluid; as a matter of a fact, very few researchers have used a mini 
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channel tube and R290 as their working fluid in their studies. The ozone depletion potential (ODP) of 
R290 was zero, and the global warming potential (GWP) was low, too. Therefore, it would not damage 
the atmosphere. In fact, it played an important role in the compressor and refrigerant mass flow rate 
by 50%.  Moreover, it had a higher cooling capacity than that of R22 [16-17]. 

This study was aimed at obtaining the characteristics of the pressure drop of a two-phase flow 
boiling using an R290 refrigerant. The pressure drop correlations of the homogeneous and separated 
methods were used to predict the experimental data, so it was possible to identify which of the 
correlations had the best prediction. 
 
2. Methodology  
2.1 Experimental Set Up 
 

In this study, the data obtained from Pamitran et al., [18] in the form of pressure and temperature 
distribution so that the data can be calculated using existing correlations. Figure 1 showed the 
experimental setup used in this study. The experimental components included a condenser, a sub-
cooler, a refrigerant pump, a receiver, a mass flow meter, a heater, and a test section where the mass 
flow of the refrigerant was controlled by a needle valve. Moreover, a coriolis mass flow meter was 
installed to measure the mass flow of the refrigerant. A preheater was installed to control the mass 
vapor quality of the refrigerant by heating the refrigerant before it entered the test section. The test 
section is a stainless steel, 2-m-long tube having a smooth surface, with a 3-mm inner diameter. The 
experiment was carried out using various data with the vapor qualities ranging from 0.1 to 0.9, the 
mass flux ranging from 50 kg/m2s to 180 kg/m2s, and the heat flux from 5 kW/m2 to 20 kW/m2. The 
sight glass with the same inner diameter as that of the test section was connected to the inlet and 
outlet to display the flow.  

 

 
Fig. 1. Experimental setup 
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2.2 Two-Phase Frictional Pressure Gradient Correlations 
 

Several homogeneous and separated methods of a pressure drop correlation could be used to 
predict the experimental data. All of the employed correlations were modified based on the pressure 
drop correlations, and the pressure drop correlations were adjusted in accordance with each author’s 
conditions in their study due to various working fluids and diameters that they used. Park and Hrnjak 
[19] used a 6.1-mm diameter, while Kim and Mudawar [21] used diameters ranging from 0.3 mm to 
5.35 mm. Moreover, Li and Hibiki [20], Hwang and Kim [22], and Bashar et al., [12] used a smaller-
than-3-mm diameter. All of the diameters that they used were still within the range of a mini channel 
tube. Furthermore, they used mass fluxes ranging from 33 kg/m2s to 2738 kg/m2s and heat fluxes 
ranging from 5 kW/m2 to 500 kW/m2. Table 1 showed the correlations between the two-phase 
friction pressure gradient of the homogeneous method and the separation method. 
 

Table 1 
The Pressure Drop Correlation 
Auhor(s) Equation Condition 
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R410a, R22, and Co2 
Di : 6.1 mm 
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q : 5 – 15 kW/m2 
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R22, R134a, R410A, 
R290, R744, R245fa, 
ammonia, nitrogen, and 
water 
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3. Results and Discussion 
 

This experiment used a homogeneous method and a separated method to obtain the relevant 
comparative data by employing various heat fluxes ranging from 5 kW/m2 to 20 kW/m2 and various 
mass fluxes ranging from 50 kg/m2s to 180 kg/m2s, and various vapor qualities ranging from 0.1 to 
0.9. Due to the researchers’ different conditions, all of the existing correlations would result in 
different correlations.  

The experimental pressure drop of the characteristics was compared to one another with the 
heat flux of 10.28 kW/m2 and the mass fluxes ranging from 60 kg/m2s to 100 kg/m2s as shown by 
Figure 2. Moreover, the figure showed that the higher the mass flux was, the higher the value of the 
pressure gradient would be. 
 

 
Fig. 2. Characteristic of the R290 pressure drop at different mass fluxes 
with the saturation temperatures ranging from 8.7 0C to 10.8 0C and the 
heat flux of 10.28 kW/m2 

 
Figure 3 showed a comparison between the prediction with existing correlations of the pressure 

gradients and that of the experiment using R290 as the working fluid at several saturation 
temperatures and a constant heat flux. Moreover, the constant mass flux was 169.85 kg/m2s, and 
the saturation temperatures ranged from 9.5 0C to 8.7. The figure showed that the higher the vapor 
quality was, the higher the pressure gradient would be.  

Kim and Mudawar [21]’s correlation provided a significantly-increased pressure gradient when 
the vapor quality was 0.3 and the deviation was 37.32%. The prediction pressure gradient with 
Hwang and Kim [22]’s correlation decreased when the vapor quality was 0.55 and the deviation was 
41.98%. The prediction pressure gradient with Bashar et al., [12]’ correlation and Park and Hrnjak 
[18]’s correlation increased when the vapor quality increased. the deviation Bashar et al., and Park 
and Hrnjak value amounting to 42.5% and 39.98%, respectively. Li and Hibiki [20]’s correlation had 
the same trend as that of Bashar et al., and Park and Hrnjak, but these values were related to the 
experimental data. Moreover, the pressure gradient continued to increase when the vapor quality 
increased with the deviation of 13.53%. 
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Fig 3. Comparison between the existing correlations of R290 pressure gradient 
and that of the experiment with the constant mass flux of 169.85 kg/m2s and 
the saturation temperatures ranging from 8.7 0C to 9.5 0C  

 
Figure 4 showed the comparison between the existing correlations of the pressure gradient and 

that of the experiment using R290 as their working fluid at several saturation temperatures and a 
constant heat flux when the constant mass flux was 113.23 kg/m2s and the saturation temperatures 
ranged from 9.97 0C to 9.58 0C. Moreover, the figure showed that the higher the vapor quality was, 
the higher the pressure gradient would be. 
 

 
Fig 4. Comparison between the prediction with existing correlations of R290 pressure 
gradient and that of the experiment with the constant mass flux amounting to 113.23 
kg/m2s and the saturation temperatures ranging from 9.97 0C to 9.58 0C  
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The correlation of Li and Hibiki [20] provides an increased pressure gradient with the deviation is 
11.48%, followed by the correlation of Kim and Mudawar [21] and Hwang and Kim [22], which have 
the same trend, and the deviation is 19.11% and 22.83% respectively. The correlation of Bashar et 
al., [12] has the same trend as Park and Hrnjak [19], and the pressure gradient continues to increase 
with the increase of vapor quality, with the deviations is 42.8% and 35.84%, respectively. 

Table 2 showed the deviation between the existing correlations of the pressure gradient and that 
of the experiment using R290 as their working fluid. it can be seen that the results of Li and Hibiki 
give the best prediction where the correlation used separated method and as shown in table 1 that 
Li and Hibiki use the diameters ranging from 0.1 mm to 2.98 mm while the value of mass flux 50 to 
950 kg/m2s. 
 
  Table 2 
  The Deviation of Pressure Drop 

Author (s) Bashar et al., 
[12] 

Park and Hrnjak 
[18] 

Li and Hibiki [19] Kim and 
Mudawar [20] 

Hwang and kim 
[21] 

Deviation (%) 31.82 43.94 19.47 24.46 50.37 

 
4. Conclusions 
 

This study was aimed at obtaining the characteristics of the pressure drop of a two-phase flow 
boiling using an R290 refrigerant. Accordingly, the pressure drop correlations of a homogeneous 
method and a separated method were used to predict the experimental data. Li and Hibiki’s 
correlation was the most accurate since, with overall deviation of 19.47% with R290 used as the 
working fluid and the diameters ranging from 0.1 mm to 2.98 mm. As a matter of a fact, they were 
confirmed to be in the range of a mini channel tube. Under a constant heat flux and several saturation 
temperatures, the pressure gradients of R290 were compared to one another, and the result showed 
that the higher the vapor quality was, the higher the value would be. 
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