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In modern applied mathematics, engineering, and the physiological world, the concept 
of peristalsis is of great significance. The present article concentrates on the peristaltic 
movement of Carreau-Yasuda fluid through planner micro-channel under the 
influence of applied magnetic field and partial slip conditions. The governing system 
of equations are nondimensionalized and transformed using basic assumptions such 
as long wavelength and low Reynolds number. A bulti-in route "ND solve" in 
Mathematica exercised to solve obtained nonlinear coupled equations with 
appropriate boundary conditions. Obtained results are elucidated by plotting graphs 
for different physiological constraints such as velocity, temperature, and 
concentration. Physical characteristics such as skin friction, Nusselt number and 
Sherwood number are discussed via table results. The typical character of this work 
e.g. flow index parameter exhibits that the apparent fluid viscosity becomes high when 
it has a higher value due to which fluid faces more resistance and the presence of a 
higher magnetic effect predicts the decreasing behavior on velocity. Additionally, the 
trapping phenomenon explains bolus movement and are discussed briefly. 
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1. Introduction 
 

In the last few decades, many investigations have shown more interest in the transportation of 
biological fluids through different mathematical geometries because the fluid flow is generated in 
wavy form i.e. wavy mechanism (peristaltic mechanism), which has enormous applications in 
biomechanics and engineering areas, etc. Such kinds of transportation occur during urine transport 
through the ureter, food movement through the esophagus, blood circulation, toxic liquid 
transportation in nuclear industries, vasomotion of small blood vessels such as capillary arteries and 
veins, worm motility, deadly cell treatment and bleeding reduction throughout the operation, etc. 
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This process is also used to produce dialysis devices, ventilators, open-heart bypass pumps, fusion 
pumps, etc. and in the study and treatment of diagnostic issues in living organisms. 

Owing to all the above insights, the core concept of peristaltic flow was introduced by Latham 
[1]. Primarily, he worked on viscous fluids (urine flow through the ureter). Early investigations were 
carried out on peristalsis using Newtonian fluids with different geometries Burns and Parkes [2]. 
Assumptions of low Reynold's number and long wavelength approximations were studied by Shapiro 
et al., [3], which was used to examine the mean flow rate under distinct boundary conditions and 
reflux flow in biological organs like the ureter and gastrointestinal tract etc. However, the premise of 
a Newtonian approach in modeling the peristaltic mechanism might not be adequate to understand 
the complex rheological activity of non-Newtonian fluids. By considering non-Newtonian fluids, Raju 
and Devanathan [4] started work on the power-law fluid model that discussed the flow of the blood 
in peristalsis. Continuing, Girija Devi and Devanathan [5] worked on micropolar fluid. Srivastava and 
Srivastava [6] investigate the blood flow through uniform and non-uniform tubes in the Casson fluid 
model. Vajravelu et al., [7] utilized the approximations in the peristaltic mechanism. Later, plenty of 
investigations were established on the peristalsis mechanism with various fluid models that explore 
the flow complexity of Newtonian and non-Newtonian fluids in different suppositions [8-11]. 

The analysis of the non-Newtonian fluid model gained huge prominence in discrete areas like 
industries and medical fields etc. Because the presence of viscoelastic properties in fluids helps to 
understand the complexity behind the fluid flow, among those models, the Carreau-Yasuda fluid 
model predicts extensive application in the research area. This model's main utility is to predict 
blood's shear thickening and shear thinning behaviours. In its limiting case, it can predict Newtonian 
and Carreau fluid models. Also, it explains five parameters to understand the rheological behaviour 
of fluid when compared with the three constants of the power law model. Furthermore, this model 
is also used in the manufacturing industry, like pumping equipment, which works better than 
Newtonian fluids and medical equipment design. Many examinations were carried out on the CY fluid 
model due to all the above visions. Non-Newtonian properties of blood flow in arteries were analyzed 
by Gijsen et al., [12] using both numerical data and experimental data results. 

Further, Abbasi et al., [13] investigate the significance of CY fluid flow through the asymmetric 
channel. In continuing, Hayat et al., [14] reported the numerical investigation of MHD Carreau-
Yasuda fluid. Kayani et al., [15] examined the influence of wall properties on CY model. A calendaring 
process using Carreau-Yasuda fluid was discussed numerically by Javed et al., [16]. The induced effect 
of the Carreau Fluid Model on different cells and Pressure Gradient at the Ampullar Region Entrance 
was reported by Arshaf et al., [17]. Later on, numerous surveys started to elaborate the concepts of 
the Carreau Yasuda fluid model in different suppositions [18-41]. 

Inspired by the views mentioned earlier, the present work intended to explore Ref. [42], which 
explained the impact of the Carreau fluid model in the absence of a magnetitic effect. The current 
work explores the model by considering the Carreau-Yasuda (CY) fluid model, which can predict the 
Carreau fluid and Newtonian models. Primarily, the pumping equipment works better compared to 
Newtonian fluids. Additionally, the partial slip effects are discussed on MHD peristaltic flow. Such a 
dimension of investigation has not yet been discussed. The present work has credible appliances in 
medicine and biomedical engineering. Especially in biomedical industries, it has a significant role in 
advancing and improving different kinds of drug delivery machines. 
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2. Mathematical Formulation 
2.1 Flow Regime 
 

Consider a two-dimensional peristaltic flow of an incompressible Carreau-Yasuda fluid (CY) in a 

microchannel of width 2 a and ( ),Y h X t=   considered as lower and upper wall respectively. 

The unsteady and laminar flow of the fluid is generated on the walls of the channel when sinusoidal 
waves are created along with the walls having large wavelength (compared with the mean channel 
width) and wave speed c . The fluid flow is maintained by providing temperature and concentration 

as 0T , 0C , 1T and 1C to both the upper and lower walls respectively. The geometry of the 

microchannel wall can be expressed mathematically as 
 

( )
( )2

,
X c t

Y h X t a b Sin




  −
  =  =  +

  
  

        (1) 

 

where, ( ),X Y are axial and transverse coordinates. ,a b , , andc t are represent the half-width of 

the channel, amplitude of the channel, speed of the wave, wavelength and time respectively.  
 

 
Fig. 1. Geometry of the fluid flow 

 
The expressions for non-Newtonian Carreau-Yasuda fluid are given by 
 
𝑆̄ = 𝜇(𝛾̇)𝐴̄1              (2) 
 
where,  𝜇(𝛾̇)is the apparent viscosity. The Lorenz force by using ohm's law is given by   
  

( )( )2

00, ,0J B B V mU = − +
           (3) 

 
where J is the current density and B  is the magnetic field. 
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2.2 Governing Equations 
 

The governing equations in the laboratory frame for a Carreau-Yasuda fluid as follows 
 

0
U V

X Y

 
+ =

 
              (4) 

 

( )2

0XY XX

U U U p
U V B U c

t X Y X Y X
   
      

+ + = − + + − + 
      

       (5) 

 

XY YY

V V V p
U V

t X Y Y X Y
  
      

+ + = − + + 
      

         (6) 

 
2 2

2 2p XX YY XY

dT dT dT T T U V U V
c U V k

d t d X d Y X Y Y XX Y
   

           
+ + = + + + + +     

         

    (7) 

 
2 2 2 2

2 2 2 2

t m
m

m

C C C C C k D T T
U V D

t X Y TX Y X Y

          
+ + = + + +    

           

       (8) 

 

Here, ( ),U V are the velocity coordinates along with ( ),X Y  direction respectively. p ,  , 
pc , k , tk , 

mD , mT , T  and C  represents pressure, fluid density, specific heat, thermal conductivity, ratio of 

thermal diffusion, mass diffusivity co-efficient, mean temperature, temperature, and concentration 
of the field respectively. 
 
2.3 Nondimensionalisation 
 

The equations in the form of fixed coordinate system ( ),X Y are transformed to moving 

coordinate system ( ),x y  is as follows 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , , , , , , , ,

, ( , , ), , , ,

x X ct y Y u x y U X Y t c v x y V X Y t

p x y P X Y t T x y T X Y t

= − = = − =

= =
       (9) 

 
Employing these transformations and introducing the following non-dimensional variables 
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0

1

1

2

0

0
0 0

2

0

0 0

1
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, , , Mn , , , ,

Pr, Re , , , , , .,t X
X

p

m

m

Y

m

Y

p

cx y u ct pa h
x y u t p a b h

c c a k

T T C C
B a u v

ca y yT C

T k Dca q Q c
Br

d

Ec f Sr Sc Ec
c

ba

a

b

a

a

ca ca T C D c T








   

  



 
   



 

 

= = = = = = = = =

− −  
= =  = = = = = −

 

= = =  = = = = =

               (10) 

 
Here, ( ),x y are non-dimensional axial and transverse coordinates. p ,  ,  ,  ,  ,  , Br , Re , Pr

,  , Sr , Sc , Mn  and Ec  are the non-dimensional parameters such as pressure, peristaltic wave 
number, dimensionless volume flow rate, dimensionless temperature, dimensionless concentration, 
non-dimensional shear stress, Brinkmann number, Reynolds number, Prandtl number, amplitude 
ratio, non-dimensional Soret number, Schmidt number, Magnetic parameter and Eckert number 

respectively. The dimensionless shear stress XY  is obtained as follows 

 

2 2

2 2

1
1

a

a

XY

n
We

a y y

 


   −  
  = +        

                      (11) 

 
By using approximations of long-wavelength and low Reynolds number and ignoring higher order of 
 , we get a transformed system of equations which are substituted by Eq. (11) and are expressed as 
 

2 2
2

2 2

1
1 1

a

adp n
We Mn

dx y a y y y

        −   
  = + − +            

                   (12) 

 

0
p

y


=


                         (13) 

 
2

2 2

2 2

1
1 0

a

an
Br We

y y a y y

         −  
 + + =               

                    (14) 

 
2 2

2 2
0

d d
Sc Sr

dy dy


+ =                         (15) 

 

Eliminating pressure from Eq. (12), we obtain the following 
 

2 2 2 2
2

2 2 2 2

1
1 0

a

an
We Mn

y a y y y

      −   
  + − =         

                   (16) 

 
Correspondingly, the constructed boundary assumptions are 
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( )

2

2

2

2

0, 0, 0, 0, at 0

, 1, 1, 1 at 1h m

d
y

dy

d d d d
f B B y h Sin x

dy dy dy dy


 

  
   

= = =  = =


= + = − + = + = = = +

               (17) 

 
Here, 

hB and 
mB are convective heat and mass transfer parameters respectively. The relation 

between   (dimensionless flow rate in the fixed frame) and f (dimensionless flow rate in the 

moving frame) is expressed as 
 

1f= + .                         (18) 

 
The wall shear stress (skin-friction co-efficient), heat transfer co-efficient (Nusselt number), and mass 
transfer co-efficient (Sherwood number) in non-dimensional form is given by  
 

2

2
, ,f

y h y h y h

C h Nu h Sh h
y y y

 

= = =

  
  = = =
  

                   (19) 

 
The nonlinear system of equations Eq. (12) to Eq. (16) with appropriate boundary conditions Eq. (17) 
are solved for different physiological constraints such as velocity, temperature distribution, 
concentration, skin-friction coefficient, Nusselt number, Sherwood number and stream function by 
means of built-in routine ND Solve in Mathematica. 
 
3. Results and Discussion 
 

The main purpose of this section is to discuss the impact of various physical constraints on 
velocity, temperature and concentration. Also, the flow pattern of the bolus is discussed through 
streamline graphs for different pertinent parameters. 

 
3.1 Flow Characteristics 
 

This subsection aims to deliberate the effect of appropriate physical parameters on the velocity 
profile shown in Figure 2(a)-(d). Figure 2(a) depicts the impact of Mn  on velocity, which shows a 
declining effect by the higher value of the Mn  due to the presence of Lorenz force which resists the 
fluid flow. Similarly, the impact of n  also shows the same effect as that of Mn . This highlights the 
fact that the apparent fluid viscosity becomes high, due to which fluid faces more opposition. 
Therefore, the velocity profile increases by hiking the values of n  Figure 2(b). To understand the 
impact of the Weissenberg parameter on velocity Figure 2(c) is obtained, which depicts increasing 
effect by enlarging values of We . Figure 2(d) predicts variation of the velocity slip parameter that 
shows a decaying of the velocity profile by enhancing values of the velocity slip parameter. 
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Fig. 2(a). Velocity profile for different values 
of Mn  

 Fig. 2(b). Velocity profile for different 
values of n  

 

 

 

 
Fig. 2(c). Velocity profile for different values ofWe   Fig. 2(d). Velocity profile for different values of  

 
3.2 Heat Characteristics 
 

Temperature distribution of various physical constraints are plotted in Figure 3(a)-(e). The 
variation of the magnetic parameter is explained in Figure 3(a) that shows decreasing effect by hiking 
values of Mn  parameter. The Figure 3(b) explains the impact of n  (flow behavior index) parameter 
on the temperature profile, which shows a similar behavior as Mn . From Figure 3(c), by increasing 
values of Weissenberg parameter (We ), shows decreasing effect on the temperature profile. But 
Brickman parameter shows the contrary effect of We  i.e., Figure 3(d). The Figure 3(e) explains the 
impact of convective heat parameter hB  on temperature profile which explain the variation of heat. 
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Fig. 3(a). Temperature profile for different 
values of Mn  

 Fig. 3(b). Temperature profile for different 
values of n  

   

 

 

 

 
Fig. 3(c). Temperature profile for different values 

ofWe  

 Fig. 3(d).  Temperature profile for different values 

of Br  
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3.3 Concentration Profile 
 

This section explains the impact of different physical parameters on the concentration profile 
shown in Figure 4(a)-(g). The Figure 4(a) evaluate the variation of magnetic parameter on 
concentration which depicts the concentration of the particles increases by increasing values of Mn

. The impact of the flow behavior index on the concentration profile shows in Figure 4(b). which 
shows the higher concentration by the higher value of n . Similarly, Figure 4(c) and 4(d) show the 
decreasing effect on the concentration profile by hiking values of the Weissenberg and Brickman 
parameters, respectively. The effect of the convective mass parameter on the concentration profile 
is explained in Figure 4(e), which shows a higher effect by increasing values of 

mB . The variation of 

Schmidt and Soret parameters is explained on the concentration profile. Both show decreasing effect 
by increasing values of Sc and Sr  i.e., Figure 4(f) and Figure 4(g) respectively. 

 

 
Fig. 3(e). Temperature profile for different values of

hB  
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Fig. 4(a). Concentration profile for different values 

of Mn  

 Fig. 4(b). Concentration profile for different values of
n  

   

 

 

 

Fig. 4(c). Concentration profile for different values 

ofWe  

 Fig. 4(d). Concentration profile for different values of

Br  
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3.4 Skin-Friction Coefficient, Nusselt Number and Sherwood Number 
 

The numerical results of Skin friction coefficient fC , Nusselt Number Nu  and Sherwood Number 

are tabulated in Table 1, Table 2 and Table 3 respectively. Table 1 represents the calculated values of 
the Skin friction coefficient such as the magnetic parameter Mn , Flow index parameter n , 
Weissenberg parameter We and velocity slip parameter  . Varying the values of the Magnetic 

parameter shows a decreasing manner on fC .The Skin friction coefficient's numerical outcomes 

increase by hiking the flow index parameter's value. A similar impact is demonstrated in the 
Weissenberg parameter, but a contrary variation was identified in the velocity slip parameter on skin 
friction. 

 

 

 

Fig. 4(e). Concentration profile for different values 

of
mB  

 Fig. 4(f). Concentration profile for different values 

of Sc  

   

 
Fig. 4(g). Concentration profile for different values of

Sr  
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Table 1 
Skin-friction co-efficient for various values of 

(a) Mn (b) n  (c) We (d)   

Mn  n  We    
fC  

1.0 1.9 0.01 0.1 -7.76084 

2.0 -17.2991 

3.0 -20.6373 

4.0 -24.4562 

 
 
 
 
 
 
 
 
 
 

 
 
 
1.0 

1.0 -14.8952 

2.0 -14.8997 

3.0 -14.9042 

4.0 -14.9087 

 
 
 
 
 

 
 
 
1.9 

0.01 -15.5753 

0.03 -15.1409 

0.05 -14.9663 

0.07 -14.9078 

 
 
 

0.01 

0.1 -6.74026 

0.3 -7.84148 

0.5 -9.37296 

0.7 -11.6485 

 
Table 2 
Nusselt number for various values of (a) Mn (b) n  (c) 

We (d) Br  (e) 
hB  

Mn  n  We  Br  
hB  Nu  

1.0 1.9 0.01 0.5 1.0 -68.6629 

2.0 -75.1317 

3.0 -85.9174 

4.0 -100.974 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1.0 

1.0 -75.1305 

2.0 -75.1318 

3.0 -75.1332 

4.0 -75.1345 

 
 
 
 
 
 
 
 
 
 
 
 
 

1.9 

0.01 -75.1317 

0.03 -75.1654 

0.05 -75.3402 

0.07 -76.1407 

 
 
 
 
 
 
 
 

0.01 

0.6 -67.6185 

0.7 -60.1053 

0.8 -52.5922 

0.9 -45.0790 

 
 
 

0.5 

1.0 -13.0303 

2.0 -18.2300 

3.0 -21.9330 

4.0 -24.8714 
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A relevant physical parameter of the Nusselt number has been discussed through numerical 
outcomes in Table 2. The gradual growth of the magnetic and flow index parameters can reduce the 
Nusselt number's impact. Contrary behaviour was observed for the variation of the Brickman number 
on the Nusselt number. In continuing, the increasing manner of convective heat parameter reports 
the decreasing effect on Nu . Table 3 reports the interpretation of numerical data for the discrete 
physical constraints of Sherwood Number. In that, increasing order of Magnetic parameter and Flow 
index parameter shows the decreasing outcomes on Sherwood number. Transverse effect on 
Sherwood number observed by Weissenberg parameter and Brickman parameter. A growing order 
for Convective mass parameter predicts increasing growth on Sh . In continuing, by observing the 
numerical outcome of the Schmitt parameter and Soret parameter reports the growth of the 
Sherwood number. 
 

Table 3 

Sherwood number for various values of (a) Mn (b) n  (c) We (d) Br (e) mB  

(f) Sc  (g) Sr  
Mn  n  We  Br  

mB  Sc  Sr  Sh  

1.0 1.9 0.01 0.5 1.0 0.1 0.1 -0.00591616 

2.0 -0.00421997 

3.0 -0.00296545 

4.0 -0.00220848 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.0 

1.0 -0.00220784 

2.0 -0.00220782 

3.0 -0.00220756 

4.0 -0.00220637 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.9 

0.01 -0.00220848 

0.03 -0.00220975 

0.05 -0.00221746 

0.07 -0.00223162 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.01 

0.6 -0.00662452 

0.7 -0.01104120 

0.8 -0.01545630 

0.9 -0.01987140 

 
 
 
 
 
 
 
 
 
 

0.5 

1.0 -0.00220872 

2.0 -0.00220869 

3.0 -0.00220864 

4.0 -0.00220856 

 
 
 
 
 
 

0.1 

0.1 -0.02208050 

0.2 -0.04416050 

0.3 -0.06623810 

0.4 -0.08832370 

 
 

0.1 

0.1 -0.02208050 

0.2 -0.06623810 

0.3 -0.11040600 

0.4 -0.15456600 

 
3.5 Trapping Phenomenon 

 
This area explains the interior concept which explains the movement of the bolus that is produced 

in sinusoidal waveform on the walls of the channel, called the trapping phenomenon. Particularly, 
this section elaborates the impacts of various physical constraints such as Mn , n , We  and  . The 
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bolus movement occurs with equal velocity as wave propagation of peristalsis. Figure 5(a). shows 
decreasing effect when compared with the width of the bolus which is produced by enhancing values 
of Mn . The flow behavior index's bolus movement also shows the same effect as Mn  that drawn in 
Figure 5(b). Similarly, Figure 5(c). And Figure 5(d) elucidates the increasing and decreasing effect of 
bolus respectively. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Streamline graphs for different values of Mn  
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Fig. 6. Streamline graphs for different values of n  
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Fig. 7. Streamline graphs for different values of We  
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4. Validation 
 

Figure 9 displays a graphical comparison between study [42], which forecasts fluid flow under the 
influence of the induced magnetic effect in the presence of partial slip boundary restrictions, and the 
current study. The present study is found to be consistent with study [42]. 
 

 
 

 
 
 
 

 

 

 

 

 

 
Fig. 8. Streamline graphs for different values of   
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Fig. 9. Validation for Velocity 

 
4. Conclusions 
 

The peristaltic movement of non-Newtonian Carreau-Yasuda fluid is analysed through a planner 
micro-channel were formulated in the presence of an induced magnetic field (MHD) and appropriate 
partial boundary conditions. The impact of different physical parameters is investigated. The present 
article explores the significance of the Carreau-Yasuda fluid model in discrete areas such as 
industries, biomedical fields, and manufacturing areas. The significant outcomes of the current 
analysis are elaborated on below 

 
i. The greater value of the magnetic parameter shows a declining effect on velocity. Because 

the existence of Lorenz force shows resistance to the movement of the fluid. MHD plays 
a significant role during MRI, medical surgeries, cancer therapy, etc. 

ii. The fluid flow on velocity predicts the declination when the velocity slip parameter is 
larger. 

iii. The high value of the flow behaviour index explains the variation of fluid flow that shows 
the apparent fluid viscosity becomes high, due to which fluid faces more resistance. 

iv. The higher flow index parameter controls both the velocity and temperature. 
v. The impact of convective heat and mass shows decreasing and increasing effects on 

temperature and concentration profiles, respectively, because the heat exchange is high 
in the concentration profile by the higher value of convective mass. 

vi. The presence of a higher magnetic field shows the decreasing behaviour of the trapped 
bolus. 
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