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This study is to analyse the problem of slip flow via exponentially stretching/shrinking 
sheet in carbon nanotubes (CNTs) with heat generation effects. The governing partial 
differential equations are transformed into nonlinear ordinary differential equations via 
transformation of similarity. The bvp4c solver in Matlab is then used to resolve them 
numerically. Water is used as the base fluid together with single wall and multi wall CNTs. 
The flow parameters effect is investigated, shown in the graphs form, and physically 
evaluated for the dimensionless velocity, temperature, skin friction, and Nusselt numbers. 
The results show that there are unique solutions for stretching sheets and non-unique 
solutions for shrinking sheets. In addition, compared to the case of a linearly 
stretching/shrinking sheet, the region of the stretch/shrink parameter where the similarity 
solution exists for the case of exponential stretching/shrinking sheet is greater. 
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1. Introduction 
 

Due to its numerous applications, including in the production of glass fibre and the extraction of 
polymer sheets, the flow caused by stretching sheets is a significant issue in fluid mechanics. Crane 
[1] began by looking at the steady boundary layer flow via linearly stretching surface. Numerous 
researchers became interested in expanding his work after that [2-6]. While most researchers studied 
for flow over linearly stretching surface, Magyari and Keller [7] were the first to explore flow via 
exponentially stretching sheet, while the majority of studies focused on flow over linearly stretching 
surfaces. Following their study, Bhattacharyya and Vajravelu [8] investigated a flow and heat transfer 
via exponentially shrink surface in a nanofluid. The continuous stagnation point flow and heat 
transfer in a porous material brought on by an exponentially expanding/contracting sheet were 
studied by Japili et al., [9]. They came to the conclusion that the stable stagnation point over an 
exponentially shrinking sheet has a greater range where the similarity solution occurs than a linearly 
shrinking sheet. There are other researchers who also studied the same cases but with different 
effects [10-12]. 
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Choi [13] is the first person who introduced nanofluid where it contains a nanometre-sized 
particle called nanoparticles. Although the behaviour of nanofluids is having a significant impact on 
improving heat transfer in applications like transportation and biomedicine, carbon still 
demonstrates positive results due to its potent electrical, mechanical, and thermal properties. 
Therefore, Choi et al., [14] researched the heat conductivity of oil based CNTs. CNTs are a form of 
carbon allotrope that come in single-wall (SWCNTs) and multi-wall (MWCNTs) varieties. Their 
diameter is measured in nanometers. Since then, numerous studies have uncovered the advantages 
of CNTs and investigated various boundary layer problems on CNTs [15-17]. CNT stagnation point 
flow and heat transfer characteristics of a nanofluid were studied by Othman et al., [18] over a 
shrinking surface with heat sink effects. According to their findings, SWCNT/kerosene is a better 
nanofluid for flow and heat transmission than MWCNT/kerosene, CNT/water, and ordinary fluid 
(water). 

While some researchers looked at the flow field with a no slip boundary condition, it was equally 
important to look at how slip boundary conditions affected the flow field. The fluid flow and heat 
transfer of CNTs over a flat plate with conditions of Navier slip and uniform heat flux were initially 
considered by Khan et al., [19]. The flow and heat transfer characteristics of CNTs on a moving plate 
with slip effect are studied by Anuar et al., [20] and they reveal that slip parameter was found to 
widen the range of the possible solutions. After that, many papers also considered slip effects [21-
23].  

Elbashbeshy and Bazid [24] examined heat transfer via stretching surface alongside internal heat 
generation or absorption with a power-law velocity distribution. In the presence of chemical reaction 
and heat source effects, Khan et al., [25] analysed MHD flow of a micropolar fluid across a vertical 
stretching/shrinking sheet. They discovered that the local Sherwood number has tended to increase 
with rising values of the chemical reaction parameter while decreasing with rising values of the heat 
source parameter. Following them, there are numerous paper that considered heat generation [26-
28]. 

In this study, Norzawary et al., [29]’s research is expanded upon. The flow via an exponentially 
stretch/shrink sheet with addition of heat source effects are considered in this study as opposed to 
their consideration of flow over a linearly stretch/shrink sheet. 
 
2. Methodology  
 

2D, steady and laminar stagnation point flow of an incompressible nanofluid via exponentially 
stretch/shrink sheet is considered. The free stream and sheet velocities are assumed to vary 

exponentially from a fixed stagnation point, which correspond to 𝑈𝑤(𝑥) = 𝑎 𝑒𝑥/𝐿  and  𝑈∞(𝑥) =

𝑏 𝑒𝑥/𝐿 , accordingly, where 𝑎 and 𝑏 are constants, as shown in Figure 1. 
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       (a)                                (b) 

Fig. 1. Physical model for (a) stretching sheet and (b) shrinking sheet 

 
The following is a possible formulation for the boundary layer equations [30] 
 

∂u

∂x
+

∂v

∂y
= 0,                                                                                (1) 

  

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+

μnf

ρnf

∂2u

∂y2 ,                                                                 (2) 

  

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2 +  
Q0

ρCp
(T − T∞)                                                                        (3) 

 
Subject to the boundary conditions 
 

u = Uw(x) + L
∂u

∂y
, v = 0 , T = Tw = T∞ + T0 e

x

2L      at y = 0  

u → U∞(x) , T → T∞  as  y → ∞ 
(4) 

 
The velocity components in x and y directions are respectively u and v, nanofluid’s temperature 

is T  and L1 denotes the slip factor where is defined as L = L1 e−
x

2L where L1 is the initial length of 
slip factor. αnf, μnf and ρnf are the thermal diffusivity, viscosity and density of the nanofluid, 
accordingly, that are provided by Oztop and Abu-Nada [31] 

 

αnf =
knf

(ρCp)nf
 , μnf =  

μf

(1 − φ)2.5
 , ρnf = (1 − φ)ρf + φρCNT, 

(ρCp)nf = (1 − φ)(ρCp)
f

+ φ(ρCp)CNT  ,       
knf

kf
=

1−φ+2φ
kCNT

kCNT−kf
ln

kCNT+kf
2kf

1−φ+2φ
kf

kCNT−kf
ln

kCNT+kf
2kf

                        

(5) 

 
where CNTs volume fraction is φ, (ρCp)nf and knf are the heat capacity and conductivity of nanofluid, 

(ρCp)CNT, kCNT and ρCNT are the heat capacity, thermal conductivity and density of CNTs, 

sequentially, and kf for fluid’s density. The term knf/kf were adapted from Xue [32] in which the 
model of Maxwell theory considers the impacts of space distribution of CNTs on heat conductivity. 
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Adopting the following transformation to signify the governing Eq. (1)-(3) and conditions (4) in a 
simpler form 
 

η = y (
b

2νfL
)

1

2
e

x

2L, ψ = (2νfLb)
1

2 e
x

2L f(η), θ(η) =
T−T∞

Tw−T∞
                                  (6) 

 
where variable of similarity is 𝜂 and function of stream is 𝜓 represented as 𝑢 = 𝜕𝜓/𝜕𝑦 and ν =
−𝜕𝜓/𝜕𝑥, that complying with Eq. (1) equivalently. Eq. (2)-(3) and conditions (4) can be simplified to 
the following ODEs by using Eq. (6) 
 

1

(1−φ)2.5(1−φ+φρCNT/ρf)
f ′′′ + ff ′′ − 2f ′2 + 2 = 0                                           (7) 

  
1

Pr

knf/kf

[1−φ+φ(ρCp)
CNT

/(ρCp)f]
θ′′ + fθ′ − f ′θ − Qθ = 0                                               (8) 

 
f(0) = 0 , f ′(0) = ε + σf ′′(0), θ(0) = 1 
f ′( η) → 1 , θ(η) → 0 as  η → ∞                                                             

(9) 

 

which σ = Ls (
a

2νfL
)

1/2

 is the parameter of slip and ε is the parameter of velocity ratio where ε > 0 

for stretching and ε < 0 for shrinking. The coefficient of skin friction Cf and the number of local 
Nusselt Nux are the physical quantities of concern in this study. 
 

Cf =
μnf

ρfU∞
2 (

∂u

∂y
)

y=0
 ,    Nux = −

xknf

kf(Tw−T∞)
(

∂T

∂y
)

y=0
                                                          (10) 

 
Following the transformations, quantities of physical interest that we acquire are 

 

CfRex
1/2

=
1

(1−φ)2.5 f ′′(0),   Nux/Rex
1/2

=  −
knf

kf
θ′(0)                                                     (11) 

 
where Rex = U∞x/νf is the local Reynolds number. 
 

The smallest unknown eigenvalue is found via stability analysis. The reason for this is that the 
results support the same interpretation, according to which the first solution is stable and the second 
solution is not, and this conclusion was supported by numerous researchers [33–35]. To disturb the 
replaceable Eq. (2)-(3), the unsteady case is introduced. 

 
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+

μnf

ρnf

∂2u

∂y2
 ,                                                                         (12) 

  
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2 + 
Q0

ρCp
(T − T∞)                                                                        (13) 

 
The new similarity transformation is introduced as follows 

 

η = y (
b

2νfL
)

1

2
e

x

2L, ψ = (2νfLb)
1

2 e
x

2L f(η, τ), θ(η, τ) =
T−T∞

Tw−T∞
, τ =

bt

2L
 e

x

L,                              (14) 
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Implementing the new transformation, we obtain 
 

1

(1−φ)2.5(1−φ+φρCNT/ρf)

∂3f

∂η3
+ f

∂2f

∂η2
− 2 (

∂f

∂η
)

2

+ 2 − 2τ [
∂f

∂η

∂2f

∂η ∂τ
−

∂f

∂τ

∂2f

∂η2
] −

∂2f

∂η ∂τ
= 0             (15)                              

  
1

Pr

knf/kf

[1−φ+φ(ρCp)
CNT

/(ρCp)f]

∂2θ

∂η2 + f
∂θ

∂η
−

∂f

∂η
θ − 2τ [

∂f

∂η

∂θ

∂τ
−

∂f

∂τ

∂θ

∂η
] −

∂θ

∂τ
+ Qθ = 0                     (16)                              

 
Subject to the boundary conditions 

 

f(0, τ) = 0 ,
∂f

∂η
 (0, τ) = ε + σ

∂2f

∂η2
(0, τ), θ(0, τ) = 1 

∂f

∂η
( η, τ) → 1 , θ(η, τ) → 0 as  η → ∞                     

(17)                                        

 
Next, the following equations are used to detect the stability of the flow [36] 

 
f(η, τ) = f0(η) + e−γτF(η, τ) , θ(η, τ) = θ0(η) + e−γτG(η, τ)  (18) 

 
where γ is parameter of unknown eigenvalue, F(η) and G(η) are small relative to f0(η) and θ0(η), 
respectively. Using Eq (18) into (15)-(16) and letting τ ⟶ 0 where  F(η) = F0(η)  and G(η) = G0(η) 
we have the linearized equation as follows 
 

1

(1−φ)2.5(1−φ+φρCNT/ρf)
F0

′′′ + f0F0
′′ + f0

′′F0 − (4f0
′ − γ)F0

′ = 0                                          (19) 

  
1

Pr

knf/kf

[1−φ+φ(ρCp)
CNT

/(ρCp)f]
G0

′′ + f0G0
′ + F0θ0

′ − f0
′G0 − F0

′ θ0 + γG0 + QG0 = 0                    (20) 

 
with conditions of 
 

F0(0) = 0 , F0
′ (0) = σF0

′′(0), G0(0) = 1 
F0

′ ( η) → 0 , G0(η) → 0 as  η → ∞                                                             
(21) 

 
One of the boundary criteria needs to be relaxed in light of the research conducted by Harris et 

al., [37]. Hence, we changed F0
′ ( η) → 0 as η → ∞ with the new condition F0

′′(η) = 1.  

 
3. Results  
 

The system of (7)-(8) and the conditions in (9) are numerically solved using Matlab's bvp4c 
solver.Eqs. Both SWCNTs and MWCNTs are taken into account while employing water as the base 
fluid. The thermophysical properties of the base fluid and CNTs are listed in Table 1. 
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Table 1 
Thermophysical properties of CNTs (Khan et al., [19]) 
Physical properties Base fluids, 

water (Pr = 6.2) 
Nanoparticle 

SWCNT MWCNT 
𝛒 (𝐤𝐠/𝐦𝟑) 997 2600 1600 
𝐜𝐩 (𝐉/𝐤𝐠𝐊) 4179 425 796 

𝐤 (𝐖/𝐦𝐊 0.613 6600 3000 

 
Figure 2 and 3 show the f′′(0) and −θ′(0) with some values of ε , for certain values of slip 

parameter σ, where σ = 0, 0.2 and 0.4. The range of ε values where a solution exists expand as σ 
grows (ε ≥ εc). It can be seen that dual solutions exist when εc < ε ≤ −1, while solution is unique 
when ε > −1 and when ε < εc < 0, no solutions exist (εc is the critical value of ε).  Additionally, it is 
found that as σ rises, surface heat loss and reduced skin friction both increases. 

 

 

 

 
Fig. 2. f′′(0) with ε and  φ for water-SWCNTs     Fig. 3. −θ′(0) with ε and  φ for water-SWCNTs 

 
Figure 4 illustrate −θ′(0) with some values of ε , for certain values of heat generation parameter 

Q where Q = 0, 0.3 and 0.5. It concluded that when Q increases, the rate of heat transfer decreases. 
 

 
Fig. 4. −θ′(0) with ε and Qfor water-SWCNTs 
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Figure 5 and 6 illustrate the CfRex
1/2

and Nux/Rex
1/2

, given by Eq. (11). It is concluded that as σ 

increases, CfRex
1/2

 decreases, while Nux/Rex
1/2

 increasing. Convective heat transfer on the surface is 
enhanced by the presence of slip. Furthermore, SWCNTs are found to be higher than MWCNTs in 

both CfRex
1/2

and Nux/Rex
1/2

. It is because SWCNTs are considered to have a higher density and 

thermal conductivity than MWCNTs, refer to Table 1.  While, CfRex
1/2

and Nux/Rex
1/2

 for two base 

fluids are shown in Figure 7 and 8, where it shows that kerosene-SWCNT have both higher CfRex
1/2

and 

Nux/Rex
1/2

.  
 

 

 

 
Fig. 5. f′′(0) with ε and  σ for water-SWCNTs  Fig. 6. −θ′(0) with ε and σ for water-SWCNTs 

 

 

 

 
   Fig. 7. f′′(0) with ε and  σ for water-SWCNTs  Fig. 8. −θ′(0) with ε and σ for water-SWCNTs 

 
The velocity and temperature profiles for different base fluids and CNTs are presented in Figure 

9-12. From Figure 9-12, all the profiles obtained fulfilled the conditions (9) asymptotically, which then 
confirmed the presence of the dual solutions shown in Figure 2 and 3. The boundary layer thickness 
for the first solution is often shown to be lower than for the second solution. 
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Fig. 9. Velocity profiles for different base fluids  Fig. 10. Temperature profiles for different base 

fluids 
   

 

 

 
Fig. 11. Velocity profiles for different CNTs  Fig. 12. Temperature profiles for different CNTs 

 
The smallest eigenvalues for various values of are shown in Figure 13. The smallest own values 

for the upper branch solution are demonstrated to be positive, whereas the opposite is true for the 
lower branch solution. Figure 13 further demonstrates how, for both similarity solutions as ε ⟶ εc,, 
γ approaches 0, supporting the notion that γ is equal to zero when ε = εc. The first solution was 
therefore more stable than the second one (refer to Table 2). 

 

 
Fig. 13. γ at selected ε for σ = 0.2 and φ = 0.1 for 
water-SWCNTs 
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Table 2 
Smallest eigenvalues 𝛾 at selected values of 𝜀 for different 
𝜎 when 𝜑 = 0.1 for water-SWCNTs 
𝝈 𝜺 Present results 

First solution Second solution 

𝟎 -1.48701 
-1.487 
-1.48 
-1.4 

0.0495 
0.0526 
0.4326 
1.4885 

-0.0271 
-0.0302 
-0.4064 
-1.4171 

𝟎. 𝟐 -1.6727 
-1.672 
-1.67 
-1.6 

0.0413 
0.1323 
0.5276 
1.2528 

-0.0315 
-0.1223 
-0.5125 
-1.2118 

𝟎. 𝟒 -1.9515 
-1.951 
-1.95 
-1.9 

0.0333 
0.1011 
0.1675 
0.9533 

-0.0277 
-0.0953 
-0.1615 
-0.9332 

 
4. Conclusions 
 

This study explored conceptually and assessed the effects of CNT volume fraction, slip, and heat 
generation on the stagnation point flow past an exponentially stretching/shrinking sheet. The Matlab 
bvp4c solver was used to solve the issue. The results indicate that 

 
i. Solutions for a stretching sheet are unique while for a shrinking sheet are non-unique. 

ii. With an increment in the slip parameter, the solutions range broadens, but with a rise in 
heat generation, it narrows. 

iii. Single walled CNTs outperform multi walled CNTs in terms of skin friction and local 
Nusselt number. 

iv. The first solution is stable while the second solution is not, based upon the stability 
analysis. 
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