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In this paper, three mathematical models to predict the air collector temperature are 
reviewed and analyzed. These three models were drawn from 30 publications between 
1980 and 2022. The models include lumped model (model 1), a one-dimensional (1D) 
steady model (model 2), and 1D unsteady model (model 3). The models are established 
based on the energy balance of the heat exchanger surfaces and the airflow. Solution 
techniques for models are presented using a system of linear equations, numerical 
integral, and finite difference method. The results of the sensitivity analysis of the 
models indicate that the temperatures of the air exiting the collector are similar. 
Model 3 considers the thickness of the glass cover, absorber plate, and bottom plate 
thus having the effect of thermal inertia in the morning and afternoon. The maximum 
difference of outlet air temperature between models 1 and 2 is 0.18 K. The highest 
outlet air temperature deviation of 0.77 K between models 1 and 3 occurred at 8 AM. 
When the thicknesses are negligible, the temperature distribution along the air 
collector of models 2 and 3 is the same. In other words, model 3 should be used when 
there is the presence of the thickness of the plates and the glass cover. 
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1. Introduction 
 

Solar air heater (SAH) is a device that converts energy from solar irradiance into hot air. This 
converter is widely applied in drying technology [1,2], ventilation, and space heating [3]. It has a 
simple structure and is easy to manufacture. However, the efficiency is low because the heat transfer 
fluid is air [4,5]. It has therefore received enormous research attention in the past half-century. 
Recently, nanopowders have been inserted to the heat transfer fluid to improve the thermohydraulic 
performance of a thermal solar system [6-8]. The SAH has been studied scholarly since 1963 [9]. 
Scopus data indicates that there are more than 4000 published articles related to solar air heater 
research. Figure 1 shows the number of SAH papers in the last 5 years. An increasing trend can be 
seen in research on SAH. The mathematical model for the thermal design of the air collector can be 
divided into three categories according to the complexity of the mathematical problem as follows 
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i. Model 1: Lumped model 
ii. Model 2: One-dimensional (1D) steady model  

iii. Model 3: 1D unsteady model 
 

Model 1 is the steady-state lumped parameters model. The temperatures of the air collector 
components (glass, airflow, absorber plate, bottom plate) are average temperatures. This is the 
simplest mathematical approach. Model 2 considers the variation of air temperature along the flow 
direction so that it forms an ordinary differential equation (ODE) or an air temperature gradient 
equation. Model 3 is derived from the differential equation of energy, i.e., second-order partial 
differential equation (PDE). Therefore, model 3 is the most complicated and often solved using a 
numerical method. It should be noted that multi-dimensional (2D or 3D) and unsteady models 
weren’t analytically performed. This is because of involvement of pressure-velocity and non-linear 
term in Navier-Stokes equation which is so complicated that such an approach is unnecessary.    

 

 
Fig. 1. Number of publications titled “solar air heater” in recent five years 
(Source: Scopus database) 

 
Table 1 summarizes the analytical publications on solar air heaters from the year 1980. Apart 

from a specific application, the mathematical formulation of a publication is one of the three models 
aforementioned above. Most researchers have used the first two approaches due to their simplicity. 
Recently, Román and Hensel [10] have confirmed that few studies have employed the model 3 in the 
study of solar air collectors. Actually, there is not a work which points out strengths, weaknesses, and 
comparison of the three models. The analysis of mathematical approaches is very important for 
designers in calculation of a thermal solar system. They can select either simplified model with 
moderate accuracy or well-established model with high enough skills of advanced calculus and 
numerical method. Therefore, the aim of this study is to 

 
i. Overview the mathematical models for the thermal design of the air collector (as shown 

in Table 1) 
ii. Establish three analytical approaches and discuss solution procedure. 

iii. Compare the outlet air temperature and local temperatures of the approaches. 
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Table 1 
Summary of the research work on solar air collectors using an analytical approach 
No. Year  Researcher  Model1 (lumped) Model 2 (ODE) Model3 (PDEs) 

1 1980 El-Refaie and Hashish [5]   ✓ 

2 1981 Garg et al., [6]   ✓ 

3 1989 Garg et al., [7]   ✓ 

4 1995 Ong [8] ✓ ✓  
5 2005 Ho et al., [9]  ✓  
6 2007 Ramadan et al., [10]  ✓  
7 2009 Sopian et al., [11]   ✓ 

8 2010 Ramani et al., [12]  ✓  
9 2013 Yeh and Ho [13]  ✓  
10 2013 Hernandez and Quiñonez [14]  ✓  
11 2013 Ho et al., [15]  ✓  
12 2014 Karim et al., [16] ✓   
13 2015 Velmurugan and Kalaivanan [17] ✓   
14 2015 Velmurugan and Kalaivanan [18] ✓   
15 2015 Velmurugan and Kalaivanan [19] ✓   
16 2016 Velmurugan and Kalaivanan [20] ✓   
17 2018 Singh and Dhiman [21]  ✓  
18 2018 Ho et al., [22]  ✓  
19 2018 Matheswaran et al., [23] ✓   
20 2019 Matheswaran et al., [24] ✓   
21 2021 Luan and Phu [25] ✓   
22 2021 Phu et al., [26]  ✓  
23 2021 Phu and Tu [27]   ✓  
24 2021 Phu et al., [28]  ✓  
25 2021 Ahmadkhani et al., [29]  ✓  
26 2021 Ho et al., [30]  ✓  
27 2022 Phu and Hap [31] ✓ ✓  
28 2022 Nhiem et al., [32]    ✓  
29 2022 Thao et al., [33]  ✓  
30 2022 Román and Hensel [4]   ✓ 

 
2. Mathematical Models 

 
Figure 2 outlines the schematic diagram of a single-pass flat plate solar air heater used for 

mathematical modeling and analysis in this study. Solar radiation (I) passes through the glass cover 
and solar energy is absorbed by the absorber plate. The air flow blows below the absorber plate to 
receive heat from the absorber and bottom plates. The lower side of the bottom plate is thermally 
insulated to reduce heat loss. Movement of the air between the glass and the absorber plate is 
considered natural convection. The collector has length L, width W, and air channel height H. Air 
enters the collector at temperature Ta, velocity V, and exits the collector at temperature To. The 
convection heat transfer coefficients (hc and hnc) and the radiation heat transfer coefficients (hr) are 
also denoted in the figure. Different approaches to estimate collector temperature are presented in 
sub-sessions. 
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Fig. 2. Sketch of single-pass flat plate solar air heater 

 
2.1 Mean Temperature Model (Lumped Model) 
 

In this model, the glass temperature (Tg), the absorber plate temperature (Tp), the air 
temperature (Tf), and the bottom plate temperature (Tb) are the average temperatures at the time 
being considered. The temperatures are calculated from the energy balance equation as follows. The 
amount of heat that the glass receives from solar energy is balanced with thermal convection on the 
glass surface with wind, natural convection between the glass and the absorber, radiation between 
these two surfaces, and radiation between the glass and the sky [31] 
 

, ,w a g nc,p,g r,g,p p g , ,0 (T T ) h (T T ) h (T T ) ( )g c g p g r g s s gI h h T T=  + − + − + − + −
 (1) 

 
where Ts is the sky temperature, 𝑇𝑠 = 0,0552𝑇𝑎

1.5 [14], other symbols can be seen in sub-session 2.4 
and Table 2.  

The absorber plate heat received from solar energy is balanced with the heat generated by 
convection between the glass and the air current, natural convection between the air and the 
absorber plate, radiation between the glass and the plate, and radiation between the plates 
 

c,p,f f r,g,p nc,p,g r,b,p0 h (T T ) h (T T ) h (T T ) h (T T )p g p g p g p b pI=   + − + − + − + −
 (2) 

 
The heat received by the air through the collector is equal to the heat due to convection of the 

airflow with the bottom plate and the absorber plate 
 

,f c,b,f c,p,f p

T T
h (T T ) h (T T )a o

p f b f fHc V
L

−
 = − + −

 
(3) 

 

where  𝑇𝑓 =
𝑇𝑎+𝑇𝑜

2
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The convective heat exchange between the bottom plate and the air stream, the thermal 
radiation between the plates and the heat loss through the insulation are balanced as follows 

 

c,b,f f r,b,p0 h (T T ) h (T T ) ( )b p b b a bU T T= − + − + −
           (4) 

 
2.2 One-Dimensional (1D) Steady Model (ODE)  
 

In this approach, the temperatures of Tg, Tp, Tf, and Tb vary with direction of airflow at the time 
being evaluated, i.e., T = T(x). The formulation is the same as the former except the air temperature 
difference in Eq. (3) transformed to the differential air temperature (see Eq. (7)) [14] 
 

, ,w a g nc,p,g r,g,p p g , ,0 (T T ) h (T T ) h (T T ) ( )g c g p g r g s s gI h h T T=  + − + − + − + −
       (5) 

 

c,p,f f r,g,p nc,p,g r,b,p0 h (T T ) h (T T ) h (T T ) h (T T )p g p g p g p b pI=   + − + − + − + −
      (6) 

 

,f c,b,f c,p,f ph (T T ) h (T T )
f

p f b f f

dT
Hc V

dx
 = − + −

          (7) 
 

c,b,f f r,b,p0 h (T T ) h (T T ) ( )b p b b a bU T T= − + − + −
           (8) 

 
Boundary condition for Eq. (7): Tf|x=0 = Ta.  
 

2.3 One-Dimensional (1D) Unsteady Model (PDEs)  
 

In this modeling, the temperatures of Tg, Tp, Tf, and Tb change with direction of airflow and time, 
i.e., T = T(x, t). In this regard, energy balance equation for each component was derived from the 
unsteady convection–diffusion equation [12] 
 

2

, , ,w a g nc,p,g r,g,p p g , ,2
(T T ) h (T T ) h (T T ) ( )

g g

g p g g g g g c g p g r g s s g

T T
c k I h h T T

t x

 
  =  +  + − + − + − + −

      (9) 
 

2

,p c,p,f f r,g,p nc,p,g r,b,p2
h (T T ) h (T T ) h (T T ) h (T T )

p p

p p p p p p g p g p g p b p

T T
c k I

t x

 
  =  +   + − + − + − + −

                (10) 
 

2

,f ,f c,b,f c,p,f p2
h (T T ) h (T T )

f f f

p f p f f b f f

T T T
Hc Hc V k H

t x x

  
 +  = + − + −

                    (11) 
2

,b c,b,f f r,b,p2
h (T T ) h (T T ) ( )b b

b p b b b b p b b a b

T T
c k U T T

t x

 
  =  + − + − + −

                    (12) 
 

Boundary conditions 
 
Tf|x=0 = Ta,                         (13) 
𝜕𝑇𝑓

𝜕𝑥
|
𝑥=𝐿

= 0,                         (14) 
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𝜕𝑇𝑔

𝜕𝑥
|
𝑥=0

=
𝜕𝑇𝑔

𝜕𝑥
|
𝑥=𝐿

= 0,                      (15) 

 
𝜕𝑇𝑝

𝜕𝑥
|
𝑥=0

=
𝜕𝑇𝑝

𝜕𝑥
|
𝑥=𝐿

= 0,                       (16) 

 
𝜕𝑇𝑏

𝜕𝑥
|
𝑥=0

=
𝜕𝑇𝑏

𝜕𝑥
|
𝑥=𝐿

= 0.                       (17) 

 
Initial conditions of the four temperatures are the air temperature at the start of the simulation.  
 

2.4 Heat Transfer Coefficients 
 

Natural convection heat transfer coefficient between glass and absorber plate [24] 
 

0.25

nc,p,gh 1.25(T T )p g= −
                       (18) 

 
Radiant heat transfer coefficient between glass and sky 
 

ℎ𝑟,𝑔,𝑠 = 𝜎𝜀𝑔(𝑇𝑔
2 + 𝑇𝑠

2)(𝑇𝑔 + 𝑇𝑠)                     (19) 

 

where  is the Stefan’s constant.  
Radiant heat transfer coefficient between glass and absorber plate 
 

ℎ𝑟,𝑔,𝑝 = 𝜎(𝑇𝑔
2 + 𝑇𝑝

2)
𝑇𝑔+𝑇𝑝

1/𝜀𝑔+1/𝜀𝑝−1
                      (20) 

 
Radiant heat transfer coefficient between the bottom plate and the absorber plate 

 

ℎ𝑟,𝑏,𝑝 = 𝜎(𝑇𝑏
2 + 𝑇𝑝

2)
𝑇𝑏+𝑇𝑝

1/𝜀𝑏+1/𝜀𝑝−1
                      (21) 

 
The convection heat transfer coefficient between the glass and the ambient wind is calculated 

according to the McAdam’s correlation [14] 
 

ℎ𝑐,𝑔,𝑤 = 5.7 + 3.8𝑉𝑤                        (22) 

 
The forced convection heat transfer coefficient between the bottom plate and the airflow, and 

the forced convective heat transfer coefficient between the absorber plate and the airflow [25] 
 

ℎ𝑐,𝑏,𝑓 = ℎ𝑐,𝑝,𝑓 = 0,018𝑅𝑒0,8𝑃𝑟0,4𝑘𝑓/𝐷ℎ                     (23) 

 
where Re and Pr are respectively Reynolds number and Prandtl number of the airflow, Dh is the 
hydraulic diameter of the air channel.  
 

𝑅𝑒 = 2
𝑚

𝜇𝑓(𝑊+𝐻)
                        (24) 
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where m is the air mass flow rate.  
 
𝑚 = 𝜌𝑓𝑉𝑊𝐻                         (25) 

 

𝐷ℎ =
4𝐻𝑊

2(𝐻+𝑊)
                                      (26) 

 
𝑃𝑟 = 𝑐𝑝,𝑓𝜇𝑓/𝑘𝑓                        (27) 

 
The loss coefficient from the bottom plate through the insulation is calculated as follows 

 
𝑈𝑏 = 𝑘𝑖/𝛿𝑖                                     (28) 
 
3. Solution Techniques 
3.1 Mean Temperature Model  

 
Eq. (1)-(4) can be rearranged to the system of linear equations as 

 

11 nc,p,g r,p,g 1

nc,p,g r,p,g 22 , , , , 2

, , 33 , , 3

, , , , 44 4

(h h ) 0 0

(h h )

0

0

g

c p f r b p p

c p f c b f f

r b p c b f b

S ST

S h h ST

h S h T S

h h S T S

− +    
    − + − −
     =
    
    

− −        

(29) 

 
where 
 

11 , , , , , , , ,

1 , , , ,w a

22 ,p,f , , , , ,b,p

2

33 , , , , ,

3 , a

44 , , r,b,p

4 a

T

2

2 T

T

c g w nc p g r g p r g s

g r g s s c g

c nc p g r g p r

p g

p f f c b f c p f

p f f

c b f b

b

S h h h h

S I h T h

S h h h h

S I

S Hc V h L h L

S Hc V

S h h U

S U

= + + +

=  + +

= + + +

=  

=  − −

= 

= + +

=  

(30) 

 
The straightforward system of linear equations (29) can be solved for the temperatures of Tg, Tp, 

Tf, and Tb once the qualities S are given.  
 

3.2 One-Dimensional Steady Model  
 

To solve ordinary differential equations (Eq. (7)), numerical integration can be applied. Details of 
the solving sequence can be found in the textbook [40]. In this regard, the Eq. (7) is written in integral 
form as:  
 

𝑇𝑓 = 𝑇𝑎 + ∫
𝑑𝑇𝑓

𝑑𝑥
𝑑𝑥

𝐿

0
                        (31) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 105, Issue 1 (2023) 1-14 

 

8 
 

3.3 One-Dimensional Unsteady Model  
 

The governing equations in this approach can be rewritten by 
 

𝜕𝑇𝑔

𝜕𝑡
= 𝛼𝑔

𝜕2𝑇𝑔

𝜕𝑥2
+ 𝑆𝑔                       (32) 

 
𝜕𝑇𝑝

𝜕𝑡
= 𝛼𝑝

𝜕2𝑇𝑝

𝜕𝑥2
+ 𝑆𝑝                       (33) 

 
𝜕𝑇𝑓

𝜕𝑡
+ 𝑉

𝜕𝑇𝑓

𝜕𝑥
= 𝛼𝑓

𝜕2𝑇𝑓

𝜕𝑥2
+ 𝑆𝑓                       (34) 

 
𝜕𝑇𝑏

𝜕𝑡
= 𝛼𝑏

𝜕2𝑇𝑏

𝜕𝑥2
+ 𝑆𝑏                        (35) 

 
The PDEs (32)-(35) has the common form as Unsteady term + Convection term = Diffusion term 

+ Source term. The PDEs can be unfolded using the finite difference method. The equations 
discretized by implicit method, central difference for the diffusion term, upwind scheme for 
convection term is shown in Eq. (36)-(39). To avoid non-linear problem, source terms (S) were 
calculated in the previous time step [10]. The tri-diagonal matrix algorithm (TDMA) can be used to 
solve the system of linear equations. 

 
𝑇𝑔,𝑖
𝑛+1−𝑇𝑔,𝑖

𝑛

𝛥𝑡
= 𝛼𝑔

𝑇𝑔,𝑖+1
𝑛+1 −2𝑇𝑔,𝑖

𝑛+1+𝑇𝑔,𝑖−1
𝑛+1

𝛥𝑥2
+ 𝑆𝑔

𝑖                      (36) 

 
𝑇𝑝, 𝑖
𝑛+1−𝑇𝑝, 𝑖

𝑛

𝛥𝑡
= 𝛼𝑝

𝑇𝑝, 𝑖+1
𝑛+1 −2𝑇𝑝, 𝑖

𝑛+1+𝑇𝑝, 𝑖−1
𝑛+1

𝛥𝑥2
+ 𝑆𝑝

𝑖                      (37) 

 
𝑇𝑓, 𝑖
𝑛+1−𝑇𝑓, 𝑖

𝑛

𝛥𝑡
+ 𝑉

𝑇𝑓, 𝑖−1
𝑛+1 −𝑇𝑓, 𝑖

𝑛+1

𝛥𝑥
= 𝛼𝑓

𝑇𝑓, 𝑖+1
𝑛+1 −2𝑇𝑓, 𝑖

𝑛+1+𝑇𝑓, 𝑖−1
𝑛+1

𝛥𝑥2
+ 𝑆𝑓

𝑖                    (38) 

 
𝑇𝑏, 𝑖
𝑛+1−𝑇𝑏, 𝑖

𝑛

𝛥𝑡
= 𝛼𝑏

𝑇𝑏, 𝑖+1
𝑛+1 −2𝑇𝑏, 𝑖

𝑛+1+𝑇𝑏, 𝑖−1
𝑛+1

𝛥𝑥2
+ 𝑆𝑏

𝑖                      (39) 

 
The validation of models 1 and 2 can be seen in our previous studies [31,34]. The results of model 

3 will be confirmed with those of models 1 and 2 in the next session.  
 
4. Example  

 
This section presents the numeric results calculated from the models with the same inputs as 

shown in Table 2. Most parameters were obtained from the study of Román and Hensel [10] as 
default properties in SAH research. It is noted that the models 1 and 2 do not need the thermo-

physical properties and thickness of glass, absorber plate, and bottom plate (cp, k, , and ). Hourly 
solar radiation and ambient temperature were taken from Eq. (40) and (41) [12,41], respectively. 
They were also plotted in Figure 3(a). 
 
𝐼 = 237.17 + 388.7Cos(𝑤1𝑡 − 3.272) + 195.8Cos(2𝑤1𝑡 − 0.2757)

+ 27.62Cos(3𝑤1𝑡 − 3.8) + 38.44Cos(4𝑤1𝑡 − 3.44)
+ 17.76Cos(5𝑤1𝑡 − 4.536) 

(40) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 105, Issue 1 (2023) 1-14 

 

9 
 

𝑇𝑎 = 14.354 + 6.11Cos(𝑤1𝑡 − 3.858) + 1.88Cos(2𝑤1𝑡 − 0.509)
+ 0.225Cos(3𝑤1𝑡 − 1.25) + 0.288Cos(4𝑤1𝑡 − 2.62)
+ 0.146Cos(5𝑤1𝑡 − 3.92) 

(41) 

 

where 𝑤1 =
𝜋

12
 𝑟𝑎𝑑/ℎ 

 
 Table 2 
 Input parameters  
Parameter Symbol  Value  

Specific heat of air  cp,f 1005 J/kg.K 
Conductivity of air kf 0.02588 W/m.K 
Density of air f 1.164 kg/m3 

Viscosity of air  f 1.983e-5 Pa.s 

Specific heat of glass cp,g 666 J/kg.K 
Conductivity of glass kg 1.05 W/m.K 
Density of glass g 2500 kg/m3 

Thickness of glass g 3 mm 

Absorptance, transmittance, emissivity of glass g, g, g 0.06, 0.84, 0.9 

Specific heat of absorber plate cp,p 903 J/kg.K 
Conductivity of absorber plate kp 237 W/m.K 
Density of absorber plate p 2700 kg/m3 

Thickness of absorber plate p 1 mm 

Absorptance, emissivity of absorber plate p, p 0.95, 0.95 

Specific heat of bottom plate cp,b 903 J/kg.K 
Conductivity of bottom plate kb 237 W/m.K 
Density of bottom plate b 2700 kg/m3 

Thickness of bottom plate b 1 mm 

Emissivity of bottom plate  b 0.95 

Insulation thickness i 50 mm 

Conductivity of insulation  ki 0.04 W/m.K 
Collector length L 4 m 
Collector width  W 1.5 m 
Air channel height H 30 mm 
Air velocity V 1.72 m/s 
Wind velocity  VW 1.5 m/s 
Time step t 2 s 

Spatial step x 0.05 m 

 
The air temperature exiting collector (To) with time and mathematical model is shown in Figure 

3. There is excellent consistency between models. The temperature profiles of models 1 and 2 are 
almost identical. The maximum difference of outlet air temperature between model 1 and 2 is 0.18 
K. The outlet air temperature of model 3 is insignificantly lower before 13 PM, and insignificantly 
higher after 13 PM. This is because model 3 considers the thickness of the glass and plates. Hence 
the effect of heat storage as radiation increases (7 AM to 13 PM) and discharge as radiation decreases 

(13 PM to 18 PM). The highest air temperature leaving collector is of 45C at 13 PM. The largest 
temperature difference between the airflow and the ambient of 23.5 K also occurs at this time. 
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Fig. 3. Variation of outlet air temperature with mathematical models 

 
The variation of the four temperatures along the collector length at 10 AM is shown in Figure 4. 

There is a good agreement of the air temperature between models 2 and 3 as shown in Figure 4(a). 
The air temperature profile in model 2 seems to be linear since the second derivative of the air 

temperature (
𝜕2𝑇𝑓

𝜕𝑥2
) is not considered in this model. At the entrance segment of the collector (L < 0.4 

m), the temperatures of the glass and plates in model 3 are higher than those of model 2. This is 
because of heat storage of the solids which is considered in model 3. In this first segment, the high 
temperature of the surfaces causes heat transfer to the inlet air with low temperature so that their 
temperature is reduced to a minimum at certain location. After this position, the surface temperature 
increases as the air temperature increases. The bottom plate temperature difference between the 
two models is greatest as shown in Figure 4(d). 

The local temperature predictions of models 2 and 3 are no longer discrepancy when the 
thickness of the solids is very small as shown in Figure 5 with thickness of 0.02 mm. The coincidence 
in predicted outlet air temperature (Figure 3) and local temperature (Figure 5) shows that the 
establishment and solution technique of the 3 models are reasonable. Figure 5 shows that the air 
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temperature rises more notably than the glass temperature so that the cross temperature occurs at 
L = 2.2 m. This is because the air receives heat from the absorber and bottom plates. 
 

 

 

 
(a)  (b) 

 

 

 

(c)  (d) 

Fig. 4. Local temperatures at 10:00 AM, a) Tf, b) Tp, c) Tg, d) Tb 

 

 
Fig. 5. Local temperatures at 10:00 AM with very thin glass and plates 

(g=p=b= 0.02 mm) 
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5. Conclusion  
 

In this study, three commonly used mathematical models to predict the operating temperature 
of the air collector are presented. The complexity of mathematical modeling increases from a system 
of linear equations (model 1) to ordinary differential equations (model 2), and to system of partial 
differential equations (model 3). The model formulation and solution technique were successful due 
to the extreme coincide of the outlet air temperatures. Model 1 predicts outlet air temperature well 
despite its simple formulation. Models 2 and 3 determine surface temperatures and air in the 
direction of airflow. Model 3 considers the thickness of the glass, absorber plate, and bottom plate. 
The important findings are drawn as follows 
 

i. The outlet air temperature prediction is mostly the same among the 3 approaches. The 
outlet temperature in model 3 is slightly lower and higher in the morning and afternoon, 
respectively, due to the influence of thermal inertia. 

ii. The temperature of glass, absorber plate and bottom plate in model 2 increases with the 
airflow direction.  

iii. The glass, absorber plate, and bottom plate temperatures in model 3 are minimal at 
certain locations when their thickness is considered. The temperature profiles in model 3 
coincide with those of model 2 when the thickness is negligible.  

 
Model 1 can be used for a fast prediction of thermal performance in a practical application. Model 

2 can analyze local temperatures to avoid the temperature cross. Model 3 can be expanded to 
transient SAHs with sensible heat storage by considering the thickness of a plate.  

In addition, although a bulk of mathematical modeling publications have been carried out for 
SAH, further attempts are still required as follows 

 
i. To consider thermophysical properties of air and solids as a function of local temperature. 

ii. To examine multidimensional spatial models in conjunction with air pressure distribution  
iii. To analytically study sensible and latent heat storage in solar air heaters. 
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