Thermal Characteristics of an Unsteady Hybrid Nano-Casson Fluid Passing Through a Stretching Thin-Film with Mass Transition

Nur Ilyana Kamis¹, Noraihan Afiqah Rawi¹, Lim Yeou Jiann¹, Sharidan Shafie¹,* Mohd Rijal Ilias²

¹ Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
² Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

ARTICLE INFO

Article history:
Received 20 December 2022
Received in revised form 28 February 2023
Accepted 7 March 2023
Available online 23 March 2023

ABSTRACT

In current communication, the thin-film flow of Casson hybrid nanofluid consists of copper and alumina nanoparticles that dissolved in carboxymethyl cellulose (CMC) plus water over an unsteady/stretching porous sheet is elucidated. Using suitable similarity variables, the resultant partial governing equations are turned into a set of nonlinear ordinary differential equations. The Keller box approach is then used to solve the transformed equations. The unknown thin-film thickness constant is determined by using the homotopy analysis approach. The thermal and velocity distributions, as well as the Nusselt number and skin friction of the fluid, are discussed for different values of relevant parameters such as thin-film thickness, nanoparticles volume fraction, and mass transition parameter. The distributions of temperature and velocity decrease when the thin-film thickness is increased. The velocity distribution is decreased by the Casson, nanoparticles volume fraction, and mass transition (injection) parameter. The temperature is enhanced by the nanoparticle's volume fraction and the Casson parameter, however, has an opposite tendency with the mass transition (injection) parameter. For the physical quantities, the skin friction has a negative function with all the parameters. The mass transition (injection) parameter increases the Nusselt number. The outcomes of the present study are useful for example in producing the smart contact lens that has been used in the biomedical field.

Keywords:
Thin-Film; Casson hybrid nanofluid; Keller Box method; homotopy analysis method; mass transition (injection)

1. Introduction

Recently, technological developments have encouraged researchers to conduct various studies to meet the needs of consumers. One of the investigations is about the analysis of heat transfer as it can create mechanical merchandise or apparatuses that function admirably for the manufacturing process and industrial engineering these days. The presence of nanoparticles in a fluid influences thermal transfer properties. Choi [1] defined the nanofluid as a merger of solid nanoparticles in a base liquid. Nanofluid is observed to provide high heat transfer rates in a thermal energy system. Khan et al., [2] investigated the flow of a boundary layer nanofluid past a constant stretching sheet.

* Corresponding author.
E-mail address: sharidan@utm.my

https://doi.org/10.37934/arfmts.104.2.3650
The concerned nanofluid model consists of thermophoresis as well as Brownian motion effects, which are also called Buongiorno’s model. Jahad et al., [3] described an unsteady heat transfer in a nanofluid with suction and injection. A similar mathematical model to Khan et al., [2] was utilized. The investigation revealed that in nanofluids, suction and injection parameters have a considerable impact on temperature and velocity profiles as well as physical quantities. However, most studies, including Yirga and Shankar [5,6], Hafidz et al., [6,7], and Gangadhar et al., [8,9], have investigated heat transfer of a nanofluid model, namely Tiwari and Das’ [4] model. Using the Keller box approach, Yirga and Shankar [5] encountered the governing equations of MHD flow and heat transfer. The model of Tiwari and Das demonstrates the thermophysical properties of nanofluid including, density, specific heat capacity, dynamic viscosity, thermal, and electrical conductivity [5-7].

The heat transfer with nanoparticles in non-Newtonian Casson fluid past an unsteady stretched sheet was examined in a variety of situations due to its unique properties among non-Newtonian fluids [8-12]. The fluid was proposed by Casson [13] for producing the flow behavior of pigment-oil suspensions. According to Husannan et al., [14], Casson is a form of viscoplastic fluid. The Casson fluid model is a shear-thinning liquid with a zero viscosity at an infinite rate of shear, as well as yield stress below which no flow occurs. Furthermore, Casson’s shear stress rate relation explains the properties of a wide variety of polymers across a wide range of shear rates [15]. Jamshed et al., [8] claimed that the speed of molecules in Casson fluid decay as the Casson and volume fraction parameters increase by dealing with the Keller box method. The effect of injection declines the velocity profile of Casson nanofluid [9]. Rawi et al., [11] showed that the Keller box technique solves the fluid issue efficiently in the presence of copper (Cu) in carboxymethyl cellulose solution (CMC) over the stretching sheet. The presence of nanoparticles volume fraction and Casson parameter upsurge the thermal distribution but opposite trends for the fluid motion.

The mixture of different nanoparticles in a fluid which is termed “hybrid nanofluids” grabbed the response of the industry and engineering. This is because of its extensive technical, industrial, and scientific applications like transportation, microfluidics, medical manufacturing, etc. Outstanding heat transmission qualities have been achieved by the ideal combination of several nanoparticle features. [16]. According to the study of Devi and Devi [17] and Waini et al., [18], the heat transfer rate of hybrid nanofluid, Cu and Al₂O₃ (aluminum oxide) is greater than nanofluid, Cu. The numerical simulation for the different nanoparticles namely Al₂O₃, TiO₂ (titanium dioxide), Cu and CuO (copper oxide) dispersed in CMC plus water was reported by Maleki et al., [19]. They found that the concentration of nanoparticles in CMC-water as a base fluid enhances the Nusselt number of the heat transfer fluid. Venkateswarlu and Satya [20] discovered that the heat transfer of a hybrid nanofluid of Cu-Al₂O₃ which is measured in terms of the Nusselt number was lower than the single nanofluid. In the presence of thermal radiation, Sakkaravarthi et al., [21] scrutinized the hybrid Ta (tantalum) and Co (cobalt) in the blood (Casson fluid) across a porous curved stretching sheet. They detected that the thermal radiation and magnetic parameters raise the temperature profile.

Thin-film flows are common in engineering, geophysics, biology, and other fields. The study of laminar thin-film flow over moving vertical, horizontal, or inclined flat plates is presently focused on the development of several experts since it has a huge potential to be used as a mechanical instrument in various designing applications. For example, coating, draining, biological, solar cells, and wetting involve thin-film fluid flow [23]. Wang [24] investigated the hydrodynamics of a thin liquid film for Newtonian fluid over a stretched sheet without taking thermal performance into account. Wang [24] was inspired by the research efforts of Sakiadis [25], Crane [26], and Carragher and Crane [27], who investigated the effect of heat transfer on the fluid flow when the sheet is stretched. Andersson et al., [28] initiated an inquiry into the nature of Wang’s [24] hydrodynamic
heat transfer problem Wang's [24] approach was expanded by Andersson et al., [28], who incorporated the similarity transformation for the thermal equation. An ordinary differential equation for energy equation is obtained when applied the new similarity of the thermal field thin-film fluid. The behavior of the heat transfer in thin-film flow has a significant effect when the unsteadiness parameter is embedded in thin-film fluid flow at low Prandtl numbers. Wang [29] then extended the work done by Wang [24] to include the flow problem with heat transfer. To obtain the solution for the analyzed parameters, the homotopy analysis technique (HAM) was used by Wang [26]. Xu et al., [30] expanded on Wang's [29] by taking into account the existence of nanoparticles in a thin-film fluid. This study considered the model provided by Tiwari and Das [4]. It was found that the usage of the nanoparticles in the thin-film liquid gives a more prominent effect on the temperature profile compared to the fluid speed. Numerous investigations on the flow of nanofluids that address the thin-film flow may be found in papers by Giri et al., [31], Turkyilmazoglu [32], Pal et al., [33] and Lu et al., [34]. According to Sulochana and Aparna [22], the presence of hybrid nanoparticles, Al₂O₃-Cu in thin-film flow enhances the heat transfer rate compared to a single nanofluid.

Due to the broad applications in the engineering sector in the design of microfabrication, solar thin-film, and photovoltaic thin-film [35], the investigation of boundary layers flow of non-Newtonian embedded with the thin-film has received great research interest. Recently, several researchers investigated the Casson fluid in thin-film [36,37] and also nanofluid [38-41] past a stretching sheet with various effects and fluid models. Rehman et al., [36] published a comparison of HAM as an analytical and bvp4c as a numerical output on Casson fluid with slip and uniform thickness, as well as suction and injection effects. The package BVPh2.0 with the help of MATHEMATICA was used to compute the solution for the HAM. Numerical and analytical methods have shown good agreement.

Coating of the thin-film is useful in the production of smart contact lenses in the optical industry. The current work is motivated by the preceding literature survey. The study of Wang [29], Xu et al., [30], and Sulochana and Aparna [22] are extended for an unsteady thin-film Casson hybrid nanofluid flow with injection or mass transition effect past a stretching sheet. Furthermore, the predominant idea is pursued in light of the publications by Rawi et al., [11] and Rehman et al., [36]. The impact of hybrid nanoparticles, as hypothesized by Devi and Devi [17] and Sulochana and Aparna [22], is examined and visually displayed. The modified model by Tiwari and Das [4] for the hybrid nanofluid is employed. Therefore, the present study aims to investigate the Casson hybrid nanofluid flow in a thin-film under the influence of mass transition (injection) over an unsteady stretching sheet. The existence of the nanoparticles in the fluid can improve the change rate of heat and working fluid properties due to their special features [42]. The outputs of the present study are useful in producing an advanced transparent contact lens, such as coating a thin protective layer against harmful radiations in the lenses [43]. A similarity transformation approach is applied to determine the nonlinear ordinary differential equations (ODEs) from the nonlinear partial governing equations (PDEs). The nonlinear and dimensionless ODEs are then numerically solved using the Keller box technique, an implicit finite difference approach.

2. Mathematical Formulation

This work investigates Casson fluid flow in a thin liquid film of uniform thickness, \( h(t) \) with a horizontal plane at the \( x \) -axis through a tiny slit. The \( y \) -axis is perpendicular to the \( x \) -axis, as illustrated in Figure 1 [29]. The fluid motion within the film is caused the elastic sheet being stretched. The sheet is stretching itself with the velocity \( U_w = bx(1 - at)^{-1} \) [29]. \( b > 0 \) and \( \alpha > 0 \) are the positive constants with dimension per time that emerge in the stretched rate. The elastic sheet,
which is anchored at the origin, is stretched by applying a force in the positive direction of \( x \) and \( b(1 - \alpha t)^{-1} \) indicates the rate of effective stretching that grows as time passes because because \( \alpha > 0 \). Furthermore, at \( y = 0 \), the surface temperature, \( T_w \), in terms of slit temperature, \( T_0 \) and reference temperature, \( T_{ref} \), may be described as \( T_w = T_0 - T_{ref} \left( \frac{bx^2}{2\nu} \right) \left( 1 - \alpha t \right)^{-\frac{3}{2}} \) [29]. Here, \( T_w \) is expected to vary with distance from the slit in this case. The temperature at the stretching sheet decreases in proportion to \( x^2 \) from the narrow slit’s temperature, and the temperature decreases with the sheet lifting over time. Furthermore, the expression \( \left( \frac{bx^2}{2\nu} \right) \left( 1 - \alpha t \right)^{-\frac{3}{2}} \) may be defined as the local Reynold number that relies on the surface velocity, \( U_w \). At the boundary conditions, the fluid flow in a thin-film is additionally embedded with the mass transition parameter, \( V_w = \frac{(V_w)_0}{(1 - \alpha t)^{\alpha s}} \) [42] where \( (V_w)_0 \) refers to the initial velocity mass transition parameter. Furthermore, the Casson hybrid nanofluid is injected, \( V_w < 0 \) at the thin-film sheet. Incompressible Casson hybrid nanofluid governing equations may be rewritten as [22, 29, 36]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (1)
\]

\[
\rho_{hnf} \left[ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right] = \mu_{hnf} \left[ 1 + \frac{1}{\beta} \right] \frac{\partial^2 u}{\partial y^2}, \quad (2)
\]

\[
(\rho c_p)_{hnf} \left[ \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right] = k_{hnf} \frac{\partial^2 T}{\partial y^2}, \quad (3)
\]

where \((u, v)\) denotes velocity segments along \( x \) and \( y \) axes. The Casson fluid parameter is \( \beta = \frac{\mu_B \sqrt{2\pi}}{p_y} \) where \( \mu_B \) represents the plastic dynamic viscosity, \( p_y \) is yield stress, and \( \pi_c \) is the critical value of this product based on the Casson model. Heat conduction, specific heat capacity, density, and effective dynamic viscosity of hybrid nanofluid are represented by \( k_{hnf}, (C_p)_{hnf}, \rho_{hnf}, \mu_{hnf} \), respectively. \( T \) and \( t \) demonstrate the temperature and time. The boundary conditions for Eq. (1) to (3) are as follows, assuming that the planar fluid film’s surface is smooth and free of surface waves [22, 29, 44]

\[
y = 0 : u = U_w, v = V_w, T = T_w, \quad (4)
\]

\[
y = h : \frac{\partial u}{\partial y} = \frac{\partial T}{\partial y} = 0, v = \frac{dh}{dt} \quad (5)
\]
The top free surface of the liquid film at \( y = h \) in contact with a passive gas is considered to be flat, and the effect of surface tension is assumed to be insignificant. Hybrid nanoparticles that consist of copper, \( \text{Cu} \) and aluminium oxide, \( \text{Al}_2\text{O}_3 \) are dissolved in the conventional heat transfer Casson fluid which incorporates carboxymethyl cellulose (CMC) and water as acknowledged by Ali et al., [45-46]. Because the viscosity is based on shear stress, CMC plus water is one of the most prevalent kinds of time-independent non-Newtonian fluid. This fluid exhibits shear-thinning or pseudoplastic rheology. Table 1 displays the thermophysical properties of the nanoparticles together with base fluid, as reported by [22,46,48]

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>CMC plus water (0.0-0.4%)</th>
<th>Cu</th>
<th>( \text{Al}_2\text{O}_3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C_p (Jkg^{-1}K^{-1}) )</td>
<td>4179</td>
<td>385</td>
<td>765</td>
</tr>
<tr>
<td>( \rho (kgm^{-3}) )</td>
<td>997.1</td>
<td>8933</td>
<td>3970</td>
</tr>
<tr>
<td>( k(Wm^{-1}K^{-1}) )</td>
<td>0.613</td>
<td>400</td>
<td>40</td>
</tr>
<tr>
<td>( Pr )</td>
<td>6.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Eq. (1) to (3) are PDEs when applied to boundary conditions (4) and (5). Using the similarity transformations shown below, these equations may be reduced to the simplest set of an ODE [29]

\[
\psi = [vb(1 - at)^{-1}]^\frac{1}{2}x\xi f(\eta), \quad (6)
\]
\[
T = T_0 - T_{ref} \left(\frac{b x^2}{2v}\right)(1 - at)^{-\frac{3}{2}}\theta(\eta), \quad (7)
\]
\[
\eta = \left(\frac{b}{v}\right)^\frac{1}{2}(1 - at)^{-\frac{1}{2}}\xi^{-1}y, \quad (8)
\]

where an indefinite constant, \( \xi \) denotes the dimensionless thickness of the film, \( \eta \) represents the similarity variable, and the stream function, \( \psi(x, y, t) \) may be expressed as [29]

\[
u = \frac{\partial \psi}{\partial y} = \frac{bx}{(1 - at)}f', \quad (9)
\]
\[
u = -\frac{\partial \psi}{\partial x} = -\left(\frac{vb}{1 - at}\right)^\frac{1}{2}\xi f, \quad (10)
\]

which fulfills continuity Eq. (1) automatically. When \( y = h(t) \) at \( \eta = 1 \), for the free surface, Eq. (8) provides [29]

\[
\eta = \left(\frac{b}{v}\right)^\frac{1}{2}(1 - at)^{-\frac{1}{2}}h(t), \quad (11)
\]
which gives

\[
\frac{dh}{dt} = -\frac{1}{2} \alpha \xi \left( \frac{\nu}{b} \right)^{2} (1 - \alpha t)^{\frac{1}{2}}. \tag{12}
\]

Now, by imposing Eq. (6) to (10), the following is obtained

\[
\left( \frac{A_1}{A_2} \right) (1 + \frac{1}{B}) f''' + \lambda \left[ f f'' + f'^2 - S (f' + \frac{1}{2} \eta f'') \right] = 0, \tag{13}
\]

\[
\left( \frac{A_3}{A_4} \right) Pr^{-1} \theta'' + \lambda \left[ -S \left( \frac{3}{2} \theta + \frac{1}{2} \eta \theta' \right) - 2 f' \theta + f \theta' \right] = 0, \tag{14}
\]

and the boundary conditions become

\[
\eta = 0: \ f'(0) = 1, f(0) = w, \ \theta(0) = 1, \tag{15}
\]

\[
\eta = 1: \ f''(1) = 0, \theta'(1) = 0, f(1) = \frac{S}{2}, \tag{16}
\]

where the prime signifies the difference with respect to \( \eta \). Here, \( \lambda \) is the thin-film thickness, \( Pr \) demonstrates the Prandtl number, \( S \) denotes the dimensionless unsteadiness, \( w \) is the mass transition parameter, and \( A_i (i = 1, 2, 3, 4) \) are changes in the thermophysical characteristics of hybrid nanofluids that may be characterized as \([17, 48]\)

\[
\lambda = \xi^2 S = \frac{\alpha}{b}, Pr = \frac{(\mu c_p)}{k}, w = -\frac{(Vw)_0}{\xi \sqrt{\nu b}} \tag{17}
\]

\[
A_1 = \left[ 1 - (\phi_1 + \phi_2)^2.5^\prime \right]
\]

\[
A_2 = \left[ (1 - \phi_2) \phi_1 \frac{\rho_{s_1}}{\rho_{bf}} + \phi_2 \frac{\rho_{s_2}}{\rho_{bf}} + (1 - \phi + \phi_1 \phi_2) \right],
\]

\[
A_3 = \left[ k_{s_2} + 2k_{nf} - 2\phi_2 (k_{bf} - k_{s_2}) \right] \left[ k_{s_1} + 2k_{bf} - 2\phi_2 (k_{bf} - k_{s_1}) \right]
\]

where

\[
k_{nf} = \left[ k_{s_1} + 2k_{bf} - 2\phi_2 (k_{bf} - k_{s_1}) \right] k_{bf}, \tag{18}
\]

\[
A_4 = \left[ (1 - \phi_2) \phi_1 \frac{(\rho c_p)_{s_1}}{(\rho c_p)_{bf}} + \phi_2 \frac{(\rho c_p)_{s_2}}{(\rho c_p)_{bf}} + (1 - \phi + \phi_1 \phi_2) \right].
\]

where subscripts \( bf, nf, hnf, s_1, s_2 \) represent base fluid, nanofluid, hybrid nanofluid, alumina nanoparticles, and copper nanoparticles, respectively.
At the stretched sheet, the shear stress, $\tau_w(x)$ and the heat flux, $q_w(x)$ are the most essential heat transfer as well as flow parameters, and can be specified as [3]

$$\tau_w(x) = \mu_{hnf} \left( \frac{\partial u}{\partial y} \right)_{y=0},$$

(19)

$$q_w(x) = -k_{hnf} \left( \frac{\partial T}{\partial y} \right)_{y=0},$$

(20)

Using Eq. (19) to (20) and similarity Eq. (6) to (8), the dimensionless local skin friction and heat transfer coefficients are [3]

$$C_f Re^{1/2} = \frac{1}{\xi} \left[ \frac{1}{(1 - \phi_1)^{2.5} + (1 - \phi_2)^{2.5}} \right] f''(0),$$

(21)

$$Nu_x Re^{-1/2} = -\frac{1}{\xi} \left( \frac{k_{hnf}}{k_f} \right) \theta'(0),$$

(22)

where $Re = \frac{x u_w}{v_f}$ is the Reynold number [22].

3. Methodology

The HAM is proposed to find the thin-film thickness, $\lambda$ by using MATHEMATICA software since $\lambda$ is an unknown constant with continuous function between the range of $\eta = [0,1]$ and should be determined before the computational process [29]. HAM was first proposed by Shi-Jun Liao [49]. The method has been applied in previous studies by Faizan et al., [50]. The approach provides an efficient procedure for explicitly and numerically solving a broad and generic class of differential systems that represent real-world physical issues. Figure 2 displays the HAM’s steps.
The heat transfer mechanisms of the liquid film were then solved in MATLAB software utilizing the unconditionally stable implicit difference methodology known as the Keller box method for the iterated computational program and graph plotting. The approach is described in depth by Cebeci and Bradshaw [51]'s book. This method consists of four main steps as follows

1. Simplify the governing equations to form a first-order system by introducing the new dependent variables \( f = f, f' = u, f'' = v, \theta = \theta, \theta' = g \). Hence, yield

\[
\left( \frac{A_1}{A_2} \right) \left(1 + \frac{1}{\beta} \right) v' + \lambda \left[ f v - u^2 - S \left( u + \frac{1}{2} \eta v \right) \right] = 0, \tag{26}
\]

\[
\left( \frac{A_3}{A_4} \right) Pr^{-1} g' + \lambda \left( f g - 2\theta u - \frac{1}{2} S \eta g - \frac{3}{2} S \theta \right) = 0, \tag{27}
\]

and the boundary conditions become

\[
\eta = 0: \quad f = 0, u = 1, \theta = 1,
\]

\[
\eta = 1: \quad f = \frac{S}{2}, v = 0, g = 0. \tag{28}
\]
ii. using the central differences approach, the first-order system is expressed in a finite difference scheme. Generally, the derivatives in the $\eta$-directions and any points are defined as

$$ p' = \frac{\partial p}{\partial \eta} = \frac{p_j - p_{j-1}}{h_j}, \text{ and } p_j = \frac{1}{2}(p_j - p_{j-1}). \tag{29} $$

iii. use the Newton approach to linearize the nonlinear equation. For example

$$ f_j^{(i+1)} = f_j^{(i)} + \delta f_j^{(i)}. \tag{30} $$

i. compute the linear system using the block-elimination approach in form of a matrix. The matrix is written in the form of

$$ [A][\delta] = [r]. \tag{31} $$

where matrix A is zero excluding those three along the diagonal. Then, the vector matrix can be written as

$$ \begin{bmatrix}
[A_1] & [C_1] \\
[B_2] & [A_2] & [C_2] \\
& \ldots \\
[B_{j-2}] & [A_{j-2}] & [C_{j-2}] \\
[B_j] & [A_j] & [C_j] \\
& \ldots \\
& \ldots
\end{bmatrix}
\begin{bmatrix}
[\delta_1] \\
[\delta_2] \\
\vdots \\
[\delta_{j-1}] \\
[r_j]
\end{bmatrix}
= 
\begin{bmatrix}
[r_1] \\
[r_2] \\
\vdots \\
[r_{j-1}] \\
[r_j]
\end{bmatrix}. \tag{32} $$

4. Results and Discussion

The outcomes of the calculation resolution of the leading Eq. (13) to (16) are provided in tabular and graphical representations in sets of normalized local heat transfer rate and reduced skin friction. The current approach is confirmed by comparing the acquired numerical results to those obtained by Wang [29]. It is noticed that the current results are discovered to be in amazing concurrence with the distributed results as shown in Table 2 for the value of $\lambda$ when $S = 0.8$ by using the HAM-based algorithm BVPh2.0. In addition, Table 3 also compares the numerical results of the Keller box approach to the earlier publication. It has been observed that the current findings are in astounding agreement with the dispersed outcomes.

In the mass transition situation, Figure 3 and 4 indicate the influence of the Casson parameter, $\beta$ on the velocity and temperature distributions. Referring to these figures is comprehended that the $\lambda$ is a decreasing function of the $\beta$. The thin-film at the free surface turns thinner. However, the growth of the $\beta$ drops off the momentum boundary layer thickness of the thin-film. From the definition of the Casson parameter, an increase in the values of $\beta$ gives the lessening in the yield stress that acts on the fluid and at the same time corresponds to enhance the plastic dynamic viscosity. In this case, the fluid behaves like a Newtonian fluid. Boosting the plastic viscosity that induces resistance in the motion of the fluid molecules, which is capable of reducing the velocity in the film fluid. On the other hand, enrichment in the $\beta$ prompts to uplift the temperature distribution thus causing their
associated thermal boundary layer thickness to intensify. It is evident that the thinner of the thin-film aids the Casson fluid to gain more heat to beat the cohesive and adhesive attraction of the thin-film particles under mass transition effect. Figure 5 and 6 portray the fluctuation of velocity and temperature distributions for different value of \( \phi_2 \). As the concentrations of \( \phi_2 \) are improved in the hybrid nanofluid film, the \( \lambda \) reduces. The decrementation of the \( \lambda \) leads to the decay of the liquid film. Furthermore, the increase of the \( \phi_2 \) leads to a decline in the velocity distribution. Physically, this could be due to the fact that any increase in the concentration of \( \phi_2 \) results in boosting the viscosity of the fluid which prevents the molecules from moving smoothly in the thin-film. Hence, the momentum boundary layer thins and approaches zero of the thin-film thickness, \( \eta = 0 \).

When the liquid film with hybrid nanoparticles is closer to the elastic sheet, it inhibits the elastic from stretching due to the viscosity of the hybrid nanoparticles. However, the thermal boundary layer demonstrates opposite trends. The incrementation of the nanoparticles \( \phi_2 \) upsurges the thermal conductivity in the fluid, thereby increasing the amount of heat in the thin-film flow. The nanoparticles disperse energy in the form of warmth. When the fluid is concentrated with the nanoparticles \( \phi_2 \) the more heat will be utilized along with thinner thin-film thickness, producing a rise in temperature and thermal boundary layer thickness. The effect of injection parameter, \( w \) on the dimensionless velocity and temperature distributions are revealed in Figure 7 and 8, respectively. The movement of the fluid becomes slower in the film when the value of \( w \) is increased which in turn affects the boundary layer. The decelerated fluid velocity slows down the motion of the molecules in the fluid regime and thereby curtailing the momentum boundary layer. Notably that the temperature distribution clarifies the look-alike as a velocity distribution which is disclosed in Figure 8 when the stretching sheet is associated with the injection parameter.

Table 2

<table>
<thead>
<tr>
<th>( S ) ( \xi \left( \lambda^2 \right) ) ( f''(0) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang [29]</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>( Pr ) ( \theta(1) ) ( -\theta'(\eta) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang [29]</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>
Table 4 illustrates the local skin friction, $C_f Re_x^{1/2}$ and Nusselt number, $Nu_x Re_x^{-1/2}$ for various values of the pertinent parameters. Increasing the rate of the Casson parameter, $\beta$ reduces the $C_f Re_x^{1/2}$ together with $\lambda$, thereby lessening the wall shear stress at the surface of the stretching sheet. $Nu_x Re_x^{-1/2}$ has a similar performance under the mass transition effect that causes the temperature of the hybrid nanofluid to rise in a thinner layer. Further, $C_f Re_x^{1/2}$ declined immensely when the values of the concentration of nanoparticles volume fraction were enhanced. Thus, it minimizes the shear
stress on the sheet's wall during stretching. The results show that $Nu_x Re_x^{-\frac{1}{2}}$ depreciates the functions of $\beta, \phi_2$ and $w$. Therefore, the decrement of the $\lambda$ at the free surface was detected.

Table 4

<table>
<thead>
<tr>
<th>$\beta$</th>
<th>$\phi_2$</th>
<th>$w$</th>
<th>$C_f Re_x^{\frac{1}{2}}$</th>
<th>$Nu_x Re_x^{-\frac{1}{2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-0.04</td>
<td>-1.9872</td>
<td>7.5665</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.03</td>
<td>-2.0721</td>
<td>8.1447</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.02</td>
<td>-2.1543</td>
<td>8.7620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.01</td>
<td>-2.3349</td>
<td>9.3774</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>-2.3349</td>
<td>9.3774</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>-2.3363</td>
<td>7.6171</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td>-2.3371</td>
<td>6.7899</td>
<td></td>
</tr>
<tr>
<td>$10^7$</td>
<td></td>
<td>-2.3376</td>
<td>6.1719</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
<td>-2.3343</td>
<td>10.2925</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td></td>
<td>-2.3349</td>
<td>9.3774</td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td></td>
<td>-2.3357</td>
<td>8.3320</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td></td>
<td>-2.3362</td>
<td>7.4265</td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusions

This report concentrated on the numerical analysis of an unsteady thin-film Casson hybrid nanofluid's heat transfer, boundary layer flow, and stretching sheet under the impact of mass transition. The assumed hybrid nanofluid model namely Tiwari and Das's model comprises alumina and copper as nanoparticles and ethylene glycol plus water as a base fluid. The problem is addressed numerically. Some observations from this study are as follows

i. Thin-film thickness declines for mass transition with the increment in Casson and nanoparticles volume fraction.

ii. In mass transition conditions, enhancement in Casson and nanoparticles volume fraction declines the velocity distribution.

iii. In mass transition settings, the fluid temperature increases as a function of Casson and the nanoparticle's volume fraction.

iv. An increase in Casson and nanoparticles volume fraction diminished the local skin friction but Nusselt numbers are noted to be reduced.

v. Thin-film thickness, velocity distribution, temperature distribution, and local skin friction are seen to decrease as fluid flow mass transition increases, although the Nusselt number increases.

Acknowledgment

This research was funded by a grant from the Ministry of Higher Education of Malaysia (FRGS Grant FRGS/1/2021/STG06/UTM/02/6) and Universiti Teknologi Malaysia through vote number 08G33.
References


