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Owing to its fundamental nature, convection-diffusion flows are researched in a number 
of engineering, scientific, and aeronautical applications. The right meshing approaches are 
necessary for convection-diffusion simulations. Major meshes in computational fluid 
dynamics that are used to find the solutions to discretized governing equations include 
uniform, piecewise-uniform, graded, and hybrid meshes. Unintentionally applying the 
meshes might lead to poor solutions including numerical oscillations, over- or under-
predictions, and lengthy computing time. Accentuating the effectiveness of exponentially 
graded mesh finite-difference scheme, this paper takes the simulation of a 2D steady 
scalar convection-diffusion into account. The problem was solved by assigning certain 
mesh expansion factor to the mesh according to Peclet number. The factor was 
determined based on its previously derived logarithmically linear relationship with low 
Peclet number. Based on the values of Peclet number and the source, eight groups of test 
cases are presented in this paper. It was found that given a Peclet and a mesh number, 
simulation error percentage was surprisingly constant regardless the source values. The 
rates of convergence for the scheme, however, were comparable with respect to source 
values. Uniform convergence rate was also found to be achievable in all test cases 
corresponding to Peclet number of interests. This work successfully assessed the validity 
range of the generalized logarithmically linear model between exponentially graded mesh 
expansion factor and Peclet number for the simulation. 
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1. Introduction 
1.1 Graded Mesh 
 

Extensive discussions on graded mesh have been motivated by other structured meshes as 
uniform and Shishkin meshes with the principal intention of avoiding uneconomical mesh refinement 
[1-5]. Early researches gave general attention on using the graded mesh by, for instance, choosing 
the right mesh grading for piecewise polynomial interpolation and for approximating solutions to 
two-point boundary value problems using finite difference or finite element techniques [1]. Later 
studies showed further variations of the mesh such as an exponentially graded mesh, and their 
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advantages against Shishkin mesh in solving convection-diffusion problems [2,3]. More advanced 
cases included the application of highly graded unstructured mesh, and more complete classification 
of the mesh into simply, exponentially, and aggressively graded meshes [4,5]. 

Intuitively, one may grade the mesh so that the domain is effectively spread over the change in, 
say, scalar concentration 𝐶. While many problems may find this grading function to be helpful and 
produce decent numerical results, there are pathological circumstances where it will collapse or 
cause issues. For instance, it is clear that the approach will not work if mesh number 𝑁 is odd and 𝐶 
is symmetric in 𝑥 where it has a single maximum. However, this example demonstrates the concept 
of a grading function in a straightforward, natural setting. From the perspective of piecewise-
polynomial interpolation, the concept of an optimal mesh and grading function in a given norm or 
seminorm was investigated by Carey and Dinh [1]. An analysis of the optimality of the mesh and 
function led to the formulation of an adaptive mesh redistribution algorithm for boundary-value 
problems in 1D. Additionally, it was demonstrated how minor perturbations are impacted by the 
grading function. The findings from the graded interpolation problem and the adaptive technique for 
the boundary-value problem have great correlation, especially for the finer meshes. A set of grading 
functions and a related algorithm were developed in response to the challenge of mesh redistribution 
to provide an optimal piecewise-polynomial interpolant in a given norm or seminorm. This study and 
algorithm were then expanded to address the issue of choosing a graded mesh for two-point 
boundary-value problems that can be approximated using finite difference or finite element [1]. 

Gartland [2] presented a family of finite-difference techniques based on an exponentially graded 
mesh and local polynomial basis functions. These schemes were designed to have a consistent and 
arbitrarily high order of convergence. By employing additional local evaluations of the coefficient 
functions and source term in the two-point boundary value issue, the high order is attained. Both 
researchers focused on challenges related to mesh grading and its effects on finite-difference 
techniques in particular. Their biggest obstacle to stability seemed to be the requirement to "upwind" 
enough when moving across the extremely constrained transition zones between "inner" and "outer" 
mesh spacings. With the intention of laying out a process for the construction of the schemes that 
satisfy the stability theorems and have an order of convergence that is uniform in the diffusivity 𝜀 
and can be made as high as desired, the construction of polynomial-based, compact finite-difference 
discretizations of their problem on a specific graded mesh was taken into consideration. The 
computational domain was fundamentally separated into three areas by the graded mesh: the 
uniformly wide outside region, the transition region, and the graded interior region. The spacing must 
be approximately consistent in areas where the singular perturbation parameter (i.e., sufficiently 
small 𝜀) was tiny in comparison to the local mesh spacing. It was established that the schemes had 
high uniform stability [2]. 

By employing a properly graded mesh that corresponds to three boundary layers, it is possible to 
get optimal error order estimates that are valid uniformly up to a logarithmic factor in the sufficiently 
small 𝜀. After establishing a consistent division at the outset, Durán and Lombardi [3] began the 
grading process. A few numerical examples demonstrated the method's successful operation. In 
particular, the approach accurately approximated the conventional piecewise bilinear finite element 
solution of the convection-diffusion equations. The graded mesh method appeared to be more 
reliable in that changes in the parameters defining the mesh have less of an impact on the numerical 
outcomes. Following an error analysis, a graded mesh was created that successfully accommodated 
both small and large perturbation parameters. Comparatively, the well-known Shishkin mesh's 
findings are significantly influenced by the parameter specifying the moment at which the mesh's 
size changes. If this parameter is somewhat off from its ideal setting, oscillations in the numerical 
solution may be seen. Additionally, the Shishkin mesh no longer functions properly for greater values 
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of the singular perturbation parameter. It was built for a certain value of the parameter. As a result, 
the graded mesh appears to be a compelling alternative to the Shishkin mesh, which likewise offers 
optimal order for situations of this nature [3]. 

A more complex mesh includes highly graded unstructured meshes discussed by Nochetto [4]. 
The analysis carried over regardless of convexity and accounted even for slit domains. Nochetto [4] 
indicated the piecewise linear finite element solution defined over the mesh made of triangles. The 
mesh was unstructured in the sense that the triangles at comparable distance to a singularity were 
not necessarily of comparable size. 

When used in conjunction with techniques like non-standard integral equations and specialised 
interpolatory quadrature methods, for example, graded mesh can accelerate convergence even 
more. Mesh around solitary boundary points may be improved using a variety of techniques. In 
contrast to an aggressively graded mesh that was developed using a more sophisticated approach, 
aiming for fewer subdivisions to obtain a given resolution, a simple graded mesh was refined by 
Helsing and Ojala [5] using binary subdivision. They used a multilayer preconditioning approach called 
recursive compressed inverse preconditioning, which was based on a coarse mesh and a hierarchy of 
meshes on a simply graded mesh. The end goal was a top-level equation that was properly 
conditioned. The simply graded mesh needed no grading exponent and less specialised interpolatory 
quadrature. This was shown to significantly enhance performance and resuscitate integral equation 
formulations that would often be abandoned owing to heavy refining requirements [5]. 
 

1.2 Mesh Independent Issues and Code Errors 
 

The CFD computation for the coarse mesh is clearly not yet mesh independent and may cause 
significant erroneous results. The reliability of the numerical solution to a specific problem that is 
posed by the mesh and boundary conditions utilised is often examined by CFD mesh independence 
studies [6-8]. The solution profile for coarse and relatively finer mesh might apparently be the same 
even near the boundaries where it is especially important to have mesh independence. It would 
therefore be beneficial to increase the mesh resolution even further to resolve the slight discrepancy, 
usually by keep decreasing mesh width by half. While this may seem straightforward, a full mesh-
independence study would require running a case with as high as hundreds of thousands to millions 
mesh points for complex flow analysis to capture the main features [8,9]. Efficient mesh adaptation 
can yield a coarser mesh where the mesh points may be reduced by approximately an order of 
magnitude. The particular adaptation procedure aims at providing higher mesh resolution in regions 
with high variable gradients. In addition, higher order schemes are used, and computations are 
performed in double precision to increase accuracy [8]. 

The CFD setup also affects the outcomes of mesh independence tests. They can differ amongst 
meshes of the same resolution, vary depending on the flow conditions or directions that are 
simulated, and between CFD solvers owing to variations in discretization schemes, turbulence 
models, etc. The list is endless [6,7]. 

Iteration and time-step convergence analysis for response variables (such as resistance 
coefficients, wetted surfaces, and dynamic trim angles) carried out using the primary error and 
uncertainty estimation methods are also included in an extended verification and validation study of 
CFD simulations, in addition to the mesh independence test. Typically, the mesh number has an 
inverse relationship with the number of iterations [10]. 

Ge and Zhang [11] offered an intriguing scenario in which they claimed that, when used to solve 
elliptic problems, the geometric multimesh method's mesh independent convergence rate is likely 
its best-known characteristic. When 𝜀 = 10−3, the impact of mesh stretching on the convergence 
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dependency was examined. When the mesh was not stretched, it was discovered that a mesh 
independent convergence rate was achievable. The multimesh convergence rate with a stretched 
mesh depended on the mesh size. But what was intriguing about such a reliance was its very essence. 
The convergence rate increased when the mesh was improved with only a slight stretching. When 
the mesh was refined with a significant stretching, the convergence rate decreased [11]. 

Code errors, particularly runtime errors, are another challenge which needs to be overcome in 
order to run a numerical model. There are various methods to circumvent such errors. Because 
everything starts with a mesh it is paramount to overcome these errors by providing it with a friendly 
geometry that it can successfully mesh. Among the most common errors are an overflow error and a 
divide-by-zero error. Both are categorized as floating point exception (FPE) which is a result of 
computation returning either a NaN (not-a-number) or a stack overflow [11]. 
 
1.3 Convection-diffusion Model 
 

The differential form of the generic scalar conservation equation in rectangular coordinates and 
tensor notation is [12] 
 

𝜕𝑡(𝜌𝐶) + 𝜕𝑥𝑗
(𝜌𝑢𝑗𝐶) = 𝜕𝑥𝑗

(𝜀𝜕𝑥𝑗
𝐶) + 𝑒𝐶          (1) 

 
where 𝑡 stands for time, 𝜌 for density, 𝐶 for a scalar quantity, 𝑥𝑗 (𝑗 = 1,2,3) or (𝑥, 𝑦, 𝑧) are the 

Cartesian coordinates, 𝑢𝑗  or (𝑢, 𝑣, 𝑤) are the Cartesian components of the velocity vector 𝑽, 𝜀 is the 

diffusivity for the quantity 𝐶, and 𝑒𝐶  represents source or sink of 𝐶. Finite difference method will be 
described in this paper for this generic conservation equation. 

We solve the steady 2D scalar convection-diffusion equation with Dirichlet boundary conditions. 
The steady state equation with quadratic source term to be solved reads 
 
𝜕𝑥(𝜌𝑢𝐶) = 𝜕𝑥(𝜖𝜕𝑥𝐶) − 4𝑦2 + 4𝑦           (2) 
 
with the boundary conditions 𝐶 = 𝐶0 at 𝑥 = 0, 𝐶 = 𝐶𝐿 at 𝑥 = 𝐿, where 𝐿 is the width and height of 
the domain as in Figure 1 to Figure 3. In this case, ordinary derivatives may replace the partial 
derivatives. 
 

 
Fig. 1. Theory-based profile in a unit square domain when 𝑃𝑒 ≫ 0 
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Fig. 2. Theory-based profile in a unit square domain when 𝑃𝑒 > 0 

 
If the density 𝜌 and the velocity 𝑢 are unity and 𝐶0 = 𝐶𝐿 = 0, the problem exact solution in a 

simple unit square domain 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 reads 
 

𝐶𝑒𝑥𝑎𝑐𝑡 = 𝜖𝑐1𝑒𝑥 𝜖⁄ + 𝑒𝐶𝑥 + 𝑐2            (3) 
 
where 𝑐1 and 𝑐2 are constants of integration, given by 
 

𝑐1 = −
𝑒𝐶

𝜖𝑒1 𝜖⁄ −𝜖
              (4) 

 
and 
 
𝑐2 = −𝜖𝑐1,              (5) 
 
respectively. Note that 𝑢 being unity represents the case where 𝑢 ≥ 0. 

This problem physically represents a situation in which convection is balanced by diffusion and 
source in the streamwise direction. Numerical methods developed for Eq. (2) may be applied to the 
Navier-Stokes equations. This problem raises some of the issues worthy of attention. 

When the velocity is small (i.e., 𝑢 ≈ 0) or diffusivity 𝐶 is large, the Peclet number defined as 
 

𝑃𝑒 =
𝜌𝑢𝐿

𝜀
              (6) 

 
tends to zero and convection is negligible; the solution is then symmetric in 𝑥 as shown in Figure 3. 
In the case of large Peclet number, 𝐶 grows slowly with 𝑥 and then suddenly drops to 𝐶𝐿 over a short 
distance close to 𝑥 = 𝐿, as previously illustrated in Figure 1 and Figure 2. The rapid change in the 
absolute gradient value provides a severe test of the simulation method. 
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Fig. 3. Theory-based profile in a unit square domain when 𝑃𝑒 ≈ 0 

 
In fluid mechanics, Eq. (1) is extended to represent some of the most fundamental phenomena 

which include the transport of heat, mass, and momentum [13,14]. It is extremely important to 
model and describe the phenomena in various engineering disciplines, aviation, meteorology, and 
physical sciences [13-25]. The mathematical framework for heat and mass transfer are of same kind, 
and basically encompassed by advection and diffusion effects. An initially discontinuous profile is 
propagated by diffusion and convection (or advection), the latter with a speed, in such general scalar 
transport equations [13,23,24]. These equations are frequently used in computational simulations, 
such as wake vortex simulation in aviation, petroleum reservoir simulation, and global weather 
prediction [19,20,26]. 

The motivation for this work is to accurately simulate the behaviour of scalar quantities such as 
temperature or chemical concentration in fluid flows. The simulation method proposed in this paper 
is based on an exponentially graded mesh and uses a finite difference scheme [27]. The use of the 
mesh is effective in solving convection-diffusion equations and allows for a more accurate 
representation of the flow behaviour near the boundary layers [27,28]. 

This paper builds on previous research in the field of CFD, including the works by Mohammadi 
[28], Shan [29] and Wu and Xu [30]. Thus, this work on 2D steady scalar convection-diffusion model 
and the use of logarithmically linear model between expansion factor 𝑟𝑒 and Peclet number 𝑃𝑒 for 
the corresponding simulation is a contribution to the field. Moreover, it has the potential to be 
applied to a wide range of engineering, ecological, and geophysical applications that involve the 
dispersal and mixing of scalar quantities in fluid flows [31]. 

Correct meshing approaches including graded mesh are essential for simulating fluids flow. 
Uncareful application of exponentially graded mesh might lead to poor solutions including numerical 
oscillations, over- or under-predictions, and lengthy computing time. This paper analyzes the 
effectiveness of exponentially graded mesh finite-difference scheme for simulating 2D steady scalar 
convection-diffusion flow. The aim is to assess the validity range of the generalized logarithmically 
linear model between expansion factor 𝑟𝑒 and Peclet number 𝑃𝑒 for the simulation. 
 
2. Methodology 
 

We discretized Eq. (2) using finite difference method which uses the three-point computational 
atom. The resulting algebraic equation at each internal node is 
 
𝐵𝐶𝑖−1 + 𝐷𝐶𝑖 + 𝐴𝐶𝑖+1+= 𝑒𝑃            (7) 
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where 𝐵, 𝐷, 𝐴 are the first lower, main, and first upper diagonal elements of tridiagonal coefficient 
matrix, respectively [32]. All other elements are zero. 

The diffusion term was discretized using central difference scheme (CDS) as commonly practiced. 
The outer derivative is thus given by 
 

−[𝜕𝑥(𝜖𝜕𝑥𝐶)]𝑖 ≈
(𝜖𝜕𝑥𝐶)

𝑖+
1
2

−(𝜖𝜕𝑥𝐶)
𝑖−

1
2

1

2
(𝑥𝑖−1−𝑥𝑖+1)

           (8) 

 
The inner derivatives were approximated with CDS as 
 

(𝜖𝜕𝑥𝐶)
𝑖+

1

2

≈ 𝜖
𝐶𝑖+1−𝐶𝑖

𝑥𝑖+1−𝑥𝑖
             (9) 

 

−(𝜖𝜕𝑥𝐶)
𝑖−

1

2

≈ 𝜖
𝐶𝑖−𝐶𝑖−1

𝑥𝑖−1−𝑥𝑖
                      (10) 

 
The contributions of the diffusion term to the coefficients 𝐵, 𝐴, 𝐷 in Eq. (7) are 
 

𝐵𝑑𝑖𝑓𝑓 =
2𝜖

(𝑥𝑖+1−𝑥𝑖−1)(𝑥𝑖−1−𝑥𝑖)
,                      (11) 

 

𝐴𝑑𝑖𝑓𝑓 =
2𝜖

(𝑥𝑖+1−𝑥𝑖−1)(𝑥𝑖−𝑥𝑖+1)
,                      (12) 

 
and 
 

𝐷𝑑𝑖𝑓𝑓 = −(𝐵𝑑𝑖𝑓𝑓 + 𝐴𝑑𝑖𝑓𝑓),                      (13) 

 
respectively. 
 
Similarly, the convection term was discretized using CDS which led to 
 

[𝜕𝑥(𝜌𝑢𝐶)]𝑖 ≈ −𝜌𝑢
𝐶𝑖+1−𝐶𝑖−1

𝑥𝑖−1−𝑥𝑖+1
                      (14) 

 
The contributions of the convection term to the coefficients 𝐵, 𝐴, 𝐷 in Eq. (7) are 
 

𝐵𝑐𝑜𝑛𝑣 = −
𝜌𝑢

𝑥𝑖+1−𝑥𝑖−1
,                       (15) 

 

𝐴𝑐𝑜𝑛𝑣 =
𝜌𝑢

𝑥𝑖+1−𝑥𝑖−1
,                       (16) 

 
and 
 
𝐷𝑐𝑜𝑛𝑣 = −(𝐵𝑐𝑜𝑛𝑣 + 𝐴𝑐𝑜𝑛𝑣) = 0,                     (17) 
 
respectively. 
Defining mesh point in the 𝑥-direction for 𝑟𝑒 = 1; 
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𝑥1 = 0                         (18) 
 

∆𝑥 =
1

𝑁
                        (19) 

 
𝑥𝑖 = 𝑥𝑖−1 + ∆𝑥                       (20) 
 
where 𝑖 = 2,3, … , 𝑁. 
 
Defining mesh point in the 𝑥-direction for 𝑟𝑒 ≠ 1; 
 
𝑥1 = 0                         (21) 
 

(∆𝑥)1 =
1−𝑟𝑒

1−𝑟𝑒
𝑁                        (22) 

 
(∆𝑥)𝑖 = 𝑟𝑒(∆𝑥)𝑖−1                       (23) 
 
where 𝑖 = 2,3, … , 𝑁 − 1. 
 
𝑥𝑖 = 𝑥𝑖−1 + (∆𝑥)𝑖−1                       (24) 
 
where 𝑖 = 2,3, … , 𝑁. 
 
Defining mesh point in the 𝑦-direction; 
 
𝑦1 = 0                         (25) 
 

∆𝑦 =
1

𝑁
                        (26) 

 
𝑦𝑖 = 𝑦𝑖−1 + ∆𝑦                       (27) 
 
where 𝑖 = 2,3, … , 𝑁. 
 

Exponentially graded mesh was only applied in x-coordinates along which the change in the mesh 
width ∆𝑥 is exponential, while uniform mesh in y-coordinates. This was due to the derivatives in Eq. 
(2) were those with respect to 𝑥 only, thus non-uniform mesh in y-coordinates was unnecessary. Both 
mesh number 𝑁 and mesh expansion factor 𝑟𝑒 affect mesh width (i.e., the distance between two 
neighboring computational atoms) ∆𝑥. The mesh shown in Figure 4 is stretched to a coarser mesh 
away from 𝑥 = 1. In general, the mesh width on both coarse and fine part of mesh decreases when 
𝑁 increases and 𝑟𝑒 is fixed. On the other hand, the mesh width on coarse part of mesh decreases, 
while that on fine part increases when 𝑟𝑒 increases and 𝑁 is fixed. For 𝑟𝑒 = 1, mesh is identical to 
uniform mesh, where all neighboring computational atoms are equally spaced from one another for 
all 𝑁. 
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Fig. 4. Exponentially graded mesh in 𝑥 with 
computational atoms 

 
Over- and under-reduction of 𝑟𝑒 would result in the overall profile of 𝐶 is under-predicted and 

oscillates, respectively. Note that even for the small 𝑁 (e.g., 𝑁 = 11), computational atoms on the 
fine part of mesh are extremely densed for small 𝑟𝑒 (e.g 𝑟𝑒 = .5) such that they are not easily visually 
distinguishable. For 𝑟𝑒 → 0 and 𝑟𝑒 → 1, (∆𝑥)𝑐𝑜𝑎𝑟𝑠𝑒 → 1 and ∆𝑥 → 1 (𝑁 − 1)⁄ , respectively, where 
(∆𝑥)𝑐𝑜𝑎𝑟𝑠𝑒 is the mesh width on the coarse part. For 𝑁 → 2 and 𝑁 → ∞, ∆𝑥 → 1 and ∆𝑥 → 0, 
respectively. 

In the prediction of convection-diffusion flow with quadratic source, the expansion factor 𝑟𝑒 is 
logarithmically inversely proportional to the low Peclet number 𝑃𝑒 [33]; 
 
𝑟𝑒 = 𝑚 lg 𝑃𝑒 + 𝑏,                       (28) 
 
where 
 

𝑚 =
.5

(lg  .03125)
,                       (29) 

 
and 
 
𝑏 = 1. −(𝑚 lg 3.125),                       (30) 
 
are curve slope and a constant, respectively. The relationship in Eq. (28) was initially used for 𝑁 = 11 
[33]. Here we generalize its use for 𝑁 ≥ 11. Note that our 𝑃𝑒 of interests are those of 3.125, 
6.25,12.5, and 25. 

For mesh independency tests one mesh with 𝑁 = 11 was generated, and the numerical 
simulation (first level) was compared to that on a two times finer grid (second level), and so forth. 

We defined the simulation error as 
 

𝐸𝑟𝑟 =
∑ |𝐶𝑖

𝑒𝑥𝑎𝑐𝑡−𝐶𝑖|𝑖

𝑁
,                       (31) 

 
and the simulation error percentage 

i-2 i-1 i i+1 i+2
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𝐸𝑟𝑟% =
𝐸𝑟𝑟×𝑁

∑ 𝐶𝑖
𝑒𝑥𝑎𝑐𝑡

𝑖
 × 100%,                      (32) 

 
where 𝑖 = 1,2, … , 𝑁. The error ratio is given by 
 

𝐸𝑟𝑟𝑎𝑡𝑖𝑜𝑚 =
𝐸𝑟𝑟(𝑁−1)𝑚−1

𝐸𝑟𝑟(𝑁−1)𝑚

,                      (33) 

 
where 𝑚 = 2, 3, 4, …, and the rate of convergence 
 

𝑝 =
𝐸𝑟𝑟𝑎𝑡𝑖𝑜𝑚

2
                        (34) 

 
3. Results 
 

The concentration of scalar 𝐶 was calculated numerically and analytically in 2D over exponentially 
graded meshes for for various values of 𝑁. The simulation error, 𝐸𝑟𝑟, error percentage, 𝐸𝑟𝑟%, error 
ratio, 𝐸𝑟𝑟𝑎𝑡𝑖𝑜, and rate of convergence, 𝑝, were also tabulated with respect to Peclet number, 𝑃𝑒, 
and 𝑁. The exact solutions were used as benchmarks for validation of the numerical simulations. The 
concentration at two specific locations, 𝑦|𝑒𝑝=0.64 and 𝑦|𝑒𝑝=1, represent the concentration when the 

source is relatively small and maximum, respectively. 
Data in Table 1 and Table 2 when 𝑃𝑒 = 3.125 represent those when 𝑟𝑒 = 1 where the mesh is 

identical to uniform mesh. In the case of 𝑃𝑒 = 3.125, the error is relatively higher when 𝑒𝑝 = 1 in 

comparison to 𝑒𝑝 = 0.64, with a maximum difference in error of 5.0 x 10-4 when (𝑁 − 1) = 10. The 

optimum mesh number of 640 corresponds to an error percentage of 0%. Despite the differences in 
error, the error percentage remains constant while the error ratio values are very similar for the same 
(𝑁 − 1). The simulation error percentage has a maximum value of 0.616%, which corresponds to 
(𝑁 − 1) = 10. 
 

Table 1 
Numerical errors when 𝑃𝑒 = 3.125, 𝑒𝑝 = 0.64 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 8.0 x 10-4 0.616 %   
20 2.1 x 10-4 0.153 % 3.8 1.9 
40 5.4 x 10-5 0.038 % 3.9 1.9 
80 1.4 x 10-5 0.010 % 3.9 1.9 
160 3.5 x 10-6 0.002 % 4.0 2.0 
320 8.8 x 10-7 0.001 % 4.0 2.0 
640 2.4 x 10-7 0.000 % 3.7 1.8 

 
Table 2 
Numerical errors when 𝑃𝑒 = 3.125, 𝑒𝑝 = 1 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 1.3 x 10-3 0.616 %   
20 3.3 x 10-4 0.153 % 3.9 2.0 
40 8.5 x 10-5 0.038 % 3.9 1.9 
80 2.2 x 10-5 0.010 % 3.9 1.9 
160 5.4 x 10-6 0.002 % 4.1 2.0 
320 1.4 x 10-6 0.001 % 3.9 1.9 
640 3.7 x 10-7 0.000 % 3.8 1.9 
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Table 3 and Table 4 show that when 𝑃𝑒 = 6.25, the error (𝐸𝑟𝑟) is substantially greater when 𝑒𝑝 =

1 than when 𝑒𝑝 = 0.64, with a maximum difference in error of 9.0 x 10-4 when (𝑁 − 1) = 10. When 

a uniform rate of convergence is attained (i.e., when 𝑝 = 1.0), the optimal mesh number of 80 
corresponds to an error percentage (𝐸𝑟𝑟%) of 0.026%. Despite the differences in error, the error 
percentage remains constant while the error ratio (𝐸𝑟𝑟𝑎𝑡𝑖𝑜) values are very similar for the same 
(𝑁 − 1). Note that 𝐸𝑟𝑟% has a maximum value of 0.775%, which corresponds to (𝑁 − 1) = 10. 
 

Table 3 
Numerical errors when 𝑃𝑒 = 6.25, 𝑒𝑝 = 0.64 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 1.6 x 10-3 0.775 %    
20 2.6 x 10-4 0.122 % 6.2 3.1 
40 5.7 x 10-5 0.031 % 4.6 2.3 
80 2.8 x 10-5 0.026 % 2.0 1.0 
160 1.4 x 10-5 0.026 % 2.0 1.0 
320 7.1 x 10-6 0.026 % 2.0 1.0 

 
Table 4 
Numerical errors when 𝑃𝑒 = 6.25, 𝑒𝑝 = 1 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 2.5 x 10-3 0.775 %   
20 4.1 x 10-4 0.122 % 6.1 3.0 
40 8.9 x 10-5 0.031 % 4.6 2.3 
80 4.3 x 10-5 0.026 % 2.1 1.0 
160 2.2 x 10-5 0.026 % 2.0 1.0 
320 1.1 x 10-5 0.026 % 2.0 1.0 

 

Table 5 and Table 6 show data corresponding to 𝑃𝑒 = 12.5, where the error (𝐸𝑟𝑟) is 
comparatively higher when 𝑒𝑝 = 1 in comparison to 𝑒𝑝 = 0.64, with a maximum difference in error 

of 1.1 x 10-3 when (𝑁 − 1) = 10. When a uniform simulation error percentage is attained (i.e., when 
𝐸𝑟𝑟% = 0.132 %), the optimal mesh number of 40 corresponds to a rate of convergence (𝑝) of 1.1. 
Despite the differences in error, the error percentage (𝐸𝑟𝑟%) remains constant while the error ratio 
(𝐸𝑟𝑟𝑎𝑡𝑖𝑜) values are very similar for the same (𝑁 − 1). Obviously, the simulation error percentage 
has a maximum value of 0.763%, which corresponds to (𝑁 − 1) = 10. 
 

Table 5 
Numerical errors when 𝑃𝑒 = 12.5, 𝑒𝑝 = 0.64 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 2.1 x 10-3 0.763 %   
20 4.3 x 10-4 0.178 % 4.9 2.4 
40 1.9 x 10-4 0.132 % 2.3 1.1 
80 9.9 x 10-5 0.132 % 1.9 1.0 

 
Table 6 
Numerical errors when 𝑃𝑒 = 12.5, 𝑒𝑝 = 1 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 3.2 x 10-3 0.763 %   
20 6.8 x 10-4 0.178 % 4.7 2.4 
40 3.0 x 10-4 0.132 % 2.3 1.1 
80 1.6 x 10-4 0.132 % 1.9 0.9 
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Table 7 and Table 8 show the general scenario when 𝑃𝑒 = 25, where the error (𝐸𝑟𝑟) is 
substantially greater when 𝑒𝑝 = 1 than when 𝑒𝑝 = 0.64, with a maximum difference in error of 

1.2 x 10-3 when (𝑁 − 1) = 10. When a uniform rate of convergence is attained (i.e., when 𝑝 = 1.0), 
the optimal mesh number of 40 corresponds to an error percentage (𝐸𝑟𝑟%) of 0.256%. It is 
interesting to note that the simulation corresponding to (𝑁 − 1) = 160 was not achievable due to a 
code error (FPE). Despite the differences in error, the error percentage remains constant while the 
error ratio (𝐸𝑟𝑟𝑎𝑡𝑖𝑜) values are very similar for the same (𝑁 − 1). It is worth noting that 𝐸𝑟𝑟% has 
a maximum value of 0.684%, which corresponds to (𝑁 − 1) = 10. 
 

Table 7 
Numerical errors when 𝑃𝑒 = 25, 𝑒𝑝 = 0.64 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 2.1 x 10-3 0.684 %   
20 6.2 x 10-4 0.268 % 3.4 1.7 
40 3.1 x 10-4 0.256 % 2.0 1.0 
80 1.6 x 10-4 0.255 % 1.9 1.0 

 
Table 8 
Numerical errors when 𝑃𝑒 = 25, 𝑒𝑝 = 1 
𝑁 − 1 𝐸𝑟𝑟 𝐸𝑟𝑟% 𝐸𝑟𝑟𝑎𝑡𝑖𝑜 𝑝 
10 3.3 x 10-3 0.684 %   

20 9.7 x 10-4 0.268 % 3.4 1.7 
40 4.9 x 10-4 0.256 % 2.0 1.0 
80 2.5 x 10-4 0.255 % 2.0 1.0 

 
It was observed that simulation error percentage (𝐸𝑟𝑟%) remained constant regardless of the 

source values (𝑒𝑝) for a given Peclet number and mesh number. The rates of convergence (𝑝) were 

also found to be very similar with respect to 𝑒𝑝, indicating that there was no strong relationship 

between 𝑝 and 𝑒𝑝. The difference between the error when 𝑒𝑝 = 0.64 and 𝑒𝑝 = 1 (𝐸𝑟𝑟|𝑒𝑝=0.64 and 

𝐸𝑟𝑟|𝑒𝑝=1) increases with 𝑃𝑒 for a given (𝑁 − 1), with the maximum difference occurring at 

(𝑁 − 1) = 10 in all cases of 𝑃𝑒. Optimal mesh numbers were successfully determined based on the 
convergence of 𝐸𝑟𝑟% and the uniform rate of convergence 𝑝 in all cases. 
 
4. Conclusions 
 

The analysis of the effectiveness of the exponentially graded mesh finite-difference scheme for 
simulating 2D steady scalar convection-diffusion flow has succeeded in assessing the validity range 
of the generalized logarithmically linear model between expansion factor 𝑟𝑒 and Peclet number 𝑃𝑒. 
The results prove that the model which was initially used for 𝑁 = 11 can be extended for 𝑁 ≥ 11 
with respect to 𝑃𝑒 = 3.125, 6.25,12.5, 25 for increased solution accuracy and optimal mesh number. 

The study involving higher 𝑃𝑒 can be considered in order to increase the mesh robustness. Note 
that high 𝑃𝑒 leads to floating-point error which necessitates more complex mesh. The problem might 
be handled by fundamentally separating computational domain into outside region, transition 
region, and graded interior region to determine whether the technique is compatible with the 
generalized logarithmically linear model. 
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