Environmental problems and global energy demand increase every day. The quality of water and sanitation is a very hot topic of discussion. The principles of sustainable development (SDGs) by utilizing renewable materials need to be applied to overcome this problem. One way is through the use of agricultural waste as a renewable carbon material. The study aims to analyze the adsorption characteristics of sustainable carbon microparticles based on mangosteen peel for dye removal. This study also evaluates adsorption isotherms based on its microparticle size effects. In short, carbon preparation was started by mangosteen peel carbonization at 250˚C for 5 hours and tested using sieves (i.e., 125, 250, 500, 1000, and 2000 μm) to obtain a certain size of carbon. Adsorption was evaluated based on a specific particle size using a batch adsorption reactor. Curcumin was used as a model organic dye. The findings showed that particle sizes influence physical adsorption with repulsive interactions between adsorbates. Adsorption in the large particles (i.e. 2000 and 1000 μm) occurs in the multilayer adsorption process with pore filling, while that in the small particles (i.e., 500 μm) occurs in the monolayer adsorption process with pore filling. Small-sized carbon does not provide enough active sites (such as the absence of a pore structure on the surface) for the adsorbate, leading to the creation of a monolayer during adsorption. Meanwhile, in large-sized carbon, the pore-filling mechanism in the adsorbent surface cause the formation of multilayer adsorption. This research is important to understand the application of adsorption using agricultural waste-based adsorbents by observing the phenomena occurring during the adsorption process.

Keywords: Biochar; carbon; isotherm adsorption; mangosteen peel; particle size; Sustainable Development Goals (SDGs)
1. Introduction

Environmental problems and global energy demand increase every day, making the quality of water and sanitation becomes a hot topic of discussion. The issues in the global clean water demand increase as the population increases [1, 2]. Previous studies have connected these issues to facing various emerging contaminants, such as heavy metal pollution, dyes, pesticides, pharmaceuticals, radioactive elements, and phenol derivative compounds [3-10].

Dyes, which are commonly found in effluents from various industrial sectors, including textiles, food products, tanneries, pulp and paper, paints, and pigments, are one of the most significant groups of pollutants due to their highly toxic nature [11]. Additionally, the presence of dyes in water can cause water to turn colored and limit the amount of dissolved oxygen in the water, which has a negative influence on aquatic life [11]. To guarantee the availability of water, a water treatment system is needed that applies the principles of sustainable development goals (SDGs).

The various methods used for wastewater treatment are classified as follows: traditional methods (such as sedimentation, flocculation, coagulation, filtration, and aeration), physical (such as the ion exchange, adsorption, irradiation, nano, membrane or ultra-filtration, and reverse osmosis), chemical (such as advanced oxidation process and ozonation), and biological (such as anaerobic-aerobic, enzyme degradation, and the adsorption by microbial biomass) [11-16]. However, several of these methods have drawbacks, such as generating hazardous by-products, needing huge processing areas, consuming a lot of energy, or producing an offensive stench [17]. Among various dye removal techniques, adsorption is the procedure of choosing that shows good performance because it can be used to remove various types of dyes from materials [18]. Adsorption has been considered a superior method for water treatment in terms of flexibility, initial cost, simplicity of design, and ease of operation. In addition, adsorption does not result in the production of harmful pollutants [19].

To realize SDGs, the development of materials from renewable materials must be implemented [20]. Realizing that developing materials from renewable resources can result in inexpensive adsorbents and also help to solve the problems with the adsorption method caused by the use of expensive adsorbent materials. Carbon is the material most commonly used in industry because it has the potential to be used as an adsorbent, catalyst, degassing agent, drug delivery system, and storage of energy materials [21]. Moreover, carbon particles have a large surface area and porous structure with high pore volume, as well as stability against chemical and thermal conditions. These unique characteristics make carbon particles ideal for solving environmental problems [22]. Over the past few years, many studies have succeeded in developing renewable carbon as an adsorbent from agricultural wastes, such as rice husk, red dragon, pineapple peel, soursop skin, pumpkin seeds, corn cobs, and papaya seed [23-28]. Agricultural waste-based adsorbent materials (raw or active materials) receive more attention due to their low cost, availability in practically every region of the world, and obtainment by only a few preparation stages with easy synthesis procedures [13]. In addition to the technical aspect, it turns out that agricultural waste possesses holes, a loose structure, and functional groups such as hydroxyl, carboxyl, and others that efficiently aid in dye adsorption [29].

Here, this study aimed to analyze the adsorption characteristics of renewable carbon from mangosteen peel. Ten adsorption isotherms studied including Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Flory Huggins, Fowler-Guggenheim, Hill-Deboer, Jovanovic, Harkin-Jura, and Halsey. In addition, this study studied the mechanism of renewable carbon adsorption from mangosteen peel. Most mangosteen is grown in Southeast Asia, particularly in Indonesia. The peel of the mangosteen fruit, which is typically discarded, contains lignin and hemicellulose molecules, which are the main building blocks for carbon. As a result, carbon made from mangosteen rind is ready for
use in wastewater treatment [30]. The current study highlights a sustainable approach to removing dyes from wastewater. In this study, curcumin was used as a model dye. Also, this study does not only focus on synthesis and characteristics but also evaluates the studied adsorption isotherm properties based on the use of various microparticle sizes (i.e. 500, 1000, and 2000 μm). Therefore, it is crucial for the advancement of wastewater decontamination utilizing sustainable and ecologically friendly adsorbents to provide an updated and focused review that summarizes the adsorption performance of effluent-derived adsorbents to remove dye effluents.

2. Theoretical Adsorption Isotherm

To understand the adsorption mechanism, ten adsorption isotherms were used and compared with the results of the fitting data. The calculation results to obtain the curve from the fitting data are shown in Table 1. In more detail, how to calculate the adsorption isotherm is described in the previous literature [31].

<table>
<thead>
<tr>
<th>Isotherm Model</th>
<th>Theoretical Explanation</th>
<th>Plot (x-axis vs y-axis)</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>This model is used to describe the equilibrium between adsorbate and adsorbent system in which adsorbate adsorption is limited to one molecular layer at or before a relative pressure of unity is reached, supported using Eq. (1):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | \[
\frac{1}{q_e} = \frac{1}{q_{max} K_L C_e} + \frac{1}{q_{max}} \] | \[
\frac{1}{C_e} \text{ vs } \frac{1}{Q_e} \] | \[
\frac{1}{q_{max}} = \text{intercept} \quad \frac{1}{q_{max}} K_L = \text{slope} \] |
| | where \(K_L \) is the Langmuir constant, \(q_e \) is the number of molecules adsorbed at equilibrium (mg/g), and \(q_m \) is the adsorption capacity (mg/g). Eq. (2) express the adsorption factor (\(R_L \)). |
| | \[
R_L = \frac{1}{1 + K_L C_e} \] (2) |
| | \(R_L \) describes favorable adsorption or no desorption (0 < \(R_L < 1 \)); unfavorable adsorption (\(R_L > 1 \)); linear adsorption (affected by the amount and concentration of adsorbed molecules) (\(R_L = 1 \)); too strong adsorption or irreversible adsorption (\(R_L = 0 \)). |
| Freundlich | The surface heterogeneity and the exponential distribution of the functional sites are described by the Freundlich isotherm approximation. Freundlich isotherm adsorption is another term for multilayer adsorption. Freundlich isotherm represented by Eq. (3). |
| | \[
\ln q_e = \ln k_f + \frac{1}{n} \ln C_e \] | \[
\ln C_e \text{ vs } \ln Q_e \] | \[
\ln k_f = \text{intercept} \quad \frac{1}{n} = \text{slope} \] |
| | where \(C_e \) is the adsorbate concentration at equilibrium (mg/L) and \(k_f \) is the Freundlich constant that estimates the adsorption capacity. |
n is the degree of nonlinearity and the adsorption strength, following chemisorption ($n < 1$) or physisorption ($n > 1$); linear adsorption (a concentration-independent partition between two phases) ($n = 1$); normal adsorption ($1/n < 1$); cooperative adsorption ($1/n > 1$); favorable adsorption or no desorption ($1 < 1/n < 0$); and adsorption on a heterogeneous surface ($0 < 1/n < 1$; the closer to zero indicates increasing heterogeneous adsorbent surface).

Temkin
This model assumes that the adsorption heat of all molecules decreases linearly with the increase in coverage of the adsorbent surface, and that adsorption is characterized by a uniform distribution of binding energies, up to a maximum binding energy, represented by Eq. (4).

$$q_e = B_T \ln A_T + B_T \ln C_e$$ \hspace{1cm} (4)

where A_T is the equilibrium constant of the Temkin model. B_T is the Temkin constant, informing physical ($B_T < 8$ kJ) or chemical ($B_T > 8$ kJ) adsorption.

Dubinin-Radushkevich
This model assumes the adsorption of gases by porous adsorbents and the pore-filling mechanism, described by Eq. (5).

$$q_e = q_s \exp (-K_{DR} \varepsilon^2)$$ \hspace{1cm} \beta = K_{DR}$$

$$\ln q_e = \ln q_s - (\beta \varepsilon^2)$$ \hspace{1cm} (5)

where q_s is the saturation capacity (mg/g) and β is the Dubinin-Radushkevich constant correlating to the average free adsorption energy. ε is the Polanyi potential associated with equilibrium conditions, in which the value correlates to adsorption energy (E) (see Eq. (6) and Eq. (7)):

$$\varepsilon = RT \ln \left[1 + \frac{1}{C_0} \right]$$ \hspace{1cm} (6)

$$E = \frac{1}{\sqrt{2\beta}}$$ \hspace{1cm} (7)

E relates to the physical ($E < 8$ kJ) or chemical ($E > 8$ kJ) adsorption.

Flory-Huggins
This model is used to explain how the adsorbent contacts and interacts with the adsorbate in the multilayer adsorption, represented in Eq. (8).

$$\log \frac{\theta}{C_e} = \log \log K_{FH} + n_{FH} \log \log (1 - \theta)$$ \hspace{1cm} (8)

where $\theta = \left(1 - \frac{C_e}{C_0} \right)$ is the degree of monolayer coverage. n_{FH} and K_{FH} are the equilibrium constant for the Flory-Huggins model, in which it correlates to the Gibbs free energy (ΔG^o), as presented in Eq. (9):
\[\Delta G^\circ = -RT \ln K_{FH} \]

when \(\Delta G^\circ \) is negative, it can describe the spontaneous and temperature-dependent nature of adsorption.

Fowler-Guggenheim

This model considers lateral interaction of adsorbed species within a localized domain, with evidenced Van der Waals interactional effect between species adsorbed on neighboring sites, explicitly explained by Eq. (10).

\[
\ln \left[\frac{C_e(1-\theta)}{\theta} \right] = -\ln K_{FG} + \frac{2W}{RT} \]

where \(K_{FG} \) is the Fowler-Guggenheim constant (L/mg).

\(W \) is the interaction energy between the adsorbed molecules (kJ/mol), informing processes under exothermic \((W > 0)\), endothermic \((W < 0 \text{ kJ/mol})\), or no interaction between adsorbed molecules \((W = 0 \text{ kJ/mol})\).

Hill Deboer

This model describes mobile with an allowance of lateral interaction between the molecules that have been adsorbed based on the values of the model’s parameters, expressed in Eq. (11):

\[
\ln \left[\frac{C_e(1-\theta)}{\theta} \right] - \frac{\theta}{1-\theta} = -\ln K_1 - \frac{K_2 \theta}{RT} \]

where \(K_1 \) (L/mg) and \(K_2 \) (kJ/mol) are the contact energy constants for the adsorbed molecules, \(K_2 \) informing: exothermic with intermolecular adsorption \((K_2 > 0)\); endothermic with repulsion \((K_2 < 0)\), or no interaction between adsorbates \((K_2 = 0)\).

Jovanovic

This model represents phenomena involving the elimination of mechanism interactions, similar to the Langmuir model (presented in Eq. (12)):

\[\ln Q_e = \ln Q_{max} - K_j C_e \]

where \(Q_e \) is the amount of adsorbate in the adsorbent at equilibrium (mg/g), \(Q_{max} \) is the maximum adsorption of the adsorbate, and \(K_j \) is the Jovanovic constant. At high concentration of adsorbate, the preceding equation becomes the Langmuir isotherm.

Harkin-Jura

This model considers the heterogeneous pore distribution on the surface of the adsorbent which allows multilayer adsorption to occur, represented in Eq. (13):

\[\frac{1}{q_e} = \frac{B_H}{A_H} - \left(\frac{1}{A} \right) \log C_e \]

\(B_H \) is related to the specific surface area of the adsorbent and \(A_H \) is the Harkin-Jura constant.
Halsey This model describes a multilayer adsorption system at a relatively long distance from the surface, similar to the Freundlich model. The Halsey model applies to multilayer adsorption and heterogeneous surfaces with non-uniformly distributed adsorption heats, represented in Eq. (14):

$$Q_e = \frac{1}{n_H} \ln K_H - \left(\frac{1}{n_H} \right) \ln C_e$$ (14)

where K_H and n_H are Halsey’s constants.

3. Methodology

3.1 Preparation of Carbon Microparticles as Biosorbent

Several raw materials used in this study were mangosteen peel (*Garcinia mangostana*; purchased from a local market in Karawang, Indonesia), pure water (purchased from Borma market in Bandung, Indonesia), and curcumin (obtained by extracting from a local market in Bandung, Indonesia). Figure 1 shows the flowchart diagram of the experimental procedure.

Synthesis of carbon particles from mangosteen peel waste was done through several steps. In the initial step, 150 g of mangosteen peel were cleaned and washed. Then, the mangosteen peel was naturally dried under the sun for 12 hours. In the next step, the mangosteen peel was carbonized using an electric oven in a room atmosphere for 5 hours at a constant temperature of 250°C. Furthermore, to obtain the particle size distribution, a sieving test was carried out (CV. Yayasan Bumi Publikasi Nusantara, Indonesia, hole variations of 2000, 1000, 500, 250, 125, 99, and 74 μm). In this study, particle sizes of 500, 1000, and 2000 μm were used for the adsorption experimental process.

3.2 Characterization of Carbon Microparticles as Biosorbent

To characterize the morphology and chemical structure of the carbon particle samples, Fourier Transform Infrared (FTIR-4600, Jasco Corp., Japan) and Digital Microscope (BXAW-AX-BC, China; magnification 1000x) were used.
3.3 Adsorption Experimental Process

Before the adsorption process using curcumin as a dye model is carried out, several steps must be done first, including preparing a curcumin stock solution and preparing a calibration curve. In this study, a curcumin stock solution with a concentration of 100 ppm was prepared. The steps for preparing a curcumin stock solution were described in our previous study [32]. Preparation of the calibration curve was carried out by diluting the curcumin stock solution into a curcumin solution with a standard series solution of 20, 40, 60, 80, and 100 ppm. Then, the absorbance of curcumin
solutions with standard series solutions of 20, 40, 60, 80, and 100 ppm was measured at a wavelength of 250-500 nm using a UV-VIS instrument. The absorbance value obtained from the standard series solution produces a linear curve equation. Then, the concentration of the adsorbate (curcumin solution) adsorbed in the filtrate was calculated using the linear equation of the calibration curve that had been prepared. This absorbance value will depend on the concentration of the substance contained in the solution.

The next step is an adsorption experiment using curcumin solution as a dye model and using mangosteen peel-based carbon adsorbents. The adsorption test was carried out using the batch method. In short, the adsorption process was carried out by adding 0.5 g of prepared carbon particles (with sizes of 2000, 1000, and 500 µm) into a turmeric solution with a volume of 100 mL with various concentrations (20, 40, 60, 80, and 100 ppm). The turmeric solution was stirred manually for 1 hour. Then, the turmeric solution was decanted for 24 hours at room temperature and constant pH (about 7). Previously, blank solutions (turmeric solution without carbon) with various concentrations under the same conditions were tested as a comparison. During the adsorption process, a 3-mL aliquot of the sample solution was tested using a visible spectrophotometer (Model 7205 JENWAY; Cole-Parmer; US). The adsorption results were plotted and normalized using Lambert-Beer calculations. After that, the concentration data obtained were plotted and compared with standard isotherm adsorption models: Freundlich, Langmuir, Temkin, Dubinin-Radushkevich, Flory Huggins, Fowler-Guggenheim, Hill Deboer, Jovanovic, Harkin Jura, and Halsey.

4. Results
4.1 Characterization of Carbon Microparticles as Biosorbent

Figure 2(a) shows the results of the surface structure of carbon microparticles from mangosteen peel. In Figure 2(a), the physical form of carbon particles is black with irregular shapes. Figure 2(b) represents the results of ferret analysis of the particle size distribution of carbon from mangosteen peel. In general, the carbon particles used have a size between 200-500 µm with an average particle size of 600 µm. Figure 2(c) is the result of FTIR analysis of carbon particles from mangosteen peel. As shown in Figure 2(c), all particles have several identical wavelengths functional groups at wavelengths including hydroxyl groups (-OH) in 3400-3500 cm⁻¹, aliphatic C-H compounds in 2854-3859 cm⁻¹, carbonyl compounds (C=O) in 1617-1817 cm⁻¹, the C-H group stretches in 1300-1400 cm⁻¹, the vibrational stretching of C-O in 1023-1200 cm⁻¹ [33-35]. In this study, the characterization was only FTIR. Characterization using X-ray diffraction (XRD), Brauer-Emmett-Teller (BET), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) will be carried out in future research. Here, the results of FTIR analysis are used to determine the similarity of functional groups present in carbon microparticles of various sizes. In addition, the results of this similarity analysis can also confirm that the tool process used does not change the functional groups of the carbon microparticles. This is important to be able to ensure that similar functional groups are present in carbon microparticles to make it easier to understand the effect of particle size on the adsorption phenomenon [23].
Fig. 2. Microscope images of carbon particles (a) with their size distribution (b). Figure (c) is the FTIR analysis results of carbon with different sizes.

4.2 Adsorption Isotherm Model

Adsorption isotherm is one of the important studies in determining the adsorption equilibrium relationship quantitatively such as the characteristics of the pollutant that interacts with the adsorbent, optimizing the mechanism of the adsorption pathway, expressing surface properties, and adsorption capacity [36,37]. In this study, adsorption isotherms were evaluated by comparing the results of fitting the data with ten isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Flory Huggins, Fowler-Guggenheim, Hill-Deboer, Jovanovic, Harkin-Jura, and Halsey) based on various sizes particles (2000, 1000 and 500 µm).

To evaluate the adsorption isotherm model is assessed using the value of the correlation coefficient (R^2). The value of $R^2 > 0.80$ indicates that it is more suitable for the adsorption isotherm model. Figure 3(a) to Figure 3(j) represents the results of correlation plotting from adsorption isotherm analysis. Detailed calculation results for the ten isotherm models are presented in Table 2.

The Langmuir model assumes adsorption as homogeneous sites that transmigrate due to uniform energy [38]. The results of plotting the linearization of the Langmuir model are presented in Figure
3(a). Based on the correlation plot analysis of small-size carbon (500 µm) and large-size carbon (2000 and 1000 µm) fit with the Langmuir model because has an $R^2 > 0.80$. This informs that small-size and large-size carbon adsorption processes have the potential to form monolayer structures. The maximum capacity values (Q_{max}) of carbon measuring 500, 1000, and 2000 µm are 500.67; 333.33; and 244.45 mg/g, respectively (see Table 1). Based on the results of Q_{max} informs that the smaller carbon particle size increases the adsorption capacity. The R_t parameters show values in the range close to 0 which express the characteristics of carbon under favorable conditions for all adsorption systems [38]. The K_i parameter describes the interaction between the adsorption particles and the adsorbent. The small value of K_i indicates that the interaction between the adsorbate and the adsorbent is weak.

The Freundlich model views adsorption as a non-ideal that occurs on the multilayer surface with exponentially distributed energy [39]. Figure 3(b) is the result of fitting the Freundlich linearization model. Based on experiments, the value of R^2 for large-size carbon (1000 and 2000 µm) has a value greater than 0.80 and indicates suitable with the Freundlich model. This informs the formation of a multilayer surface system. In contrast, small-size carbon (500 µm) has an $R^2 < 0.80$ which shows the formation of a monolayer surface system. The parameter value of n_f is the intensity of adsorption that represents the process preference. Based on the value of n_f greater than 1 informing adsorption occurs in the physical system [39]. Analysis of $1/n_f$ value smaller than 0 informs the characteristics of carbon adsorption occurs favorable process.

The Temkin model describes the process of cooperative adsorption with the concentration of adsorbate considering the decrease in molecular heat absorption in the layer to decrease linearly [40]. Figure 3(c) depicts the results of the Temkin model correlation plotting. The correlation value for large-size carbon (1000 and 2000 µm) is suitable with the Temkin model ($R^2 > 0.80$) which shows the formation of a homogeneous system. However, the correlation value for small-size carbon (500 µm) has an $R^2 < 0.80$ which informs the formation of a heterogeneous system. The θ_T parameter value is associated with the maximum energy bond that occurs in physical adsorption ($\theta_T < 8$ kJ/mol).

The Dubinin-Radushkevich model describes a pore-filling process that can be applied to a range of media concentrations from multilayer adsorbates by considering the Gaussian free energy [41]. The parameter of E describes the adsorption process that occurs based on physical properties ($E < 8$ kJ/mol) and chemical adsorption (E: 8-16 kJ/mol) [42]. In this study the energy E for sizes 500, 1000, and 2000 is 0.582; 1.355; and 1.345 kJ/mol, respectively. This indicates that the physical adsorption process is more dominant in the operating system ($E < 8$ kJ/mol). Based on the correlation value (R^2) in Figure 3(d), R^2 is greater than 0.80 for large-size carbon, indicating filling the pore. Meanwhile, small-size carbon occurs in monolayer formation due to $R^2 < 0.80$.

According to the Flory-Huggins isotherm expressing the pore surface of the adsorbent [43]. In this case, the correlation value of R^2 is considered. Based on the correlation value, small-size carbon (size of 500 µm) has an R^2 value of less than 0.80 indicating the presence of a monolayer surface. Meanwhile, large-size carbon (1000 and 2000 µm) has an R^2 value greater than 0.80 indicating the presence of a multilayer surface (See Figure 3(e)). n_{FH} value represents the amount of adsorbent present in the adsorption zone. Large-size carbon has a lower n_{FH} value ($n_{FH} < 1$) that indicates the active zone of more than one adsorbent will be occupied by the adsorbate. In this model, Energy gibs are evaluated which indicates a non-spontaneous process ($\Delta G^* > 0$) for small-size carbon. Meanwhile, Gibbs energy indicates a spontaneous process ($\Delta G^* < 0$) for large-size carbon.

The Fowler-Guggenheim model assumes the lateral interactions of species that absorb the local dominance that exists between species [44]. The value of W represents the empirical interaction energy of the two species present near the site. Based on the experimental results, three particle sizes have W values less than 0 which indicates interactions that are not attractive between adsorbed
molecules. As a result, the loading increases due to the adsorption process’ need for external energy, which reduces interaction. Figure 3(f) is an interpretation of the Fowler-Guggenheim linearization. Based on the R^2 value, small-size, and large-size carbon occurs in monolayer ($R^2 < 0.7$) and multilayer ($R^2 > 0.7$) formation, respectively.

The Hill-Deboer model expresses lateral interaction in adsorbing molecules [29]. Parameters K_1 and K_2 as Hill-de Boer constants and energy constants from the interaction effect between adsorbed sorbate molecules, respectively. A small K_2 value indicates weak lateral interactions, affinity, and attractions between adsorbed molecules. The results of fitting the Hill-Deboer correlation graph are represented in Figure 3(g). The small-size carbon (500 μm) has an $R^2 < 0.80$ that represents the monolayer formation. Meanwhile, the large-size carbon (2000 and 1000 μm) has a greater correlation value ($R^2 > 0.80$) which indicates a multilayer system.

Figure 3(h) is the fitting curve of the Jovanovic model linearization. The Jovanovic model has an $R^2 < 0.80$ for small-size carbon (500 μm) adsorption system and $R^2 > 0.80$ for large-size carbon (2000 and 1000 μm) adsorption system. Therefore, adsorption using small-size and large-size carbon follow multilayer and monolayer formation, respectively. The Jovanovic isotherm shows a good agreement with the Langmuir isotherm, in which particles with small sizes have the maximum adsorption capacity. The adsorption capacities for the 500, 1000, and 2000 nm were 1072.986; 257.516; and 28.598 mg/g, respectively.

The Harkin-Jura model considers the possibility of multilayer adsorption due to the heterogeneous surface distribution [44]. Figure 3(i) shows the linearization graph of the Harkin-Jura model. Based on the correlation value, small-size (500 μm) and large-size carbon (1000 and 2000 μm) have an R^2 greater than 0.80 indicating the presence of multilayer adsorption.

The Halsey model is used to evaluate multilayer adsorption systems [45]. Figure 3(j) depicts the plot of the results of the Halsey model analysis. Based on this model, large-size carbon (1000 and 2000 μm) has suitability as seen from the value of $R^2 > 0.80$ which indicates a multilayer system. Meanwhile, small-size carbon (500 μm) is not suitable because the correlation value is smaller than 0.80.
Fig. 3. Data fitting with isotherm models (a) Langmuir, (b) Freundlich, (c) Temkin, (d) Dubinin-Radushkevich, (e) Flory-Huggins, (f) Fowler-Guggenheim, (g) Hill-Deboer, (h) Jovanovic, (i) Harkin-Jura, and (j) Halsey
Table 2
Detailed data of adsorption isotherm parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Particle Size</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Langmuir</td>
<td>Q_{max} (mg/g)</td>
<td>500.670</td>
<td>333.330</td>
</tr>
<tr>
<td></td>
<td>K_t (L/mg)</td>
<td>1.047</td>
<td>-0.137</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.957</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freundlich</td>
<td>R_L</td>
<td>1.8×10^{-5}</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>K_r</td>
<td>1.768</td>
<td>1.462</td>
</tr>
<tr>
<td></td>
<td>$1/n_f$</td>
<td>0.570</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>n_f</td>
<td>1.754</td>
<td>2.631</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.696</td>
<td>0.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temkin</td>
<td>β_T (J/mol)</td>
<td>0.400</td>
<td>-0.512</td>
</tr>
<tr>
<td></td>
<td>A_r (L/g)</td>
<td>546.934</td>
<td>-738.674</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.634</td>
<td>0.989</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubinin-Radushkevich</td>
<td>β (K_{DR})</td>
<td>1.474</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td>E (kJ/mol)</td>
<td>0.582</td>
<td>1.355</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.701</td>
<td>0.888</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flory-Huggins</td>
<td>n_{FH}</td>
<td>5.910</td>
<td>-4.131</td>
</tr>
<tr>
<td></td>
<td>K_{FH}</td>
<td>3.262×10^{13}</td>
<td>1.985×10^{11}</td>
</tr>
<tr>
<td></td>
<td>ΔG^o</td>
<td>763.284</td>
<td>-604.486</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.701</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fowler-Guggenheim</td>
<td>K_{FG}</td>
<td>8.637×10^{-8}</td>
<td>9.257×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>17.810</td>
<td>-11.622</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.689</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hill-Deboer</td>
<td>K_1</td>
<td>4.108</td>
<td>1.477×10^{13}</td>
</tr>
<tr>
<td></td>
<td>K_2</td>
<td>4136.197</td>
<td>-1187.104</td>
</tr>
<tr>
<td></td>
<td>R^2</td>
<td>0.698</td>
<td>0.968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jovanovic</td>
<td>K_1</td>
<td>-0.123</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Q_{max}</td>
<td>1072.986</td>
<td>257.516</td>
</tr>
</tbody>
</table>
In the previous explanation, a summary can be made regarding the suitability of the model for various sizes of carbon particles from mangosteen peel by looking at the results of fitting $R^2 > 0.80$, as follows:

i. Small-size carbon (500 μm) has the order of best fit of the adsorption model: Langmuir > Harkin-Jura.

ii. Large-size carbon (1000 μm) has the order of best fit of the adsorption model: Hill-Deboer > Flory-Huggins > Fowler-Guggenheim.

iii. Large-size carbon (2000 μm) has the order of best fit of the adsorption model: Freundlich > Flory-Huggins > Fowler-Guggenheim.

Based on the results of the adsorption model suitability for various particle sizes, the adsorption mechanism can be explained. Details of the proposed adsorption mechanism based on the adsorption isotherm model are illustrated in Figures 4(a) and 4(b). During the adsorption process, when the carbon particles are small in size (500 μm), they form a monolayer system that is favorable for physisorption, filling the pores with many active sites, and repulsive interactions between the adsorbates. Meanwhile, the adsorption process of large particles (1000 and 2000 μm) studied is forming a multilayer system that is advantageous in terms of physisorption, pore filling of many active sites, and repulsive interactions between adsorbates. Formation of a monolayer that occurs without any interaction between adsorbed molecules and has the same energy on the surface (without any transmigration from the adsorbate). Meanwhile, multilayer adsorption occurs due to the heterogeneous distribution of energy in the active site of the adsorbent. Adsorption that occurs after the formation of monolayers and multilayers occurs due to the binding energy of the physisorption characteristics caused by the presence of Van der Waals forces, while geometric irregularities and energy inhomogeneity of the surface profile are the main causes for the formation of single layers [46]. In this study, the adsorption process requires external energy to take place properly. The formation of a monolayer on adsorption using small-sized carbon is caused by the small-sized carbon not providing enough active sites (such as the absence of a pore structure on the surface) for the adsorbate. Meanwhile, in large-sized carbon, the formation of multilayers is due to the presence of a pore-filling mechanism in the adsorbent surface. Based on the ten findings, the difference in particle size affects the maximum adsorption capacity. Small-size carbon has a larger maximum capacity value. Conversely, large carbon has a small maximum capacity value. This is because smaller particles have a larger surface area so they can provide more adsorption sites [47]. To confirm and prove that small-sized carbon particles have a larger q_{max} following the experiments, it is necessary to provide an adsorption equilibrium curve that measures the surface area of the adsorbent. Studies on adsorbent modification, leaching phenomena, lyophilic and lyophobic appearances, interfacial phenomena (roughness and contact angle), and comparative studies in the same field with other modified adsorbents were not carried out in this study. However, these studies will be carried out in future research.
Fig. 4. Adsorption mechanism for particle size adsorbents of 500 (a) and 1000 and 2000 µm (b)

5. Conclusion

Carbon characteristics of mangosteen peel used to adsorb curcumin molecules (as an adsorbate model) have been successfully analyzed. Differences in particle size have been studied to find out the suitability of adsorption isotherm models and adsorption mechanisms. The isotherm model is suitable for small-size carbon (500 µm), such as Langmuir and Harkin-Jura. For the large-sized carbon with sizes of 1000 µm, the order of the suitable adsorption model is following Hill-Deboer, Flory-Huggins, and Fowler-Guggenheim, sequentially. For the large-sized carbon with sizes of 2000 µm, the order of the suitable adsorption model is Freundlich, Flory-Huggins, and Fowler-Guggenheim, sequentially. The mechanism of small carbon particles occurs in the adsorption process forming a monolayer surface mechanism. For large carbon particles, it forms a multilayer surface mechanism. During the adsorption process, the favorable physical adsorption process takes place non-spontaneously with pore filling and requires external energy. Small-sized carbon does not provide enough active sites (such as the absence of a pore structure on the surface) for the adsorbate, leading to the creation of monolayer adsorption during adsorption. In large-sized carbon, the pore-filling mechanism in the adsorbent surface cause multilayer development. This research is important to understand the application of adsorption by observing the phenomena that occur during the process.

Acknowledgment
This study was supported by Universitas Pendidikan Indonesia (Grant: Bangdos).

References

