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The study of solitons and compactons is important in nonlinear physics. In this paper we 
combined the Adomian polynomials with the multi-step approach to present a new 
technique called Multi-step Modified Reduced Differential Transform Method (MMRDTM). 
The proposed technique has the advantage of producing an analytical approximation in a 
fast converging sequence with a reduced number of calculated terms. The MMRDTM is 
presented with some modification of the Reduced Differential Transformation Method 
(RDTM) with multi-step approach and its nonlinear term is replaced by the Adomian 
polynomials. Therefore, the nonlinear initial value problem can easily be solved with less 
computational effort. Besides that, the multi-step approach produces a solution in fast 
converging series that converges the solution in a wide time area. Two examples are 
provided to demonstrate the capability and benefits of the proposed method for 
approximating the solution of NKdVEs with compactons. Graphical inputs are used to 
represent the solution and to demonstrate the precision and validity of the MMRDTM in 
graphic illustration. From the results, it was found that it is possible to obtain highly 
accurate results or exact solutions by using the MMRDTM. 
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1. Introduction 
 

The Korteweg–de Vries (KdV) equation is a seminal model in fluid mechanics [1]. The KdV 
equation is used to simulate a variety of nonlinear phenomena, including ion acoustic waves in 
plasmas [2], pattern formation in liquid drops [3] and shallow water waves [4]. Shallow water wave 
equations commonly used in oceanography and atmospheric science [5]. The KdV equation was 
originally derived to describe shallow water waves of long wavelength and small amplitude. The KdV 
equation is introduced as follows [4], 
 
𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0.                                                                                                                                       (1) 
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The derivative 𝑢𝑡  describes the time evolution of a wave propagating in one direction, the 
nonlinear term 𝑢𝑢𝑥 describes the wave's steepening, and the linear term 𝑢𝑥𝑥𝑥 accounts for the 
wave's spreading or dispersion. The nonlinear steepening of the water wave can be balanced by 
dispersion.  

Due to the balance between the nonlinear convection 𝑢𝑢𝑥 and the linear dispersion 𝑢𝑥𝑥𝑥 the KdV 
equation (1) leads towards solitons. Soliton is a localised wave with an infinite support, or an 
exponentially winged localised wave. After mutual collision, solitons maintain their identities. This 
means that a soliton has particle-like properties. Solitary wave solutions were obtained for hyperbolic 
partial differential equations in [6-9] while exact solution for wave equations were obtained in 
literatures [10-15]. Solitary-wave special solutions with compact support for the nonlinear dispersive 
were discussed in [16-20]. Solitary waves emerge at the variable topographic effects on the evolution 
of the internal undular bores of depression [21]. Mun Hoe et al., [22] also investigated the effect of 
rapidly varying topography by using mathematical model of the variable-coefficient extended KdV. 
In addition to low waves along the beaches, the KdV equation and its solitary wave solution also apply 
to internal ocean waves. Internal waves are slower waves with great amplitude in the open ocean 
that travel through the interface of layers of various densities [5]. 

Contrasting to solitons, a compacton is a special solitary traveling wave that does not have 
exponential tails. In studying the role of nonlinear dispersion in liquid drops pattern 
formation, 𝐾(𝑛, 𝑛) has been found as a simplified model and also proposed in the analysis of liquid 
surface patterns. Compact solutions have also been identified in applications such as the long 
nonlinear surface waves in a rotating ocean when the high-frequency dispersion is null, the pulse 
propagation in the ventricle aorta system, dispersive models for magma dynamics, or even particle 
wave functions in nonlinear quantum mechanics. The propagation of compacton-like kinks in 
nonlinear lattices has been found using mechanical, electrical, and magnetic analogues. 

Compactons, also known as solitons with compact support or strict localization of solitary waves, 
was recently introduced by Wazwaz [16]. He [16] investigated the role of nonlinear dispersion in the 
formation of patterns in liquid drops and developed a genuinely nonlinear dispersive equation 
𝐾(𝑚, 𝑛), a special type of the KdV equation. The proposed 𝐾(𝑚, 𝑛)  equation as stated by Rosenau 
and Hyman [3], which is a generalisation of the KdV equation has the form 𝑢𝑡 + (𝑢𝑚)𝑥 + (𝑢𝑛)𝑥𝑥𝑥 =
0 , 𝑚 > 0 ,1 ≤ 𝑛 ≤ 3 , 𝑡 > 0. Compactons are solitary waves with exact compact support that are 
referred as compactons. Unlike the soliton, which narrows as the amplitude increases, the width of 
the compacton is independent of the amplitude. 

There are many effective and powerful methods for approximate analytical solution that have 
been developed and improved. For instance, the Adomian Decomposition Method (ADM), Homotopy 
Perturbation Method (HPM), Homotopy Analysis Method (HAM), Variation Iteration Method (VIM), 
Hirota’s Bilinear Method, Balance Method, Inverse Scattering Method, and Differential Transform 
Method (DTM). However, Ray [23] developed and introduced a modification to the fractional RDTM 
in order to solve fractional KdV equation. The modification in this method includes the replacement 
of the nonlinear term by relating Adomian polynomials. As a consequence, the solutions to the 
nonlinear problem can be obtained in a more straightforward manner with less computed terms. El-
Zahar [24] later implemented an adaptive multi-step DTM to solve singular perturbation initial-value 
problems. It generates a solution in a rapidly convergent sequence that is converging over a large 
time span. This paper proposed these two methods in solving KdV equations in application of pattern 
formation liquid drop.  

Multistep Modified Reduced Differential Transform Method (MMRDTM) for solving NLSEs is 
proposed by Che Hussin et al., [25]. In addition, the MMRDTM also was experimentally tested to 
approximate the Klein-Gordon equations[26]. Later, Che Hussin et al., [27] applied the MMRDTM to 
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obtain the approximate solution of fractional NLSEs.  Che Hussin et al., [28] also solved the nonlinear 
KdV equation by using MMRDTM. Recently, MMRDTM was applied to obtain NLSE with power law 
nonlinearity by Che Hussin et al.[29]. The results of the approximation are obtained with a smaller 
number of calculated terms and with high precision. Furthermore, the findings converge over a large 
time frame in a shorter period of time. 

The modification by implementing Adomian polynomials and the multistep method are combined 
in this paper to perform the MMRDTM for solving KdV equations with compact support in application 
of pattern formation liquid drop. Furthermore, we use parametrization methods to generate 
Adomian polynomials without the need for time-consuming high-derivative calculations [30]. The 
proposed technique will quickly produce a fast-convergent sequence of analytical approximations. 
As a consequence, the solutions converge over a wide time period. Simultaneously, the number of 
computed terms is greatly decreased. 
 
2. The Development of Multistep Modified Reduced Differential Transform Method   
 

Original functions are denoted by lowercase letters, such as the letter 𝑢 in the function 𝑢(𝑥, 𝑡), 
while transformed functions are denoted by uppercase letters, such as the letter 𝑈 in the function 
𝑈𝑘(𝑥). The differential transformation of the function 𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡) is obtained as follows [31],  
 

 𝑢(𝑥, 𝑡) = ∑ 𝐹(𝑖)𝑥𝑖 ∑ 𝐺(𝑗)𝑡𝑗 = ∑ 𝑈𝑘

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(𝑥)𝑡𝑘, 

 
where 𝑈𝑘(𝑥) is known as the function of 𝑢(𝑥, 𝑡). Some basic properties of RDTM are defined in the 
following descriptions.  
 

Definition 1: For an analytically and continuously differential function  𝑢(𝑥, 𝑡) with respect to time 
𝑡 and space variable 𝑥, the differential transformation of  𝑢(𝑥, 𝑡) is defined by,  
 

𝑈𝑘(𝑥) =  [
𝜕𝑘

𝜕𝑡𝑘
𝑢(𝑥, 𝑡)]

𝑡=0

,                                                                                                                                (2) 

 
where 𝑈𝑘(𝑥) is the transformed function.  
 

Definition 2. The inverse transform of 𝑈𝑘(𝑥) is given by, 
 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

∞

𝑘=0

.                                                                                                                                      (3) 

 
By combining equations (2) and (3), the following equation is obtained, 
 

𝑢(𝑥, 𝑡) = ∑
1

𝑘!
[

𝜕𝑘

𝜕𝑡𝑘 𝑢(𝑥, 𝑡)]
𝑡=0

𝑡𝑘∞
𝑘=0 .                                                                                                              (4)                          

  
Consider the following nonlinear PDE to represent the RDTM's core features, 

 
𝐷𝑢(𝑥, 𝑡) + 𝑃𝑢(𝑥, 𝑡) + 𝑄𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡),                                                                                                          
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where 𝑢(𝑥,  0) = 𝑓(𝑥) is the initial condition. Note that, 𝐷 =
𝜕

𝜕𝑡
 and 𝑃 is the remaining part of a linear 

operator. The nonlinear and inhomogeneous terms are represented as 𝑁𝑢(𝑥, 𝑡) and ℎ(𝑥, 𝑡) 
respectively.  

The iteration formula can be derived from the MMRDTM as follows: 
 
(𝑘 + 1)𝑈𝑘+1(𝑥) = 𝐻𝑘(𝑥) − 𝑃𝑈𝑘(𝑥) − 𝑁𝑈𝑘(𝑥).                                                                                         (5) 
 

The functions 𝐷𝑢(𝑥, 𝑡), 𝑃𝑢(𝑥, 𝑡), 𝑁𝑢(𝑥, 𝑡) and ℎ(𝑥, 𝑡)  are transformed and then represented as 
𝑈𝑘(𝑥), 𝑃𝑈𝑘(𝑥), 𝑁𝑈𝑘(𝑥) and 𝐻𝑘(𝑥) respectively. We have 
 
𝑈0(𝑥) = 𝑓(𝑥).                                                                                                                                                      (6) 

 
From the initial condition. Referring to Ray, the nonlinear term is denoted as follows [23], 
 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥))

∞

𝑛=0

. 

 
Recently, Kataria and Vellaisamy proposed a novel method for calculating the Adomian 

polynomials [30], 
 

𝐴0 = 𝑁(𝑈0(𝑥)), 

 

𝐴𝑛(𝑈0(𝑥), 𝑈1(𝑥), … , 𝑈𝑛(𝑥)) =
1

2𝜋
∫ 𝑁 (∑ 𝑈𝑘(𝑥)𝑒𝑖𝑘𝑥

𝑛

𝑘=0

)
𝜋

−𝜋

𝑒−𝑖𝑛𝜆 𝑑𝜆,     𝑛 ≥ 1. 

 
It can be observed that the algorithm does not involve tedious calculations with high derivatives. 

By combining equations (5) and (6), the 𝑈𝑘(𝑥) values can be obtained through iterative calculation. 
Furthermore, the set of values {𝑈𝑘(𝑥)}𝑘=0

𝑛  of the inverse transformation produces the approximate 
solution as follows,  
 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘

𝐾

𝑘=0

,               𝑡 ∈ [0, 𝑇]. 

 
For 𝑚 = 1,2, … , 𝑀, divide the interval [0, 𝑇] is into 𝑀 subintervals [𝑡𝑚−1, 𝑡𝑚] by equal step size  

𝑠 =
𝑇

𝑀
  and nodes 𝑡𝑚 = 𝑚𝑠. The following steps are used to calculate MMRDTM. Firstly, apply 

modified RDTM to the initial value problem of interval [0, 𝑡1]. Then by using the initial conditions  
 
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢1(𝑥, 0) =  𝑓1(𝑥), 

 
The approximate result 

 

𝑢1(𝑥, 𝑡) = ∑ 𝑈𝑘,1(𝑥)𝑡𝑘,            

𝐾

𝑘=0

𝑡 ∈ [0, 𝑡1] 
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is obtained. At each subinterval [𝑡𝑚−1, 𝑡𝑚], the initial conditions 
  
𝑢𝑚(𝑥, 𝑡𝑚−1) = 𝑢𝑚−1(𝑥, 𝑡𝑚−1),   
 
(𝜕 𝜕𝑡⁄ )𝑢𝑚(𝑥, 𝑡𝑚−1) = (𝜕 𝜕𝑡⁄ )𝑢𝑚−1(𝑥, 𝑡𝑚−1), 
 
are used for 𝑚 ≥ 2 and the multistep RDTM is implemented to the initial value problem on 
[𝑡𝑚−1, 𝑡𝑚], where 𝑡0 is replaced with 𝑡𝑚−1. To produce a sequence of approximate solutions 𝑢𝑚(𝑥, 𝑡) 
the step is performed and carried out repeatedly for 𝑚 = 1,2, … , 𝑀, such as,  
 

𝑢𝑚(𝑥, 𝑡) = ∑ 𝑈𝑘,𝑚(𝑥)(𝑡 − 𝑡𝑚−1)𝑘,        

𝐾

𝑘=0

𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚]. 

  
Finally, MMRDTM proposes the following solutions 

 

𝑢(𝑥, 𝑡) = {

𝑢1(𝑥, 𝑡), for 𝑡 ∈ [0, 𝑡1]          

𝑢2(𝑥, 𝑡), for 𝑡 ∈ [𝑡1, 𝑡2]        
⋮   

𝑢𝑀(𝑥, 𝑡), for 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀].

 

 
With better computing performance, the new algorithm MMRDTM is straightforward for all 

values of 𝑠. Note that, the MMRDTM reduces to the modified RDTM once the step size 𝑠 = 𝑇. 
 
3. Results  
3.1 Numerical Example 1 
 

Consider nonlinear KdV equations as follows [23] 
 
𝑢𝑡 +  𝑢2

𝑥 +  𝑢2
𝑥𝑥𝑥 = 0,                                                                                                                                     (7) 

 
Subject to initial conditions 
 

𝑢(𝑥, 0) =
4

3
𝑐 cos2 (

𝑥

4
). 

 

The exact solution is 
4

3
𝑐 cos2 (

𝑥−𝑡

4
) where 𝑐  is a constant.  

Using basic properties of MMRDTM and then applying MMRDTM to Equation (7), we can obtain 
  

 𝑈𝑘+1,𝑖(𝑥) = (
1

(𝑘+1)
) (−

𝜕

𝜕𝑥
(𝐴𝑘,𝑖(𝑥)) −

𝜕3

𝜕𝑥3 (𝐴𝑘,𝑖(𝑥))).                                                                            (8)  

 
From initial condition, we write when 𝑐 = 1, 

𝑈0(𝑥) =
4

3
 cos2 (

𝑥

4
).                                                                                                                                         (9) 

 
Now write first four examples of the nonlinear term as 
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𝐴0 = 𝑈0
2(𝑥), 

𝐴1 = 2𝑈0(𝑥)𝑈1(𝑥), 
𝐴2 = 2𝑈0(𝑥)𝑈2(𝑥) + 𝑈1

2(𝑥), 
𝐴3 = 2𝑈0(𝑥)𝑈3(𝑥) + 2𝑈1(𝑥)𝑈2(𝑥). 
 

For these nonlinear terms, we use general form of formula  𝐴𝑛 Adomian polynomials. We 
calculate these Adomian polynomials formula by using Maple 13. 

Replacing Equation (9) into Equation (8) and through iterative calculation, the 𝑈𝑘(𝑥) values can 
be obtained. Next, set of values {𝑈6(𝑥)}𝑘=0

6  of the inverse transformations gives the 6-terms 
approximate solution as follows, 
 

𝑢1(𝑥, 𝑡) =
4

3
cos (

1

4
𝑥)

2

+  
2

3
cos (

1

4
𝑥) sin (

1

4
𝑥) 𝑡 + (

1

12
−

1

6
cos (

1

4
𝑥)

2

) 𝑡2

− (
1

36
cos (

1

4
𝑥) sin (

1

4
𝑥)) 𝑡3 … ,    𝑡 ∈ [0,0.1]. 

 
𝑢2(𝑥, 𝑡) = 1.3317cos(0.25)2 +  0.0666 cos(0.25 𝑥) sin(0.25𝑥) + 0.0008

+ (−6 × 10−10cos(0.25)3𝑠𝑖𝑛(0.25𝑥) − 0.0333cos(0.25)2

+ 2.5328 × 10−11cos(0.25)4 + 0.6658 cos(0.25 𝑥) sin(0.25𝑥) + 0.0166)(𝑡
− 0.1) … ,    𝑡 ∈ [0.1,0.2]. 

 
𝑢3(𝑥, 𝑡) = 1.3267cos(0.25)2 +  0.1331 cos(0.25 𝑥) sin(0.25𝑥) + 0.0033

+ (−0.0666 cos(0.25)2 + 1.99 × 10−11cos(0.25)4

+ 0.6633 cos(0.25 𝑥)sin(0.25𝑥) + 0.0333)(𝑡 − 0.2) …     𝑡 ∈ [0.2,0.3]. 
 

By using the nodes 𝑡𝑖 = 𝑚ℎ, divide the interval [ 0,2 ] into 20 subintervals [𝑡𝑚−1, 𝑡𝑚], 𝑚 =
1,2, … ,20, equally sized with ℎ = 0.1. Then, follow the multi-step scheme for approximate solution. 

Figure 1 shows the exact solution, Figure 2 shows graph of approximate solution MMRDTM for 
𝑡 ∈ [0,2] and 𝑥 ∈ [0,1] while Figure 3 shows graph of approximate solution MRDTM for 𝑡 ∈ [0,2] and 
𝑥 ∈ [0,1]. Therefore, obviously the multi-step approximate solutions for this type of nonlinear KdV 
equations obtained the exact solutions. The performance error analyses obtained by MMRDTM are 
summarized in Table 1 for 𝑥 = 1.  
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Fig. 1.   Exact solution for Example 1 Fig. 2.   MMRDTM for Example 1 

 

 
Fig. 3.   MRDTM for Example 1 

Table 1 
Comparison error results of MMRDTM and MRDTM for Example 1 
t Exact Solution Absolute Error 

MMRDTM 
Absolute Error 
MRDTM 

0.1 1.266964735 0.000 1.000 × 10−9 
0.2 1.280707329 0.000 1.000 × 10−9 
0.3 1.292915142 1.000 × 10−9 0.000 

0.4 1.303557659 0.000 1.000 × 10−9 

0.5 1.312608281 1.000 × 10−9 4.000 × 10−9 

0.6 1.320044385 2.000 × 10−9 1.300 × 10−8 

0.7 1.325847385 1.000 × 10−9 3.800 × 10−8 

0.8 1.330002777 1.000 × 10−9 9.500 × 10−8 

0.9 1.332500174 2.000 × 10−9 2.120 × 10−7 

1.0 1.333333333 0.000 4.380 × 10−7 

1.1 1.332500174 1.000 × 10−9 8.400 × 10−7 
1.2 1.330002777 0.000 1.524 × 10−6 
1.3 1.325847385 2.000 × 10−9 2.631 × 10−6 

1.4 1.320044385 3.000 × 10−9 4.355 × 10−6 

1.5 1.312608281 3.000 × 10−9 6.956 × 10−6 

1.6 1.303557659 3.000 × 10−9 1.077 × 10−5 

1.7 1.292915142 2.000 × 10−9 1.621 × 10−5 

1.8 1.280707329 3.000 × 10−9 2.380 × 10−5 

1.9 1.266964735 3.000 × 10−9 3.421 × 10−5 

2.0 1.251721708 3.000 × 10−9 4.819 × 10−5 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 88, Issue 1 (2021) 24-34 

 

31 
 

3.2 Numerical Example 2 
 

Next, consider nonlinear KdV equations as follows [23]: 
 
𝑢𝑡 − 3( 𝑢2)𝑥 +  𝑢2

𝑥𝑥𝑥 = 0,                                                                                                                            (10) 
 
Subject to initial conditions  
 
𝑢(𝑥, 0) = 6𝑥. 
 

The exact solution is 
6𝑥

1−36𝑡
. 

 
Using basic properties of MMRDTM and then applying MMRDTM to Equation (10), will obtain  

 

  𝑈𝑘+1,𝑖(𝑥) = (
1

(𝑘+1)
) (3

𝜕

𝜕𝑥
(𝐴𝑘,𝑖(𝑥)) −

𝜕3

𝜕𝑥3 (𝐴𝑘,𝑖(𝑥))),                                                                         (11)  

 
with transformed initial condition 
 
𝑈0(𝑥) = 6𝑥.                                                                                                                                                        (12) 
 

The solution in Equation (10), becomes the exact Solitary Wave solution.  Next, set of values 
{𝑈6(𝑥)}𝑘=0

6  of the inverse transformations gives the 6-terms approximate solution as follows, 
 
𝑢1(𝑥, 𝑡) = 6𝑥 + 216𝑥𝑡 + 7776𝑥𝑡2 + 279936𝑥𝑡3 + 10077696𝑥𝑡4 + 362797056𝑥𝑡5

+ 13060694016𝑥𝑡6,        𝑡 ∈ [0,0.1]. 
 
𝑢2(𝑥, 𝑡) = −2.308𝑥 + 31.953𝑥(𝑡 − 0.1) − 442.421𝑥(𝑡 − 0.1)2 + 6125.84𝑥(𝑡 − 0.1)3

− 84819𝑥(𝑡 − 0.1)4 + 1.17 × 106𝑥(𝑡 − 0.1)5 − 1.626 × 107𝑥(𝑡 − 0.1)6,    𝑡
∈ [0.1,0.2] 

 
𝑢3(𝑥, 𝑡) = −0.967𝑥 + 5.619𝑥(𝑡 − 0.2) − 32.627𝑥(𝑡 − 0.2)2 + 189.448𝑥(𝑡 − 0.2)3

− 1100𝑥(𝑡 − 0.2)4 + 6387𝑥(𝑡 − 0.2)5 − 37087𝑥(𝑡 − 0.2)6,        𝑡 ∈ [0.2,0.3]. 
 

Figure 4 shows the exact solution, Figure 5 shows graph of approximate solution MMRDTM for 
𝑡 ∈ [0,2] and 𝑥 ∈ [0,1] while Figure 6 shows graph of approximate solution MRDTM for 𝑡 ∈ [0,2] and 
𝑥 ∈ [0,1]. Therefore, it shows that the multi-step approximate solutions of MMRDTM and MRDTM 
for this type of nonlinear KdV equations have good agreement with the exact solution.  
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Fig. 4. Exact solution for Example 2 

 

 
Fig. 5.   MMRDTM for Example 2 

 
Fig. 6.   MRDTM for Example 2 

 
4. Conclusions 
 

Compactons are used in many fields of physics and scientific applications. In order to examine the 
role of nonlinear dispersion in pattern formation in the liquid drops, 𝐾(𝑛, 𝑛) was developed as a 
simplified model [3]. Equations with Compact Solutions also found applications such as fluid 
mechanics, thin viscous film lubrication approximation [3], Bose Einstein condensates, long non-
linear surface waves in rotating ocean when the high-frequency dispersion is null, ventricle aorta 
pulse propagation, magma dynamic dispersive models or, particle wave functions in nonlinear 
quantum mechanics [3]. The series of solutions of NKdV equations of compacton using MMRDTM is 
successfully applied in this paper. We compared the obtained solutions with exact solutions and 
MRDTM. The improvement is made by substituting the nonlinear term for its Adomian polynomials 
and adapting a multi-step approach. The obtained results verified that the approximate solutions of 
NkdV equations with compact support are obtained with high accuracy. As a conclusion, the 
MMRDTM is more effective, consistent, and precise than the MRDTM in obtaining an analytic 
approximate solution for these types of equations. All computations in this paper had been carried 
out by using Maple 13. 
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