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The study focuses on estimating thermodynamic characteristics at constant pressure for 
ambient air as a working fluid for gas turbines. The objective of this paper is to carry out a 
thermodynamic analysis of the properties of air as a working gas for a power plant.  
Various values of relative humidity, as well as temperatures, were examined in this study. 
Code was written using EES (Engineering Equations Solver) to conduct the simulation. This 
code contains the necessary equation to compute the thermodynamic characteristics of 
the working fluid. According to the results, both temperature and relative humidity 
remarkably influence the specific heat capacity (C_p), isentropic exponent (γ_h) as well as 
the gas constant of air (R_h). According to the results, when the ambient air temperature 
is increased from 0 to 45 ℃ with constant relative humidity values of either 10% or 90%, 
the specific heat capacity increases by 5.01% and 17.6%, respectively. Furthermore, the 
isentropic exponent decreases by 1.07% and 4.5%, respectively.  The results show that the 
gas constant of air increases with ambient air temperature and relative humidity. One can 
conclude that the ambient conditions have considerable influence on the thermodynamic 
characteristics of a gas turbine working fluid. 
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1. Introduction 
 

A gas turbine is a heat engine in which hot flue gases produced by burning fuel, drive a turbine 
that is used to generate power. Every GT has  three basic components, an air compressor, a turbine 
and a combustion chamber [1-4]. The turbine shaft is connected to a generator, which produces 
electrical energy through the rotation of an electrical generator shaft [5-8]. Gas turbines are essential 
for the production of energy, marine power plants, and airplanes [9-13]. They are an important 
component of every combined cycle power plant. 

Gas turbine power output and efficiency can be utilized to evaluate its performance. Both are 
significantly influenced by the intake air temperature and relative humidity. A gas turbine's 
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compressor is designed to work with a constant ambient air volume flow [14-17]. The mass flow rate 
into the turbine drops as the temperature of the surrounding air increases [18-22]. 

 Reduced air mass flow directly impacts a gas turbine's power generation capability. Additionally, 
the specific compressor work is increased when the inlet air temperature is elevated [23-25]. 
Furthermore, increased temperature causes a decreased air density, which increases the heat rate 
and thus specific fuel consumption [26-27]. 

Several researchers studied how the environment affects gas turbine performance. In the 
Kingdom of Saudi Arabia, where gas turbines produce more than 50% of the total capacity, Saleh et 
al., [28] examined the impact of ambient air conditions on gas turbine performance. In Ad Dammam, 
the ambient temperature can reach 45 oC, resulting in output power losses that can reach 16,139 
kW. In Riyadh, the temperature can reach 43.87 oC, resulting in a maximum power loss of 15,246 kW 
in July.  Alternatively, the maximum power gain is 4,220 kW when the temperature is 8.9 oC. A typical 
gas turbine performance operating in India was investigated by Mohd Saif et al., [29] over a wide 
variety of ambient temperatures and pressure ratios. They found a 3.28% loss in thermal efficiency 
when the outside air temperature was increased from 283 K to 323 K. These losses increased by up 
to 3.97% with increased pressure ratios. Furthermore, it was found that a loss in net power of 3.87% 
occurs when the ambient temperature increases from 283 K to 323 K, and this loss increases to 4.46% 
with higher pressure ratios. In many different regions of Turkey, Hasan Erdem et al., [30] utilized two 
models to investigate the effects of inlet air temperature on the energy output and fuel consumption 
of a typical gas turbine. They observed production losses in all locations with outside temperatures 
greater than 15 oC. This loss is between 2.87–0.71% in comparison with nominal production. 
Additionally, they reported that when cooling inlet air temperature is reduced to 10 oC, the output 
power is augmented by 0.37–7.59%. Wan et al., [31] analyzed gas turbine performance under various 
temperatures considering the thermal characteristics of different working fluids. Their results 
showed that power generation decreased by 22.6% and efficiency decreased by 57.28% as ambient 
air temperatures changed from 5 to 35 oC. Additionally, the output of steam and gas turbines both 
dropped by 17.0% and 16.2%, respectively. A thermodynamic impact of intake air cooling systems 
was done by Sanjay et al., [32]. He discovered that a simple gas turbine has lower net power output 
than an inlet air-cooled gas turbine. Furthermore, less work is required for compression when the air 
is cooler.  Additionally, plant efficiency was improved by 4.88% and plant work increased by 14.77%. 
Enhancing micro-gas turbine performance was done by Comodi et al., [33] using an inlet air cooling 
vapor compression technique. The outcomes demonstrated a significant increase in electric power, 
exceeding 14 kWe. Alnasur et al., [34] applied a fog system to cool air. This system enhanced output 
power by 25000-22000 kV h. Moreover, the thermal efficiency increases to 0.26. Majdi Yazdi et al., 
[35] documented the effect of using inlet fogging, an absorption chiller, as well as heat pump systems 
to improve the performance by means of cooling inlet air in four different areas. According to their 
findings, inlet air conditioning systems may increase power output. Ehyaei et al., [36] demonstrated 
that using turbine inlet air cooling methods improves turbine performance. According to their results, 
gas turbine power was increased while fuel consumption was reduced. In the current research, the 
effects of ambient conditions are studied for a single shaft turbine. Results for net power, thermal 
efficiency and specific fuel consumption were measured. In a study by Alaa et al., [37], the 
performance of a gas turbine was simulated thermodynamically and tested for a base case without 
any turbine inlet cooling systems and compared with the performance using evaporative cooler and 
absorption chiller. The results showed that a cooling system for the plant is needed to improve the 
performance. Moein et al., [38] carried out an exergy, exergoeconomic, and exergoenvironmental 
investigation of a gas turbine plant. Using an MOPSO algorithm, they documented that the ambient 
temperature has a significant influence on the exergy performance. Mohammad Reza Majdi Yazdi et 
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al., [39] carried out a comparison of gas turbine air cooling systems for several cities in Iran using 
exergy, energy, economic, as well as environmental analyses. Despite the important results achieved, 
they neglected the effects of relative humidity on the heat capacity of air. 

Although the temperature effects on gas turbine performance, such as power output and thermal 
efficiency, have been extensively studied, previous investigations did not examine the impacts of 
environmental factors on the thermodynamic characteristics of air, especially the specific heat 
capacity (𝐶𝑝), isentropic exponent (𝛾ℎ ) and the gas constant of air (𝑅ℎ). Previous studies considered 

these values constant. However, they change in varying degrees according to different operating 
conditions. Additionally, previous studies took the effect of relative humidity on the mass flow value 
into account, but neglected the effect of relative humidity on other thermodynamic properties. 
Therefore, the aim of this study is to determine to what extent the thermodynamic properties of air 
can be considered constant and to what extent these properties are affected by relative humidity 
and temperature. In the current study, we present a thermodynamic analysis of the properties of air 
as a working gas for a power plant. Operating parameters of the active gas turbine used in the city of 
Jandar, in Syria, are simulated to evaluate the effect of ambient conditions on the values of 
𝐶𝑝, 𝛾ℎ, and 𝑅ℎ.  Furthermore, the influence of ambient temperature and humidity is evaluated using 

a commercial computer program. 
 

2. Mathematical Modelling 
 
In general, specific heat capacity is an important physical property employed in thermodynamic 

estimates. Its determination involves calculating the change in gas specific enthalpy and determining 
the adiabatic exponent, among other parameters [40]. Specific heat, 𝐶𝑝, is constant throughout the 

thermodynamic processes in an ideal gas thermodynamic cycle. In practice, the specific heat changes 
depending on the operation to which it is being subjected, such as compression, heat addition, and 
expansion. In other words, the specific heat can be defined as the thermal energy needed to raise 
the temperature of a unit mass by one degree. Additionally, it represents heat storage and can be 
used to measure of a material’s ability to store thermal energy [41]. The changes in the internal 
energy as well as enthalpy of a fluid during a process can be computed by utilizing specific heat values 
at the average temperatures.  

As illustrated in Eq. (1), the specific heat for air can be written as a polynomial function of 
temperature. 
 

𝐶𝑝 = 𝑎 + 𝑏 (
𝑇

100
) + 𝑐 (

𝑇

100
)

−2

                                                    (1) 

 
where 𝑇 is temperature in 𝐾, while 𝑎, 𝑏 and 𝑐 are constants for a given gas. Their values are listed in 
Table 1. 𝐶𝑝is the specific heat at constant pressure with units of J/kg K. It can be seen from this 

equation that the specific heat capacity of dry air is only dependent on the temperature. 
       Table 2 shows the gravimetric or mass analysis composition of dry air.  To calculate the specific 
heat, 𝐶𝑝, of air at a given temperature, Eq. (2) is used for each component of air employing the 

appropriate constants a, b, and c, which are given above. The specific heat, 𝐶𝑝, of air at a given 

temperature is then calculated as 
 
𝐶𝑝 = 0.7553 ×  𝐶𝑝.𝑁2  +  0.2314 ×  𝐶𝑝.𝑂2  +  0.0128 × 𝐶𝑝.𝐴𝑅 +  0.0005 ×  𝐶𝑝.𝐶𝑂2     (2) 
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where  𝐶𝑝.𝑁2 , 𝐶𝑝.𝑂2 , 𝐶𝑝.𝐴𝑅 and 𝐶𝑝.𝐶𝑂2 are the specific heats for N2, O2, Ar and CO2 at a specified 

temperature, respectively, and are estimated with Eq. (1) using data from in Table 1. 
                  

Table 1   
Constants for evaluating the specific heat of air [42] 

Molecular weight C B A Coefficients              

31.999 –523 13.1 936 O2 
28.013 –179 13.4 1020 N2 
18.030 0 57.1 1695 H2O 
44.010 –1959 20.0 1005 CO2 
39.948 0 0 521 AR 

 
Table 2 
Gravimetric analysis of dry air 
composition [42] 
Component Mass fraction 

O2 0.2314 
N2 0.7553 
CO2 0.0005 
AR 0.0128 

 
The current study considers the 𝐶𝑝 of dry air. The influence of humidity can be significant at high 

ambient temperatures since air includes water vapor, which must be considered when calculating 
the gas characteristics. The water vapor quantity needed for complete saturation of the air is typically 
used to represent the relative humidity of air. However, relative humidity is defined at a specified 
temperature as the ratio of the actual water vapor pressure of air to the water vapor pressure of 
saturated water. It may be calculated using Eq. (3) 

 

𝜑 =  
𝑃

𝑃𝑠
× 100                                                                                          (3) 

 
where 𝑃 is vapor pressure of water, 𝑃𝑠 is the saturated water vapor pressure and 𝜑 is the percent 
relative humidity. The units for 𝑃 and 𝑃𝑠 are typically millibars (mb). The saturated vapor pressure, 
𝑃𝑠, can be calculated from 

 

𝑃𝑠 = 6,112 × 𝑒
17.67𝑇

𝑇+234.5                                                                                         (4) 
 
where T is the ambient temperature in degrees Celsius. Therefore, the vapor pressure of water vapor 
is estimated given the ambient temperature and relative humidity. 

Calculating gas thermal performance requires knowledge of the mass of water vapor. This is 
computed using the definition of specific humidity, which is the mass of water vapor contained in a 
dry air unit mass as 
 

𝜔 =  
𝑚𝑎𝑠𝑠 𝑣𝑎𝑝𝑜𝑢𝑟

𝑚𝑎𝑠𝑠 𝑎𝑖𝑟
                                                                                     (5) 

 
Eq. (5) can be depicted as the following by applying Dalton's Law of Partial Pressures 
 

𝜔 = 0.622 
𝑃

𝑃𝑎−𝑃
                                                                        (6) 
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where Pa is the ambient pressure in millibars (mb). 
The mass of water vapor is calculated using equations presented in this section knowing its 

relative humidity, ambient pressure, and temperature. This can be considered in the calculations for 
specific heat, where the 𝐶𝑝 for humid air is 

 
𝐶𝑝.ℎ = 𝐶𝑝.𝑑 × 𝑚𝑓𝑎𝑖𝑟 + 𝐶𝑝.𝑤𝑎𝑡𝑒𝑟 × 𝑚𝑓𝑤𝑎𝑡𝑒𝑟                                                     (7) 

 
where 
𝐶𝑝.ℎ = specific heat for humid air at constant pressure. 

𝐶𝑝.𝑑 = specific heat of dry air at constant pressure. 

𝐶𝑝.𝑤 = specific heat of water vapor at constant pressure. 

𝑚𝑓𝑎𝑖𝑟 = quantity of dry air per kilogram of moist air. 
𝑚𝑓𝑤𝑎𝑡𝑒𝑟 = water vapor quantity in a kilogram of humid air. 

 
According to [1], the mass flow rate of humid air is 
 

𝑚̇ℎ.𝑎 =  𝑚̇𝑑.𝑎 +  𝑚̇𝑣                                                                              (8) 
 
where  𝑚̇𝑑.𝑎 is the dry air mass flow, 𝑚̇𝑣 is the water vapor mass flow rate. Psychrometric 
determination of the thermodynamic properties of moist air can be determined under specified dry 
and wet bulb temperatures as well as its relative humidity. 

For specified conditions, the dry air rate is 
 

𝑚̇𝑑.𝑎 =  
𝑉∗𝜌ℎ

(1+ω)
                                                                                    (9) 

 
where 𝜌ℎ  is humid air density and 𝑉 is the volumetric flow rate (243 𝑚3𝑠−1) [1]. Given Eq. (8) 

 
𝑚̇ℎ.𝑎 =  𝑚̇𝑑.𝑎  (1 + ω)                                                                              (10) 

 
The humid-air isentropic exponent, 𝛾ℎ, is 
 

𝛾ℎ =
𝐶𝑝.ℎ

𝐶𝑝.ℎ−𝑅ℎ
                                                                                      (11) 

 
The humid air gas constant, 𝑅ℎ, can be calculated as 
 

𝑅ℎ =  
8.3143

𝑀𝑊ℎ
                                                                                            (12) 

 
where, 𝑀𝑊ℎ is the humid air molecular weight given by [17] 

 

𝑀𝑊ℎ =  
1

(
𝑉𝑓

18.015
)+(

𝐴𝑓

28.79
)
                                                                                (13) 

 
where 𝑉𝑓 is the vapor mass fraction given by 

 

𝑉𝑓 =  
𝜔

𝜔+1
                                                                                          (14) 
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𝐴𝑓 is the dry-air mass fraction 

 
𝐴𝑓 = 1 − 𝑉𝑓                                                                                      (15) 

 
3.  Methodology 

 
The thermodynamic characteristics of a gas turbine working fluid have been analyzed in the 

current work. The influence of ambient conditions on the thermodynamic properties of a gas turbine 
working fluid was investigated using and changing the ambient air temperature and relative humidity 
from 0 to 45 oC and 10%-90%, respectively. A software program, EES (Engineering Equation Solver), 
was utilized in this study for calculations of various parameters. 

EES is a mathematical software package that is widely used to solve thermodynamic problems 
due to its capability of solving non-linear equations, in addition to having a library of precise 
thermodynamic properties of various and diverse working fluids. The program employs known 
mathematical terms for analyzing various thermodynamic phenomena. The computational 
procedure of the program is shown in Figure 1. First, the program reads the inputs for the 
mathematical model. The next step is assuming values of the ambient conditions. After determining 
the psychometric properties of ambient air, the program solves equations [Eq. (1), Eq. (2), Eq. (7), Eq. 
(9), Eq. (11) and Eq. (12)] simultaneously and prints the output. 

 

 
Fig. 1. Flowchart of the simulation steps 
used in the code 
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4. Results  
 
Figure 2 represents the specific heat capacity for the dry air components at a relative humidity of 

60%, which is common value. This figure is a result of Eq. (1) and Eq. (2). In Figure 2, the specific heat 
capacity for dry air components increases with air temperature, as expected. Only the specific heat 
capacity for argon gas remained constant at 0.521 kJ/kg oC from 0 oC to 45 oC. The specific heat 
capacity for O2, CO2 and N2 increased from 901.6, 796.4 and 1030 to 930, 875 and 1045 J/kg oC, 
respectively.  The specific heat capacity of dry air, 𝐶𝑝.𝑑. increased from 995.7 to 1011 J/kg oC, an 

increase of 5.56%.  
 

 
Fig. 2. Heat capacity for dry air components at a relative 
humidity of 60% 

 
Figure 3 and Figure 4 show how ambient air influences wet air's specific heat capacity at relative 

humidity levels of 10% and 90%, respectively. It is notable that at high temperatures, the increased 
specific value is larger. At higher temperatures, air can hold more water vapor. Since water vapor has 
a higher specific heat compared to dry air, a higher specific humidity increases the heat capacity of 
air. It has been found that increasing relative humidity has a remarkable effect on specific heat 
capacity. The results reveal that when the ambient air temperature is increased from 0 to 45 oC at a 
constant relative humidity of 10%, the specific heat capacity increases by 0.05 kJ/kg oC, which 
represents an increase of 5.01%. This behavior can be attributed to a high humidity ratio value, as it 
increased to 0.0191 kg/kg. Moreover, at a relative humidity of 90%, the specific heat capacity 
increases by 0.177 kJ/kg oC, which represents an increase of 17.6%, while the humidity ratio increased 
from 0.0034 to 0.057 kg/kg, an increase of 16.1%. Dry air has a specific humidity 0 kg/kg, so water 
vapor has no effect.  

Increasing Cp will directly increase the specific work of the compressor of the thermal plant since 
it is directly proportional to Cp. Thus, using cooling methods for reducing air temperature results in 
decreased Cp values, hence reducing the compressor specific work.  

0 10 20 30 40 50

500

600

700

800

900

1000

1100

1200

Air temperature (oC)

 H
ea

t 
ca

pa
ci

ty
 (

J/
kg

.C
)

 CpAR         CpCO2

 CpN2          CpO2

 CpDry Air



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 106, Issue 1 (2023) 182-196 

 

189 
 

 
Fig. 3. Specific heat for dry and moist air at relative humidity of 10% 

 
Fig. 4. Specific heat for dry and moist air at relative humidity of 90% 

 
Table 3 presents the effect of Cp on the compressor specific work of the gas turbine block in the 

Jandar power plant when Rh and 𝛾ℎ are held constant. The specific heat capacity has a significant 
influence on the specific work, especially at high relative humidities and temperatures, where the 
ambient air has the potential to carry greater amounts of water vapor. The specific work at a relative 
humidity of 90% increases by 10.8% at 45 oC compared to when Cp is constant. According to the 
results, at high values of relative humidity, the ambient temperature has bigger effect on Cp 
compared to the relative humidity. At constant relative humidity of 90%, Cp increased from 1013 to 
1183 J/kg oC, which represents an increase of 16.7%. At constant relative humidity of 10%, Cp 
increased from 1000 to 1030 J/kg oC, which represents an increase of 3%. While at a constant ambient 
temperature of 40 oC and when the relative humidity increased from 10 to 90%, Cp increased from 
1023 to 1143 J/kg oC, which represents an increase of 11.7%. 
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Table 3 
Compressor specific work of the gas turbine unit under different conditions 
Ambient 
temperature 
oC 

Compressor Work (kJ)  

𝐶𝑝 = Constant 𝐶𝑝 = variable 

relative humidity = 10 % 

𝐶𝑝 = Variable 

relative humidity = 90 % 

5 335.7 336 338.7 
15 349 349.7 355.2 
25 362.5 363.9 374.4 
35 375.7 378.1 398.3 
45 389 393.3 430.4 

 
Figure 5 and Figure 6 demonstrate the effects of ambient air on mass flow of moist and dry air as 

well as water vapor entering the gas turbine at 10% and 90% relative humidities. As the ambient air 
temperature increases, both the dry and moist mass flow rates decrease while the water vapor mass 
flow increases due to a greater humidity ratio. These parameters very negatively impact gas turbine 
performance. An increased specific humidity reduces the air mass flow in the gas circuit since the 
atomic mass of H2O is less than N2 and O2. For a given volume, moist air has a lower mass than dry 
air, so, it is less dense. The resulting lower density air reduces the humid-air mass flow rate entering 
the air compressor. 

When the ambient air temperature increases from 0 to 45 oC at a constant relative humidity of 
10%, the dry and moist air mass flow rates decrease by 40.8 and 39.7kg/s, respectively, while the 
water vapor flow rate increases by 1.141kg/s. At higher relative humidities, the decreased air mass 
flow rate was greater. At a relative humidity of 90%, when the ambient air temperature increases 
from 0 to 45 oC, the dry and moist air mass flow rates decrease by 59.3 and 46.6 kg/s, respectively, 
while the water vapor flow rate increases by 12.718 kg/s.  

 

 
Fig. 5. Variation of mass flow of moist and dry air as well as the water 
vapor with ambient air at a relative humidity of 10% 
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Fig. 6. Variation of mass flow of moist and dry air as well as the 
water vapor with ambient air at a relative humidity of 90% 

       
Figure 7 and Figure 8 show a variation of dry air and water vapor mass fraction with ambient air 

at 10% and 90% relative humidities, respectively. According to these results, between 0 and 45 °C, 
with a 10% relative humidity, there is a 1.11% decrease in the dry air mass fraction, while the vapor 
mass fraction increased by the same value. Furthermore, when the relative humidity is 90%, the dry 
air mass fraction decreases by 5.1%, while the vapor mass fraction increases by the same amount. 
High vapor mass fraction values imply an increased moist content that results in a reduced air mass 
flow rate. 

 

 
Fig. 7. Variation of dry air and the water vapor mass fraction with ambient air 
at a relative humidity of 10% 
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Fig. 8. Variation of dry air and the water vapor mass fraction with 
ambient air at a relative humidity of 90% 

 
The isentropic exponent changes with temperature and relative humidity, as shown in Figure 9. 

It was found to decrease with increasing ambient air temperature and relative humidity. When the 
ambient air temperature increases from 0 to 45oC at a constant relative humidity of 10%, the 
isentropic exponent decreases by 0.015, which represents a 1.07% reduction. Moreover, at a relative 
humidity of 90%, the isentropic exponent decreases by 0.063, which is a 4.5% decrease.   

 

 
Fig. 9. Variation of the isentropic exponent with ambient air 
temperature 
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Fig. 10. Variation of the gas constant of air with ambient air 
temperature 

 
Fluctuations of the air gas constant with temperature and relative humidity are shown in 

Figure 10. Rh increases with both the relative humidity and temperature of the surrounding air. 
Increasing Rh suggests that the molecular weight of the surrounding air is decreasing, which 
immediately causes a decreased mass flow rate. When the ambient air temperature increases from 
0 to 45oC at a constant relative humidity of 90%, Rh increases by 0.0086, which represents a 3% 
change. Additionally, at a relative humidity of 10%, the change is only 0.001 KJ/KgoC which is 
considered very small and can be neglected.   
 
4. Conclusions 

 
Using various inlet air flow temperatures and relative humidities, this thermodynamic study of a 

gas turbine's working fluid found that 
 

i. The specific heat capacity, isentropic exponent, and gas constant are all affected by 
temperature and relative humidity.  

ii. The specific heat capacity of air can be increased by increasing either or both the specific 
humidity and air temperature. At high values of temperature and humidity, the specific 
heat capacity can increase by 17.6%. 

iii. With increasing ambient air temperature and relative humidity, the isentropic exponent 
decreases. At an ambient air temperature of 45oC at a constant relative humidity of 10%, 
the isentropic exponent decreases by 1.07% and 4.5% at a relative humidity of 10 % and 
90%, respectively.  

iv. The gas constant of air increases with ambient air temperature and relative humidity. At 
an ambient air temperature of 45oC and constant relative humidity of 90%, Rh increases 
by 0.0086. 

v. Changes in the thermodynamic properties of air are more severe at higher temperatures. 
vi. At low ambient temperatures, the increase in specific humidity, and thus, the change in 

the air's mass of vapor is minimal. The water vapor flow rate increases by 1.141 kg/s at 
high temperatures and low relative humidity while the dry and moist air mass flow rates 
decrease by 40.8 and 39.7 kg/s, respectively. 
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vii. At high ambient temperatures, the impacts of humidity are seen in performance 
estimates. 

viii. Since specific humidity changes very little with relative humidity at low ambient 
temperatures, the changes in air characteristics are also small. For example, the change 
in Rh is 0.001 KJ/KgoC. 

 
Thus, this type of research work is a significant opportunity to understand the thermal 

performance of ambient air using modelling. 
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