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The research deals with the stationary flow of an inhomogeneous incompressible fluid 
inside a spherical vessel under the influence of a potential mass force. Using the methods 
of four-dimensional analysis, the solution to the problem is constructed in an explicit 
analytical form. Exact solutions of the Euler equations for a homogeneous fluid are 
obtained only for some of the simplest problems. Researchers usually prove the existence 
and uniqueness of solutions to various initial - boundary value problems for Euler 
equations using the methods of a priori estimation. After that, the problem is usually 
solved by numerical methods. For an inhomogeneous fluid, when the unknown density 
is a variable, even obtaining a priori estimates becomes much more complicated, not to 
mention finding exact solutions. Nevertheless, in recent years, new methods of four-
dimensional mathematics have been developed, giving previously unknown approaches 
to the study of nonlinear problems. In this paper, an exact analytical solution of the Euler 
equations describing the flow of an ideal inhomogeneous fluid inside a sphere is 
obtained. At the same time, the authors demonstrate new methods of four-dimensional 
analysis. 
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1. Introduction 
 

A lot of scientific paper were devoted to the problems of fluid flow, and these problems were 
solved numerically [1,2]. In this work by using the methods of four-dimensional analysis an analytical 
solution of inhomogeneous fluid flow was investigated. 

Nonstationary models of the flow of an ideal inhomogeneous fluid are given in the form of various 
initial-boundary value problems for a system of Euler equations of the form 
 

𝜌 [ 
𝜕�⃗⃗� 

𝜕𝑡
 + (�⃗� × ∇)�⃗� ] + ∇𝑃 = 𝜌𝐹            (1) 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑉1)

𝜕𝑥
+
𝜕(𝜌𝑉2)

𝜕𝑦
+
𝜕(𝜌𝑉3)

𝜕𝑧
= 0           (2) 
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where unknowns: 𝜌(𝑡, 𝑥, 𝑦, 𝑧), 𝑃(𝑡, 𝑥, 𝑦, 𝑧)  – the desired density and pressure of the liquid, �⃗� =
(𝑉1(𝑡, 𝑥, 𝑦, 𝑧), 𝑉2, 𝑉3) − desired vector of the desired velocity vector of the fluid, and the mass force 

vector 𝐹 = (𝐹1(𝑡, 𝑥, 𝑦, 𝑧), 𝐹2, 𝐹3) are given [3-7]. 
When solving a specific applied problem, various initial and boundary conditions are added to the 

differential equations, Eq. (1) and Eq. (2). Note that this system of differential equations is nonlinear 
and difficult to study. The fact is that the system is four-dimensional in its essence because the 
unknown functions to be determined are real functions of four real variables: 𝑡, 𝑥, 𝑦, 𝑧. At the same 
time, to find classical solutions to various initial boundary value problems developed mathematical 
apparatus of one dimensional (theory of functions of a real variable) and two-dimensional analysis 
(theory of functions of a complex variable) is usually used. In this regard, researchers investigated 
the various simplifications of the Euler model. 

It is not difficult to understand that a complete study of various initial boundary value problems 
for the general Euler model Eq. (1) and Eq. (2) requires a complete four – dimensional mathematical 
apparatus. A pioneering work in this direction is the monograph [8], which sets out the basics of four-
dimensional analysis and describes specific, four-dimensional methods for studying such problems. 
For the latest results on the four dimensioanal mathematics see papers [9-15]. 
In this article, we will illustrate the application of the methods of four-dimensional analysis to the 
study of a rather complex problem of hydrodynamics, which has an important application value. 
 
2. Statement of the Problem 
2.1 Formulation of the Main Result 
 

Let an inhomogeneous, ideal incompressible fluid, completely filled with a spherical vessel of 
radius r, move under the action of an external, stationary potential mass force. It is necessary to 
determine the hydrodynamic characteristics of such a flow. It is well known [9] that mathematically 
this problem is formulated as follows. In the domain Ω ∶  𝑥2 + 𝑦2 + 𝑧2 < 𝑟2 with the boundary S ∶
 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 it is required to find a bounded and sufficiently smooth solution of the boundary 
value problem for a system of Euler equations, of the following form 
 

𝜌(𝑥, 𝑦, 𝑧) ( 𝑉1
𝜕𝑉1
𝜕𝑥

+ 𝑉2
𝜕𝑉1
𝜕𝑦

 + 𝑉3
𝜕𝑉1
𝜕𝑧
) + 

𝜕𝑃

𝜕𝑥
=  𝜌(𝑥, 𝑦, 𝑧) 𝐹1(𝑥, 𝑦, 𝑧) 

 

𝜌(𝑥, 𝑦, 𝑧) ( 𝑉1
𝜕𝑉2

𝜕𝑥
+ 𝑉2

𝜕𝑉2

𝜕𝑦
 + 𝑉3

𝜕𝑉2

𝜕𝑧
)  + 

𝜕𝑃

𝜕𝑦
=  𝜌(𝑥, 𝑦, 𝑧) 𝐹2(𝑥, 𝑦, 𝑧)       (3) 

 

𝜌(𝑥, 𝑦, 𝑧) ( 𝑉1
𝜕𝑉3
𝜕𝑥

+ 𝑉2
𝜕𝑉3
𝜕𝑦

 + 𝑉3
𝜕𝑉3
𝜕𝑧
) + 

𝜕𝑃

𝜕𝑧
=  𝜌(𝑥, 𝑦, 𝑧) 𝐹3(𝑥, 𝑦, 𝑧) 

 
with continuity conditions 
 
𝜕(𝜌𝑉1)

𝜕𝑥
+
𝜕(𝜌𝑉2)

𝜕𝑦
+
𝜕(𝜌𝑉3)

𝜕𝑧
= 0            (4) 

 
𝜕𝑉1

𝜕𝑥
+
𝜕𝑉2

𝜕𝑦
+
𝜕𝑉3

𝜕𝑧
= 0             (5) 

 
and with the condition of non-flow through the border 
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𝑉𝑛|𝑆 = 0              (6) 
 

Here: 𝐹𝑖(𝑥, 𝑦, 𝑧), 𝑖 = 1,3 − components of a given, potential mass force, which we assume to be 
sufficiently smooth. In the future, we will clarify the conditions imposed on these functions. 
Additionally, for an ideal fluid, the equation of state is assumed to be known and is taken as 
 
𝜌 = 𝜔 (𝑃)               (7) 
 
We seek the classical solution of the problem Eq. (3) – Eq. (7) 
 
𝜌(𝑥, 𝑦, 𝑧), 𝑃(𝑥, 𝑦, 𝑧), 𝑉1 (𝑥, 𝑦, 𝑧), 𝑉2, 𝑉3 ∈ 𝐶

1(Ω) ∩ 𝐶(Ω̅). 
 

Let 𝐹 = (𝐹1(𝑥, 𝑦, 𝑧), 𝐹2, 𝐹3) is potential force, then, ∃𝑄(𝑥, 𝑦, 𝑧) ∈ 𝐶1(Ω) ∩ 𝐶(Ω̅) such that, 𝐹 = ∇𝑄. 
The scalar function 𝑄(𝑥, 𝑦, 𝑧) which satisfies the conditions above is said to be potential of mass 
force. 
 
2.2 Main Theorem 
 

Let 𝑐  be a certain velocity characteristic of a given current. A function Φ(𝑃) = ∫
𝑑𝜏

𝜔(𝜏)

𝑃

𝑃0
−the 

potential of mass power 𝑄(𝑥, 𝑦, 𝑧) is an arbitrary solution of the differential equation 
 

(𝑥2 + 2𝑦2 + 2𝑧2 − 𝑟2)
𝜕𝑄

𝜕𝑥
− 𝑥𝑦

𝜕𝑄

𝜕𝑦
− 𝑥𝑧

𝜕𝑄

𝜕𝑧
= 𝜃(𝑥, 𝑦, 𝑧)        (8) 

 
where 
 

𝜃 =
𝑐2𝑥

𝑟4
[2(𝑥2 − 𝑟2)(𝑥2 + 2𝑦2 + 2𝑧2 − 𝑟2) − (𝑦2 + 𝑧2)(2𝑦2 + 2𝑧2 − 𝑟2)] 

 
Then the problem Eq. (3) – Eq. (7) has a unique classical solution of the form 
 

{
 
 
 

 
 
 𝑉1(𝑥, 𝑦, 𝑧) =

𝑐(𝑥2+2𝑦2+2𝑧2−𝑟2)

𝑟2

𝑉2(𝑥, 𝑦, 𝑧) = −
𝑐𝑥𝑦

𝑟2

𝑉3(𝑥, 𝑦, 𝑧) = −
𝑐𝑥𝑧

𝑟2

𝛷(𝑃) = 𝑄(𝑥, 𝑦, 𝑧) −
𝑐2

2𝑟4
[𝑥4 − (𝑦2 + 𝑧2)2 − 𝑟2(2𝑥2 − 𝑦2 − 𝑧2)]

𝜌 = 𝜔 (𝑃)

      (9) 

 
Note that the differential equation Eq. (8) has innumerable (continuum) smooth solutions 

𝑄(𝑥, 𝑦, 𝑧) ∈ 𝐶1(Ω) ∩ 𝐶(Ω̅). For each such solution, the mass force is determined 𝐹 = ∇𝑄. By this we 
define a continuum of mass forces. 
 
3. Description of the Method for Solving the Problem 
 

We will rely on the theoretical foundations of four-dimensional analysis set out in [8]. Let 𝑋 =
(𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ 𝐺 ⊂ 𝑅

4 −  a dimensionless four-dimensional number. Consider all possible 
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mappings of the form 𝑈: 𝐺 → 𝑅4. With such mappings, each element 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ 𝐺 a well-
defined image is matched - a four-component object of the following type 
 
𝑈(𝑋) = [𝑈0(𝑥0, 𝑥1, 𝑥2, 𝑥3), 𝑈1, 𝑈2, 𝑈3] ∈ 𝑅

4 
 

Definition 1. An object of the form 𝑈 = (𝑈0, 𝑈1, 𝑈2, 𝑈3), which is an image obtained with some 
mapping 𝑈: 𝐺 → 𝑅4, is called a four-dimensional function. 

Definition 2. A four-dimensional function whose components are all real and continuous 
functions of four variables in the domain 𝐺 is called a continuous four-dimensional function, and the 
entire set of such functions is denoted as 𝐶𝑀(𝐺). With respect to the operation of component-by-
component addition and multiplication by a scalar, CM (G) is a linear space.  

Further, in [8], a description of a specific subset is given 𝑀𝐴(𝐺)  ⊂  𝐶𝑀(𝐺). Each element 𝑀𝐴(𝐺) 
It plays the role of a four-dimensional generalization of typical functions from real and complex 
analysis. 

Definition 3. The element 𝑢 = (𝑢0, 𝑢1, 𝑢2, 𝑢3) ∈ 𝐶𝑀(𝐺) is said to be a regular four-dimensional 
function in the domain 𝐺 ⊂  𝑅4, if the relations (generalized Cauchy-Riemann conditions) of the 
following form are satisfied 
 
𝜕𝑢0

𝜕𝑥0
=

𝜕𝑢1

𝜕𝑥1
 =  

𝜕𝑢2

𝜕𝑥2
 =

𝜕𝑢3

𝜕𝑥3
   

𝜕𝑢0

𝜕𝑥1
=

𝜕𝑢1

𝜕𝑥0
 =  

𝜕𝑢2

𝜕𝑥3
 =  

𝜕𝑢3

𝜕𝑥2
                      (10) 

𝜕𝑢0

𝜕𝑥2
=

𝜕𝑢1

𝜕𝑥3
= −

𝜕𝑢2

𝜕𝑥0
= −

𝜕𝑢3

𝜕𝑥1
  

𝜕𝑢0

𝜕𝑥3
=

𝜕𝑢1

𝜕𝑥2
= −

𝜕𝑢2

𝜕𝑥1
= −

𝜕𝑢3

𝜕𝑥0
  

 
It is easy to check that the simplest, everywhere regular function is 𝑢 = 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3). We 

denote the set of such functions by 𝑀𝐴(𝐺). The subset 𝑀𝐴(𝐺) of the linear space 𝐶𝑀(𝐺) is also linear 
space with respect to the operations: component-by-component addition of elements and 
multiplication by a scalar. It is shown that [4], the sub linear space 𝑀𝐴(𝐺) infinite dimensional. It is 
proved that each regular function is a four-dimensional analog of the corresponding typical function 
from real and complex analysis. 

Example 1. Consider a function 𝑢 = 𝑋2 = (𝑢0, 𝑢1, 𝑢2, 𝑢3) of the four-dimensional independent 
variable 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) 
 
𝑢0(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 2𝑥0𝑥1 − 2𝑥2𝑥3  
𝑢1(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑥0

2 + 𝑥1
2 − 𝑥2

2 − 𝑥3
2  

𝑢2(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 2𝑥1𝑥2 + 2𝑥0𝑥3  
𝑢3(𝑥0, 𝑥1, 𝑥2, 𝑥3) = 2𝑥1𝑥3 + 2𝑥0𝑥2  
 

It is easy to check that at the points of the form 𝑋 = (0, 𝑥1, 𝑥2,0) a function has a form 

 
𝑢 = 𝑋2 = (0, 𝑥1

2 − 𝑥2
2, 2𝑥1𝑥2, 0) 

 
which is just another form of representing an elementary function from a single complex variable  
 
𝑢 = 𝑧2 = (𝑥1 + 𝑖𝑥2)

2. 
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Similarly, in the points of the form 𝑋 = (0, 𝑥1,0,0) we get a one-dimensional analog 𝑈 = 𝑋2 =

(0, 𝑥1
2, 0,0) , which is just another form of writing an ordinary function of a single real variable. This 

situation is characteristic of all regular four-dimensional functions, that is, the corresponding two-
dimensional and one-dimensional analogs are easily derived from its form (formula) in the specified 
way. For example, this is valid for a four-dimensional exponential function 
 
𝑢 = 𝑒𝑋 ={ 𝑢0(𝑥0, 𝑥1, 𝑥2, 𝑥3 ), 𝑢1, 𝑢2, 𝑢3}, 
 
where 
 

𝑢0(𝑥0, 𝑥1, 𝑥2, 𝑥3) =
1

2
[ 𝑒𝑥1+𝑥0 cos(𝑥2 + 𝑥3) − 𝑒

𝑥1−𝑥0 cos(𝑥2 − 𝑥3)]  

𝑢1(𝑥0, 𝑥1, 𝑥2, 𝑥3) =
1

2
 [ 𝑒𝑥1+𝑥0 cos(𝑥2 + 𝑥3) + 𝑒

𝑥1−𝑥0 cos(𝑥2 − 𝑥3)]  

𝑢2(𝑥0, 𝑥1, 𝑥2, 𝑥3) =
1

2
[ 𝑒𝑥1+𝑥0 sin(𝑥2 + 𝑥3) + 𝑒

𝑥1−𝑥0 sin(𝑥2 − 𝑥3)]  

𝑢3(𝑥0, 𝑥1, 𝑥2, 𝑥3) =
1

2
[ 𝑒𝑥1+𝑥0 sin(𝑥2 + 𝑥3) − 𝑒

𝑥1−𝑥0 sin(𝑥2 − 𝑥3)]  

 
Further, let 𝐺 be a compact set. Then 𝑀𝐴(𝐺) becomes an everywhere dense subset in the space 

𝐶𝑀(𝐺). And the latter contains all the required 4-vectors that occur in the applied problems of 
modern natural science. Therefore, it is sufficient to study applied problems in compact domains "in 
terms of" regular functions from 𝑀𝐴(𝐺). This is discussed in more detail in monograph [8]. Thus, one 
of the key results of the four-dimensional analysis is associated with the solution of a non-stationary 
equation of the form 
 
1

𝑐

𝜕𝜃(𝑡,𝑥,𝑦,𝑧)

𝜕𝑡
+
𝜕𝑢(𝑡,𝑥,𝑦,𝑧)

𝜕𝑥
+
𝜕𝑣(𝑡,𝑥,𝑦,𝑧)

𝜕𝑦
+
𝜕𝑤(𝑡,𝑥,𝑦,𝑧)

𝜕𝑧
= 0                   (11) 

 
In the bounded domain 𝐺 ⊂  𝑅4 . Let 𝑐 −  characteristic speed, 𝐿 − characteristic measure 

(diameter) of the domain. We use notations 
 

𝑥0 =
𝑐𝑡

𝐿
, 𝑥1 =

𝑥

𝐿
, 𝑥2 =

𝑦

𝐿
, 𝑥3 =

𝑧

𝐿
. 

 

Definition 4. The following eight scalars: 𝛼𝑘, 𝛽𝑘, 𝑘 = 0,3 (real and complex numbers) are said to 
be the resolving parameters of the Eq. (11), if they are connected by the relations 
 
𝛼0𝛽0 + 𝛼1𝛽1 − 𝛼2𝛽2 − 𝛼3𝛽3 = 0. 
 

Auxiliary Theorem. Let 𝑢 = (𝑢0, 𝑢1, 𝑢2, 𝑢3) ∈  𝑀𝐴(𝐺) −  an arbitrary regular function, 

(𝛼𝑘, 𝛽𝑘), 𝑘 = 0,3 −an arbitrary list of the resolving parameters. Then the general solution of the (11) 
has the following form 
 

𝜃(𝑡, 𝑥, 𝑦, 𝑧) = 𝛽0𝑐 𝑢0 (
𝛼0𝑐𝑡

𝐿
,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )  

𝑢(𝑡, 𝑥, 𝑦, 𝑧) = 𝛽1𝑐 𝑢1 (
𝛼0𝑐𝑡

𝐿
,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )                    (12) 

𝑣 (𝑡, 𝑥, 𝑦, 𝑧) = −𝛽2𝑐 𝑢2 (
𝛼0𝑐𝑡

𝐿
,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )  

𝑤(𝑡, 𝑥, 𝑦, 𝑧) = −𝛽3𝑐 𝑢3 (
𝛼0𝑐𝑡

𝐿
,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )  
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We refer the readers to [4] for the proof of the statement. Further, all our further actions will be 
related to the application of formula (12) to the simpler Eq. (5) in the original problem. As we will see 
later, it is this four-dimensional approach to the original task that leads us to achieve our goals. 
 
4. Proof of the Main Theorem 
 

First, we will separately consider Eq. (5) of the original problem. 
 
𝜕𝑉1(𝑥,𝑦,𝑧)

𝜕𝑥
+
𝜕𝑉2(𝑥,𝑦,𝑧)

𝜕𝑦
+
𝜕𝑉3(𝑥,𝑦,𝑧)

𝜕𝑧
= 0                     (13) 

 
This equation is the stationary analog of the Eq. (11), when 𝜃 = 0 , which can be achieved by 

choosing 𝛽0 = 0 , and the other functions do not depend on the time parameter, which is achieved 
by choosing 𝛼0 = 0. Thus, the general solution (13) will be as follows 
 

𝑉1(𝑥, 𝑦, 𝑧) = 𝛽1𝑐 𝑢1 (0,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )   

𝑉2(𝑥, 𝑦, 𝑧) = −𝛽2𝑐 𝑢2 (0,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )                    (14) 

𝑉3(𝑥, 𝑦, 𝑧) = −𝛽3𝑐 𝑢3 (0,
𝛼1𝑥

𝐿
 ,
𝛼2𝑦

𝐿
,
𝛼3𝑧

𝐿
 )  

 
where 𝛼1𝛽1 − 𝛼2𝛽2 − 𝛼3𝛽3 = 0. 

Based on the results of the work [5], we will obtain 
 

𝑢(𝑋) = 𝑋2 − 1; 𝐿 = 𝑟; 𝛼1 = 𝛽1 = 1; 𝛼2 = 𝛼3 = √2 𝑖;  𝛽2 = 𝛽3 = −
𝑖√2

4
 

 
Then, using the explicit form of the function components 𝑢(𝑋) = 𝑋2 − 1 (see Example 1) we have 
 

𝑉1(𝑥, 𝑦, 𝑧) =
𝑐(𝑥2+2𝑦2+2𝑧2−𝑟2)

𝑟2
  

𝑉2(𝑥, 𝑦, 𝑧) = −
𝑐𝑥𝑦

𝑟2
                       (15) 

𝑉3(𝑥, 𝑦, 𝑧) = −
𝑐𝑥𝑦

𝑟2
  

 
It is easy to check that the functions (15) satisfy the conditions (5) and (6) of the original problem. 

Indeed, the execution of (5) is checked trivially, and 
 

𝑉𝑛|𝑆 = (2𝑥𝑉1 + 2𝑦𝑉2 + 2𝑧𝑉3)|𝑆 =
2𝑐𝑥

𝑟2
(𝑥2 + 𝑦2 + 𝑧2 − 𝑟2)|𝑆 = 0. 

 
Now we write the first continuity Eq. (4) in the form 
 

�⃗�  ∇𝜌 + 𝜌𝑑𝑖𝑣�⃗� = 0 , 
 
or taking into account Eq. (5), in the following form 
 

𝑉1
𝜕𝜌

𝜕𝑥
+ 𝑉2

𝜕𝜌

𝜕𝑦
+ 𝑉3

𝜕𝜌

𝜕𝑧
= 0                      (16) 
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Thus, the desired density is𝜌(𝑥, 𝑦, 𝑧) satisfies the Eq. (16). On the other hand, if 𝜌 = 𝜔 (𝑃) then 
 
𝜕𝜌

𝜕𝑥
=
𝜕𝜔 (𝑃)

𝜕𝑃

𝜕𝑃

𝜕𝑥
 ;  
𝜕𝜌

𝜕𝑦
=
𝜕𝜔 (𝑃)

𝜕𝑃

𝜕𝑃

𝜕𝑦
 ; 
𝜕𝜌

𝜕𝑧
=
𝜕𝜔 (𝑃)

𝜕𝑃

𝜕𝑃

𝜕𝑧
 

 
Substituting the density derivatives in Eq. (16), we get 
 

𝑉1
𝜕𝑃

𝜕𝑥
+ 𝑉2

𝜕𝑃

𝜕𝑦
+ 𝑉3

𝜕𝑃

𝜕𝑧
= 0                      (17) 

 
That is, the desired pressure satisfies equation (17), which is absolutely identical to Eq. (16).  Further, 
using formulas Eq. (15), we can easily obtain 
 

𝑉1
𝜕𝑉1

𝜕𝑥
+ 𝑉2

𝜕𝑉1

𝜕𝑦
 +  𝑉3

𝜕𝑉1

𝜕𝑧
=

2𝑐2𝑥(𝑥2−𝑟2)

𝑟4
  

𝑉1
𝜕𝑉2

𝜕𝑥
+ 𝑉2

𝜕𝑉2

𝜕𝑦
 +  𝑉3

𝜕𝑉2

𝜕𝑧
= −

𝑐2𝑦(2𝑦2+2𝑧2−𝑟2)

𝑟4
  

𝑉1
𝜕𝑉3

𝜕𝑥
+ 𝑉2

𝜕𝑉3

𝜕𝑦
 +  𝑉3

𝜕𝑉3

𝜕𝑧
= −

𝑐2𝑧(2𝑦2+2𝑧2−𝑟2)

𝑟4
  

 
Now the equations of motion (3) will be rewritten in the following form 
 

{
 
 

 
 

1

𝜌

𝜕𝑃

𝜕𝑥
=

𝜕𝑄

𝜕𝑥
−
2𝑐2𝑥(𝑥2−𝑟2)

𝑟4

1

𝜌

𝜕𝑃

𝜕𝑦
=

𝜕𝑄

𝜕𝑦
+
𝑐2𝑦(2𝑦2+2𝑧2−𝑟2)

𝑟4

1

𝜌

𝜕𝑃

𝜕𝑧
=

𝜕𝑄

𝜕𝑧
+
𝑐2𝑧(2𝑦2+2𝑧2−𝑟2)

𝑟4

                      (18) 

 
In general, the system Eq. (18) is solvable for any potential of mass forces 𝑄(𝑥, 𝑦, 𝑧). But we have 

to choose it so that Eq. (17) is additionally satisfied, which is equivalent to fulfilling Eq. (16). That is, 
the condition for unambiguous determination of pressure (density) is a condition of the form 
 

𝑉1 [
𝜕𝑄

𝜕𝑥
−
2𝑐2𝑥(𝑥2−𝑟2)

𝑟4
] + 𝑉2 [

𝜕𝑄

𝜕𝑦
+
𝑐2𝑦(2𝑦2+2𝑧2−𝑟2)

𝑟4
] + 𝑉3 [

𝜕𝑄

𝜕𝑧
+
𝑐2𝑧(2𝑦2+2𝑧2−𝑟2)

𝑟4
] = 0  

 
From here, after opening the brackets, we come to Eq. (8). If the potential 𝑄(𝑥, 𝑦, 𝑧) is chosen as the 
solution to Eq. (8), then Eq. (4) of the original system will be automatically fulfilled. Further, if 
 

Φ(𝑃) = ∫
𝑑𝜏

𝜔(𝜏)

𝑃

𝑃0
⇒ ∇Φ(𝑃) =

1

𝜌
∇𝑃  

 
Therefore, system Eq. (18) has a unique solution of the form 
 

Φ(𝑃) = 𝑄(𝑥, 𝑦, 𝑧) −
𝑐2

2𝑟4
[𝑥4 − (𝑦2 + 𝑧2)2 − 𝑟2(2𝑥2 − 𝑦2 − 𝑧2)] = Ψ(𝑥, 𝑦, 𝑧)               (19) 

 
From Eq. (19) we determine the pressure 𝑃(𝑥, 𝑦, 𝑧). After that, we will also find the exact density 

formula of the form 𝜌 = 𝜔 (𝑃). The proof of the main theorem is completed. 
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5. Conclusion 
 

We were able to obtain an explicit analytical solution to a nonlinear system of differential 
equations. Obviously, this fact emphasizes the attractiveness of the mathematical apparatus of four-
dimensional mathematics in solving applied problems of this kind. Next, we could take the equation 
of state in its simplest form (the Mendeleev-Clapeyron formula), namely 
 

𝜌 = 𝜔 (𝑃) =
𝑃

𝑅𝑔𝑇
 

 
where 𝑅𝑔 − universal gas constant, and 𝑇 − constant value, the temperature of the liquid. In this 

case, the formula (19) will be rewritten as follows 
 
Φ(𝑃) = 𝑅𝑔𝑇 ln𝑃

𝑃0
= Ψ(𝑥, 𝑦, 𝑧) 

 
From here we obtain 
 

𝑃(𝑥, 𝑦, 𝑧) = 𝑃(0,0,0) + exp [
Ψ(𝑥, 𝑦, 𝑧)

𝑅𝑔𝑇
] 

 
Unknown number 𝑃(0,0,0) now it is determined from the condition of the form 
 

∫𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 0

Ω

 

 

After that, the density is also uniquely determined 𝜌 =
𝑃

𝑅𝑔𝑇
 . 
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