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Abstract – A numerical study of incompressible laminar natural convection in entrance region of 

two dimensional vertical and inclined channels using Regularized Lattice Boltzmann Bhatnaghar-

Gross-Krook (RLBGK) method is presented in this paper. Individual distribution functions with lattice 

types D2Q9 and D2Q5 are considered to solve fluid flow and thermal fields, respectively. Rayleigh 

number is varied from 102 to 106. The channel inclination angle is varied from 0 to 60°. Aspect ratio 

of channel is equal to 5. A set of distribution functions is proposed to mimic Bernoulli’s equation for 

calculating pressure at the inlet. Predicted velocity and temperature fields are compared with velocity 

and temperature fields found from finite volume code Fluent. Also, predicted Nusselt numbers are 

compared with Nusselt numbers correlation. Results are in good agreement with results found from 

FLUENT code. Copyright © 2015 Penerbit Akademia Baru - All rights reserved. 

Keywords: Lattice Boltzmann Method, Multi-Population Distribution, Natural Convection, Entrance Region, 
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1.0 INTRODUCTION 

Natural convection is one of the frequently observed heat transfer mechanism in electronic 
cooling. Natural convection in parallel plates or channel can be regarded as a basic module of 
physical heat transfer surface geometry of most of electronic components. Consequently, 
study on natural convection in channels has gained greater attention [1,2]. Traditionally, 
numerical methods such as finite difference, finite element, and finite volume etc., are used to 
solve natural convection problems. From last two decades, a new numerical method called 
lattice Boltzmann method has also been used to simulate wide variety of natural convection 
problems [3-5].  

Lattice Boltzmann method in conjunction with single relaxation [6] collision operator 
(LBGK) is widely used to simulate dynamics of mesoscopic fluid flow system through 
fictitious particles collision and normalization to equilibrium state. Under a low Mach 
number assumption, Chapman-Enskog analysis [7] of LB equation associates moments of 
equilibrium particles to physical (macroscopic) fluid flow variables, such as density, velocity, 
temperature, etc., in Navier-Stokes equations. Actually, LBGK simulates nearly 
incompressible Navier-Stokes equations. In order to account for inherent compressibility 
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effect, couple of incompressible LBGK models are proposed [8-10]. In addition, a recent 
study [11] showed that Chapman-Enskog analysis of LBGK cannot recover Navier-Stokes 
equations precisely and regularization of particle distribution functions in LBGK leads to 
exact Navier-Stokes equations.  

Also, LBGK method is applied successfully to simulate heat transfer in incompressible fluid 
flows. In thermal incompressible flow, temperature can be treated as a passive scalar that is 
advected by the flow field [12]. Various thermal LBGK models [12-15] are proposed that are 
simple and stable for simulation of passive temperature field. In these models, an independent 
energy density distribution function is used to simulate temperature field. Several researchers 
have used passive scalar LBGK models to study heat convection [3-5]. 

Concurrently, during last two decades, several types of fluid flow [16-19] and thermal [4, 20-
22] boundary conditions were proposed. Among them, velocity and pressure boundary 
conditions proposed by Zou and He (1997) [16], and temperature boundary condition 
proposed by Guo et al., (2002) [22], are widely applied. However, recent regularized fluid 
flow boundary condition presented by Latt et al., (2008) [18], is found to increase the stability 
and accuracy of the simulations and thermal boundary condition by Huang et al., (2011) [21], 
is found to perform better. 

It can be noticed from the literature that the most of single-phase thermal flow studies have 
applied or tested thermal LBGK model to simulate natural convection in enclosures [12, 21], 
cavities [3, 5, 13-15, 21], cavity with moving lid [13, 20] and annulus space [5, 21] at large. 
However, to the best of authors’ knowledge, the authors natural convection in channels 
involving pressure inlet and pressure outlet boundary condition simultaneously is not 
investigated using LBGK, which has numerous applications in electronic cooling [1, 2]. More 
importantly, RLBGK is a recently proposed method and it has not been used (or sparingly 
used) to simulate heat convection problems. Therefore the aim of this paper is to study 
incompressible laminar natural convection in vertical and inclined 2D channels using 
incompressible RLBGK and passive scalar thermal LBGK method for wide range of 
Rayleigh numbers, in conjunction with recently proposed fluid flow [18] and thermal [21] 
boundary conditions.  

2.0 METHODOLOGY 

2.1 Lattice BGK Equation for Flow Field 

Incompressible LBGK model proposed by [8] is adopted here. In LBM, space is discretized 

into uniform lattice size of  and velocity is discretized into finite number of velocities 
i

C
r

 

to form particle distribution functions ( ),if r t
r

. The LBGK evolution equation is as follows. 

 

( ) ( ), , ,i i if r tc t t f r t FTδ δ+ + − = −Ω +
r r r

 ( )eq

i i i
f fωΩ = −       (1) 

 

i
Ω  is the BGK collision operator which defines particle interaction on a lattice sites. 

i
FT  

represents body force.  Flow dynamics evolve through series of collision and streaming of 
particle distribution functions. During each time step before collision, particle distribution 
functions are regularized following the method in ref [11]. Macroscopic variables of the flow 
are recovered by the moments of particle distribution functions and are as follows. 
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,eq

ii
fρ =∑  0

2

eq i
i ii

F
u c f tα αρ δ= +∑

r

 , and 
i i ii

c c fαγ α γΠ =∑     (2) 

 
Equilibrium distribution function is obtained by expansion of Maxwell-Boltzmann equation 
to second order and it reads as follows. 
 

0 2 2

1 1
. :

2

eq

i i i i

s s

f w c u Q uu
c c

ρ ρ
  

= + +  
   

r r rr
        (3) 

 
In Eq. (3), “.” is a dot product between two vectors, and “:” refers to contraction between two 

tensors. Tensors Q are defined as
i i i s

Q c c c lαγ α γ= −
r r

, where l is identity, cs is speed of sound, 

and 
i

c
r

, and ti are lattice vectors and weights, respectively. Non-equilibrium stress tensors are 

needed during evolution and are calculated as in Eq. 4. 
 

neq eq

αγ αγ αγΠ = Π − Π            (4) 

 
The D2Q9 lattice model is used in the study in which  varies from 1 to 9 and corresponding 
lattice vector and weights are presented in Eq. 5. 
 

010 1 0 1 1 1 1

001 0 1 1 1 1 1
i

c
− + − − +

=
− + + − −

r
, and 

4 1 1 1 1 1 1 1 1
, , , , , , , ,

9 9 9 9 9 36 36 36 36
it

 
=   

     (5) 

 
Link between moments of particle distribution functions and macroscopic fluid flow 
variables can be established through a multi-scale Chapman-Enskog analysis [7] of Eq. 1, in 
which zeroth order term of particle distribution function are equal to equilibrium distribution 

function ( )0 eq

i i
f f=  and first order term of particle distribution function through 

regularization ( )1

2 22 4

neq neqi i
i i i i

s s

t t
f f Q Q Fu uF

c c
αγ αγ αγ

 
≈ = Π + + 

 

r rr r
  is related to momentum flux 

tensor at low Mach number [11]. Regularization of particle distribution function not only 
ensures exact recovery of Navier-Stokes equations but also found to enhance stability and 
accuracy of the LBM simulation through correct representation of boundary conditions [18]. 
 
In system of lattice units, the time step tδ  and lattice space xδ  are unity. Lattice velocity, 
Mach number and pressure of the flow are related to lattice variable as in Eq. 6. 
 

,
t

u
x

δ

δ
=  

2
,

s

u
M

c
= and 2

s
P cρ=           (6) 

 
In Eq. 1, ω  is the inverse single relaxation time of particle distribution function. From 
Champan-Enskog expansion kinematic viscosity of the fluid is related to inverse relaxation 
time of particle distribution function as follows: 
 

2 1 1

2
scν

ω

 
= − 

 
            (7) 
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In LBGK simulation, Kinematic viscosity Eq. 7 is the key variable that is related to Reynolds, 
Ra, and Gr numbers of the macroscopic fluid flow system.  
 
2.2 Lattice BGK Equation for Temperature Field 

As mention earlier, for incompressible fluid flow, viscous heat dissipation and compression 
work carried out by the pressure are negligible [12]. Hence, energy transport equation for 
incompressible fluid flow is essentially a convective-diffusive equation of temperature. Here 
passive scalar LBGK is used to simulate temperature field thru energy density distribution 
functions.  Evolution equation for energy density distribution is as follows. 
 

( ) ( ) ( ), , eq

i i i t i i
g r te t t g r t g gδ δ ω+ + − = − −

r r r
       (8) 

 

t
ω  in Eq. 8 is inverse relaxation time of energy density distribution function. Macroscopic 

temperature is recovered by the moment of energy density distribution functions as in Eq. 9. 
 

eq

ii
T g=∑             (9) 

 
Again, equilibrium energy density distribution function is obtained by expansion of Maxwell-
Boltzmann equation. Terms up to first order are sufficient to recover convective-diffusion 
equation of temperature, and it is as follows. 
 

2

1
1 .eq

i i

s

g z e u
c

 
= + 

 

r r
                     (10) 

 

In Eq. 10, where 
i

e
r

 and 
i

z  are lattice vectors and lattice weights, respectively. The D2Q5 

lattice model is used in the study in which i varies from 1 to 5 and corresponding lattice 

vectors, 
i

e
r

and weights, 
i

z  are presented in Eq. 11. 

 

010 1 0

001 0 1
i

e
−

=
−

r
, 

4 1 1 1 1
, , , ,

3 3 3 3 3
iz

 
=   

                   (11) 

Again, from Champan-Enskog analysis [7] of Eq. 8, thermal diffusivity 
d

λ  and inverse 

relaxation time of energy density distribution function is related as in Eq. 12. 
 

2 1 1

2
d s

t

cλ
ω

 
= − 

 
                     (12) 

 
Boussinesq approximation is used in the study, which assumes that all fluid properties, such 
as density, viscosity, thermal diffusivity are constants for calculating flow dynamics except in 
the body force term. Body force represents effect of temperature on flow dynamics. The 
coupling between the temperature and the flow field is achieved by adding a body force term 
as in equation Eq. 1. Force term recommended by [22] is used and it reads as in Eq. 13. 
 

( ) ( )
2 4

1 .
2

i i

i i i i

s s

c u c u
FT w c F

c c

ω − −  
= − +  
   

r r r r
rr

                 (13) 
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where  F
r

 is the buoyancy force given as 
ref ref

g T Tρ β  − 
r

. 

3.0 BOUNDARY CONDITIONS 

3.1 Velocity 

Fig. 1 shows the schematics of computational domain with corresponding orientation of 
particle distribution functions at the boundaries. At the outlet zero gauge pressure is assigned 

by setting mean density 0ρ  to 1. Unlike in forced or mixed convection, velocity at the inlet is 

not known priori. Moreover, in LBGK simulations velocity and pressure (density) are 
implicitly coupled. Usually in conventional numerical methods [23], Bernoulli’s equation is 
used to calculate unknown pressure.  In line with conventional numerical methods, pressure 
at the inlet is calculated from the evolving velocity field iteratively based on Bernoulli’s 

equation and it reads as 2

0 0

3

2
in in

uρ ρ ρ= − , and 
1,3,5 4,7,8

2
in in in in

u f fρ= − −∑ ∑ . As 

mentioned earlier, LBM simulation involving pressure inlet boundary condition is 
unaddressed before. Set of distribution functions introduced here in this paper is for the first 
time. For all cases, no-slip velocity condition is assigned at walls. These macroscopic 
boundary conditions are casted into regularized particle distribution functions following the 
procedure of [18]. In which, concept of bounce back of non-equilibrium distribution function 
[16] is used to construct all unknown particle distribution functions at the boundaries and 
then non-equilibrium stress tensor components are calculated. These stress tensor 
components along with equilibrium particle distribution functions are inversed to from 
regularized particle distribution functions at the boundaries. For the sake of brevity, 
expressions of unknown non-equilibrium stress tensor at the inlet and inlet-top-corner (see 
Fig. 1) are presented only.  

 

Figure 1: Schematic of inclined channel 
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All unknown distribution functions at the boundaries are calculated as following [16]. 

( )

neq neq

i jf f= , where j is in opposite direction of i. At the inlet, stress tensors are as follows 

( ,xα =  and yγ = ) 

 

( )4 7 8 0 0

1
2

3

neq

xx x x x
f f f u u uρ ρ ρΠ = + + + − −   

( )7 8 3 5 0 0 0

1 1
2

3 3

neq

yy x x y y
f f f f u u u uρ ρ ρ ρΠ = + + + + − − −  

( ), 7 8 0 0

1
2

3

neq neq

yx xy i x y y
f f u u uρ ρΠ = Π = + − +  

 
Similar expressions are obtained for outlet and walls.  

At the inlet-top-corner, second order extrapolation scheme is used to estimate the density, and 
unknown particle distribution function is 
 

( )6 1 7 3 4 0 0

1 2
2

2 3
x yf f f f f u uρ ρ ρ

 
= − − + + − + 

 
  

 
Stress tensors are as follows 
  

( )4 7 6 0 0 0

1 2 1
2

3 3 3

neq

xx x y x x
f f f u u u uρ ρ ρ ρΠ = + + − + − −  

( )3 7 6 0 0

1
2

3

neq

yy y y y
f f f u u uρ ρ ρΠ = + + − − −  

( )7 6 0 0

1
2

3

neq

xy x x y
f f u u uρ ρΠ = + − −  

Similar expressions are obtained for other corners. 
 
3.2 Temperature  

For all cases, at the inlet uniform temperature profile is assigned. Temperature at the outlet is 
extrapolated from neighboring nodes using second order scheme. While at walls, temperature 
is set to a constant value to match the required Rayleigh number. These macroscopic 
boundary conditions are translated into regularized energy density distribution functions 
following the procedure of Haung et al., (2011) [21]. Again, for the sake of brevity, 
expressions of unknown energy density distribution functions at the inlet and inlet-top-corner 
(see Fig. 1) are presented only. At the inlet ( ,xα =  and yγ = ). 

 

2 2 0.5eq

xi x
g g e σ= − , where _ _x xi i x at inleti

e g Tuσ = −∑  

 
Similar expressions are obtained for outlet and walls. At the corners, second order 
extrapolation scheme is used to estimate the density and unknown particle distribution 
function is: 
 

2 2 0.5eq

xi x
g g e σ= − , where _x xi i inlet x inleti

e g T uσ = −∑  
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5 5 0.5eq

yi yg g e σ= − , where _y yi i inlet y inleti
e g T uσ = −∑  

 
Similar expressions are obtained for other corners. 

4.0 RESULTS AND DISCUSSION  

Schematic of inclined channel is shown in Fig. 1. Channel height and inlet temperature are 
chosen as reference length and temperature, respectively. Velocity and temperature are 
normalized as in ref [1] and Nusselt number is based on inlet temperature. Angle of 
inclination ‘Ø’ is the angle between the channel axis and the gravity vector. Three inclination 
angles 0, 30 and 60 ° are considered in the study. Aspect ratio (channel length to height) of 
the channel is chosen as five. MATLAB software was used for coding. All simulations were 
carried out on HP desktop with Intel Core i3 processor and 4GB of RAM.  
 
Present simulations consider air as the working fluid. The values of air properties are as 

follows: density, 1.225ref
ρ =  kg/m3, dynamic viscosity, 51.94µ −=  kg/m-s, thermal conductivity, 

k = 0.0275 W/m-K and specific heat capacity, Cp= 1006 j/kg-K. Prandlt number /
p

C kµ  is 

0.71. Rayleigh number ( )( )3 2/
ref

g T T Hβ υ− , Ra is varied from 102 to 106. 

For validation of results from the present code, finite volume code Fluent [23], is used for 
simulation of equivalent macroscopic natural convection in channels. Results are compared at 
the end of this section.  
 

 
Figure 2: Grid dependency test: (a) Velocity, (b) Nusselt number. 

For grid dependency test, laminar force convection in a channel is considered. Reynolds 
number is set to 100. Three grids are considered namely, grid-1 (81 × 401), grid-2 (101 × 
501) and grid-3 (121 × 601). Fig. 2a and 2b show the velocity and Nusselt number obtained 
from different grids, respectively. Comparison of velocity and Nusselt number from different 
grids reveals that grid-2 resolution is sufficient for obtaining accurate results. Grid-2 is used 
for all simulations except for Rayleigh number of 106, where grid with 121 × 601 lattice 
nodes is used. In present simulations relaxation time, τ  is set to 0.7. For simulation with 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences                                          
                                                         ISSN (online): 2289-7879 | Vol. 10, No. 1. Pages 11-26, 2015 

 

18 
 

Penerbit

Akademia Baru

fluent code a non-uniform grid with 60×150 nodes is used. Table 1 shows details of 
simulation cases considered in the present study. For all simulations initial velocity and 
temperature are set to zero. Velocity and temperature field of forced convection in a channel 
is used as reference for comparison.  

Table 1: Simulation cases 

Rayleigh No. Case No. Inclination angle ( Ø ) 

100 

1 0° 

2 30° 

3 60° 

1000 

4 0° 

5 30° 

6 60° 

10000 

7 0° 

8 30° 

9 60° 

50000 

10 0° 

11 30° 

12 60° 

100000 

13 0° 

14 30° 

15 60° 

 
 

 

Figure 3: Normalized velocity for various Raleigh numbers at location-A. (a) Ø = 0 °, (b) Ø 
= 30°, and (c) Ø = 60°. 
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Fig. 3 shows the normalized velocity for various Rayleigh number in vertical and inclined 
channel at location-A (see Fig. 1). For various Rayleigh number, Fig. 3a shows normalized 
velocity profiles for vertical channel (Ø = 0°), while Fig. 3b and 3c show normalized velocity 
profiles for inclined channels with inclination angle of 30 and 60°, respectively. In Fig. 3a, 
for forced convection, velocity increases along the channel to reach a fully developed state at 
the outlet. Magnitude of velocity decreases asymptotically with increase in Rayleigh number 
(up to Ra = 104). This is because higher buoyancy force acting in the near wall region pulls 
the fluid towards the outlet, while fluid in the core region is pushed towards the inlet to 
conserve the momentum. Further increase in Rayleigh number decreases the magnitude of the 
velocity drastically, especially in the downstream region of the channel, showing the 
pronounced effect of buoyancy force.  For inclined channels, similar behavior of velocity 
field for various Rayleigh number is observed that can be noticed in Fig. 3b and Fig. 3c. For 
60° inclined channel, magnitude of velocities are relative higher when compared with 
velocity of other cases. This is because buoyancy is acting at an angle towards the left wall 
that hampers the momentum of the fluid next to the left wall, thus to balance the momentum, 
fluid at the core and near wall region attain higher velocity. 
 
Fig. 4 shows the normalized velocity for various Rayleigh number in vertical and inclined 
channels at location-B (see Fig. 1). For forced convection velocity profile is parabolic. When 
Rayleigh number is increased to 103 no appreciable change in velocity profile is observed. 
Further increase in Rayleigh number increases the buoyancy force in the near wall region that 
pulls the fluid towards the outlet, while buoyancy force in the core region pushes the fluid 
towards the inlet that can be observed in Fig. 4a. This phenomenon is more pronounced at 
higher Rayleigh number. For inclined channels, in Fig. 4b and 4c, similar behavior of 
velocity field for various Rayleigh number is observed with an exception that velocity field is 
asymmetric. This is because buoyancy force is acting at an angle. For 60° inclined channel, 
magnitude of velocities are relative lower when compared with velocity of other cases.  

 

Figure 4: Normalized velocity for various Raleigh numbers at location-B. (a) Ø = 0°, (b) Ø = 
30°, and (c) Ø = 60°. 
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Fig. 5 shows the normalized temperature for various Rayleigh number in vertical and inclined 
channels at location-A (see Fig. 1). For forced convection, temperature increases linearly at 
downstream region of the channel. Also, for moderate range of Rayleigh number (up to Ra = 
104), temperature increases linearly at downstream region of the channel. For higher Rayleigh 
numbers, temperature increase asymptotically and exponentially at downstream region of the 
channel that can be observed in Fig. 5a. For inclined channels, in Fig. 5b and 5c, similar 
behavior of temperature fields is observed, except that drastic increase in temperature is 
observed close to outlet for 60° inclined channel for high Rayleigh number. This is due to 
occurrence of flow reversal in the region. 

 

Figure 5: Normalized temperature for various Raleigh numbers at location-A. (a) Ø = 0 °, (b) 
Ø = 30°, and (c) Ø = 60°. 

Fig. 6 shows the normalized temperature for various Rayleigh number in vertical and inclined 
channels at location-B (see Fig. 1). For forced convection, the temperature profile is a inverse 
parabola. Temperature is high at near wall regions and low at core region of the channel. At 
the near wall region of the channel, temperature profile gets steeper with increase in Rayleigh 
number, while at the core region of the channel, temperature profile remain constant except 
for high Rayleigh number that can be observed in Fig. 6a. Increase in temperature in core 
region of the channel at high Rayleigh number reveals fluid entrainment in the region. For 
inclined channels, in Fig. 6b and 6c, similar behavior of temperature field can be observed 
except that temperature profile is relatively steeper at the right wall. 
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Figure 6: Normalized temperature for various Raleigh numbers at location-B. (a) Ø = 0°, (b) 
Ø = 30 °, and (c) Ø = 60 ° 

(a) (b)

(c) (d)

 

Figure 7: Comparison of normalized velocity and temperature for Ra = 5×104. (a) & (b) 
location-A, (c) & (d) location-B. 
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Figure 8: Comparison of normalized velocity and temperature field. Ra = 106. (a) β = 30° 
Velocity, (b) β = 30° Temperature, (c) β = 60° Velocity, (d) β = 60° Temperature. Solid line: 

Present study, Dotted line: Fluent. 

For validation, velocity and temperature profiles are compared with velocity and temperature 
obtained from Fluent code at location A and B. Rayleigh number of 5×104 is picked for 
validation. Fig. 7 show the validation of normalized velocity and temperature profile at 
location-A and Location-B. For vertical and 30° inclined channels, it can be seen that 
predicted velocity and temperature compares very well with results obtained from Fluent 
code. For 60° channel at location A, a small difference in predicted velocity and velocity 
obtained from Fluent code can be observed in the core region of the channel. Again, at 
location A, for vertical channel, noticeable difference in predicted temperature and 
temperature obtained from Fluent code can be observed at downstream of the channel. For 
local comparison velocity and temperature of whole channel is presented in Fig. 8 for 
inclined channels at Ra 106. 

In order to be consistent with literature [1, 2], present study calculates Nusselt number based 
on inlet temperature. Fig. 9 shows Nusselt number for various Rayleigh number in vertical 
and inclined channel. For forced convection, Nusselt number is high at channel entrance and 
decrease gradually to attain a constant value of 7.54 at the channel exit. Again here, Nusselt 
number of forced convection is used as reference for comparison. For vertical channel, 
Nusselt number is found to increase with increase in Rayleigh number. This is because, as 
mentioned earlier, buoyancy force enhances the fluid momentum in near wall regions and 
hence high temperature gradients in the vicinity of the walls. For inclined channels, Nusselt 
number of right wall is relatively higher than the Nusselt number of left wall, especially for 
60° of inclination, which is due to presence of cold fluid in the vicinity of the right wall 
region. Also, it can be seen that due to flow reversal at the channel outlet, Nusselt number are 
high and low at left and right wall, respectively, which can be seen in Fig. 9b and 9c. For all 
cases, comparison of averaged Nusselt number with correlation [24] is presented in Fig. 10. 
From Fig. 10 it is apparent that the averaged Nusselt number agrees well with the correlation 
for higher range of Rayleigh number. For Raleigh number range of 103-106, the percentage 
error in Nusselt number was within ± 10 range. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences                                          
                                                         ISSN (online): 2289-7879 | Vol. 10, No. 1. Pages 11-26, 2015 

 

23 
 

Penerbit

Akademia Baru

 

Figure 9: Local Nusselt number along the channel length for various Raleigh numbers.  (a) Ø 
= 0°, (b) Ø = 30° left wall, (c) Ø = 30° right wall, (d) Ø = 60° left wall, and (e) Ø = 60° right 

wall. 

 

Figure 10: Averaged Nusselt number for various Rayleigh number. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences                                          
                                                         ISSN (online): 2289-7879 | Vol. 10, No. 1. Pages 11-26, 2015 

 

24 
 

Penerbit

Akademia Baru

5.0 CONCLUSION 

Incompressible laminar natural convection in entrance region of 2D vertical and inclined 
channels is simulated using RLBGK and thermal LBGK method together with regularized 
boundary conditions. Rayleigh number is varied from 102 to 105. The channel orientation is 
varied from 0 to 60°. Analogous to Bernoulli’s equation, equivalent set of distribution 
functions are proposed to represent pressure at the inlet.  Predicted velocity and temperature 
match with velocity and temperature obtained from Fluent, and averaged Nusselt numbers 
agree well with correlation of Bar-Cohen and Rohsenow, 1984 [24] for higher range of 
Rayleigh number. For Raleigh number range of 103-106, the error in averaged Nusselt 
number was found to be within ± 10%. The present study concludes that RLBGK in 
conjunction with passive scalar thermal LBGK is a viable numerical method for simulating 
natural convection in 2D channels. 

NOMENCLATURE  

,c e   Micro velocities 

f  Density distribution function  

eqf   Equilibrium density distribution function  

F
r

  External force, N  
g   Internal energy density distribution function  

eqg   Equilibrium internal energy density distribution function  

Ra    Rayleigh number 

t    Time, s   

T    Temperature, K  

u
s

   Velocity vector, m/s   

β   Thermal expansion coefficient   

υ   Viscosity, m2/s  

ρ    Density, kg/m3  

φ   Inclination angle  

τ   Relaxation time, s  

ω   Inverse relaxation time, s  

λ   Thermal diffusivity, W/m K 

Π   Stress tensor 

i   Direction of micro velocity 

in   Inlet 

,α γ  Indices of direction 

eq   Equilibrium  

neq   Non-equilibrium  
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