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Abstract – As a practical dynamical system approach to analyse microorganisms, we have used the 

system identification approach to develop a framework that is capable of introducing external forcing 

on a time series data. For this goal, a two-equation deferential equation system for time evolution of 

the experimental parallel velocity values of head of a bull spermatozoon during circular swimming [1] 

is reconstructed. The planar movement of the sperm is shown to be modelled well with this deferential 

system for three different cases. We also present a least-squares analysis on a system with more sampled 

data with fewer points used in the time marching of the deferential system and show how the system can 

represent the real pattern approximately. Following this idea we bring a linearized model of the system 

and investigate it near its equilibrium points on a Trace-Determinant chart. Finally, we show how this 

straightforward system can be employed where external viscous and/or thermal forcings due to 

swimming in a nanofluid is a dominant phenomenon. We bring a phase portrait demonstration of the 

time evolution of the system to highlight the main modifications in the dynamics. Copyright © 2016 

Penerbit Akademia Baru - All rights reserved. 
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1.0 INTRODUCTION 

Among many other applications experimental data represent the mathematical structure of the 

underlying systems. Traditionally, differential equations have been employed to model the 

physical assumptions adopted for real world problems. Conversely, in the so-called system 

identification approach governing equations of the systems are reconstructed by proper 

selection of a mathematical form from the experimental time series. One of the challenges in 

these methods is treating high-dimensional disturbances in nonlinear systems where overfitting 

the data is often inevitable [2]. The other important concerns are selecting a proper function 

space and considering the existing physical interactions of the dependent variables [3]. With a 

careful selection of the parameters, the resulted equations are needed to contain sufficient 

dynamical information about the system [3]. Theoretically, for systems with adequate low-

dimensional components, even when the system is of a high dimension or it is polluted by 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 17, No. 1. Pages 18-27, 2016 

 

 

19 

 

Penerbit

Akademia Baru

noise, the system identification algorithm can still represent some useful means of 

approximation [2]. In practice, adopting a parsimonious form of the model usually prevents the 

excitation of unphysical dynamical regimes. 

System identification methods have been used in many branches of science and engineering 

via modern non-linear analysis. The first attempts were mainly focused on seeking the local 

dynamics by capturing the short-range behaviours in the related attractor that are classified as 

flow method [5]. Later, the long-term effects proposed by [5] was employed together with the 

concept of the flow method to form the talented trajectory method [2]. Alternatively, a chaotic 

time series can be synchronized with a known structured differential system by obtaining the 

unknown parameters of the model. The synchronization algorithms can be applied via e.g. 

multiple shooting methods which are usually coupled with a high-dimensional minimization 

problem [6]. For a complete review on the issue one can refer to [2]. 

In this work, we have applied the system identification idea to the experimental time series of 

an experiment on the bull sperm swimming. Our motivation was the fact that viscous effects 

are the essential factor in migration of a successful sperm through the female tract. The complex 

physics of highly viscous invaginated media restricts the number of sperms ever succeed to 

only tens. This fact urges researchers to study the ways that they can guide a sperm to increase 

the chance of fertilization [7]. In other words, a simple non-dimensional analysis shows that 

the creeping flow around a sperm and other microorganisms is dominated by viscous effects 

and the governing equations of motion reduce to a balance between pressure gradients and 

viscous terms. Therefore, any change in the value of viscosity affects the motion drastically. 

Presenting an ordinary differential equation (ODE) model for the problem of sperm movement 

is important because we can make a basis for more complex systems with added spatial degrees 

of freedom by assessing the change in viscosity of the surrounding flow. After proposing the 

ODE, the next part of the paper is devoted to study the effect of changing the parameters of the 

linearized equation near the equilibrium points. 

In the last part we have investigated the effect of adding nanoparticles to the pure media. This 

technique is employed mostly to study the enhancement in thermal conductivity of nanofluids 

[8-14]. On the other hand, the change in the viscosity of the suspension can be modeled via an 

experimental relation as a single-phase system [15]. Since the nanoparticles are very tiny and 

the volume fractions are in low range, the suspension has no erosion, sedimentation, pressure 

change or non-Newtonian side effects [16]. For some relevant applications of the idea see [17-

20]. The effect of this external viscous forcing is introduced to the system by forcing the 

differential system with a proper forcing term borrowed from resistive force theorem (RFT). 

This theory states that by multiplying the local velocity components by resistance constants it 

is possible to approximate the force generated by each element. Forcing the dynamical systems 

with physical external excitations has been proposed and verified by [3]. 

2.0 MATHEMATICAL MODELING 

In this section we present the details of obtaining a proper two-equation system that is tuned to 

mimic the instantaneous velocity components of head of a bull sperm. The instantaneous 

velocities measured in a plane that are extracted from [1] are induced by the flagellar beat 

through circulating swimming in pure water. However the regime of the flow field is assumed 

to be the creeping flow, the dynamics of the system is basically nonlinear [1]. Therefore, we 

need to treat the nonlinearities properly. 
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Here, inspired by [2] we propose a polynomial-based coupled model with ten coefficients 

designed to get minimized cost functions associated with the error of the model [3]. 
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Where the displacement and velocity values are associated with y and v values respectively and 

the constants C1:C10 are to be determined. The structure of the system has been proved to be 

sufficient to represent the essential nonlinearities of the original data [21]. This format would 

be desirable when we force the system by adding some acceleration-type forcing terms to the 

right hand side of the second equation in the last section of the paper. 

Our first three test cases are designed and classified based on the length of time samplings. In 

cases 1, 2 and 3 δt = 9.7E - 4, 1.6E - 3, and 3.1E - 3 respectively. Thus, cases 1 and 3 correspond 

to the _nest and coarsest time samplings respectively. All these three cases use 10 sampled 

points. Test case 4 is examined via our least-squares analysis. Its time sampling is analogous 

to case 3 but it is sampled with 20 points. For cases 1, 2, and 3, the algebraic system is 

composed by writing equations 1a and 1b for each point as: 
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Hereafter, the coefficient matrix, unknown vector and the known vector are denoted by A10×10, 

C10×1 and B10×1 respectively. In system 2 the subscripts (i), i ∈  1:10 means the corresponding 

values at points 1 to 10. The approximated displacement y is obtained from the given velocity 

values using the trapezoidal rule and the differentiations in vector B is computed via second-

order differencing directly from the time series. We then apply the standard LU decomposition 

routine to find the ten unknowns. Table 1 brings the components of vector C for cases 1, 2 and 

3. The nonlinearity of the systems makes remarkable discrepancy in the values of the sets. 

Having the differential system we then solve the initial value problem with the fourth-order 

Runge-Kutta method by simply selecting the arbitrary y0 and experimental v0. In this study the 

Runge-Kutta time step is 10 times smaller than the original sampling time step. Left panel of 

Fig. 1 shows how the reconstructed ODE is consistent with the experimental values for the 

finest time sampling i.e. case 1. 

 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 17, No. 1. Pages 18-27, 2016 

 

 

21 

 

Penerbit

Akademia Baru

Table 1: Components of the Vector C for cases 1, 2, and 3. 

 Case 1 Case 2 Case 3 

c1 7.2E6 -8316.7 -1E5 

c2 3.6E5 1.4E5 -61247.9 

c3 -1.7E5 819.8 4913.6 

c4 2.1E5 6487.5 25179.8 

c5 -26998.2 -796.9 232.4 

c6 1434.7 -3.7 -41.4 

c7 2.6E5 -35003.1 -1050.8 

c8 26745.7 -258.4 -223.1 

c9 216.3 0.9 1.0 

c10 -3.9 0.0 0.1 

The ODE can also be used for the extrapolation purpose in the short time ranges. If we extract 

data points with larger sampling time steps, the quality of the prediction of the ODE is reduced. 

See the middle and right panel of Fig. 1 for the effect of rather large time samplings. However, 

the ODE estimations are poorer for larger time samplings, the main trend of the data is still 

captured. Since in our method sets of 10 points are employed for obtaining the values of C, one 

can apply the following algorithm for different sections of the experimental data and match the 

boundary values and slopes. 

 

Figure 1: Extracted Experimental Velocity Time Series (red) and the Modeled Values 

Obtained by Solving the System 1a, and 1b (green). Left, middle and right panels correspond 

to cases 1, 2 and 3 respectively. 

If we wish to use more than 10 data points with one single set of C1 to C10, least-squares concept 

would be a wise choice to approximate the over-determined problem [4]. For a n-data point 

system (n 〉 10) we can pre-multiply either sides of Eqn. 2 by the transpose of the coefficient 

matrix namely AT to get: 

 

10 10 1 10 1

T T

n n n n n
A A C A B× × × × ×=           (3) 

 

The above system leads to a new 10 equation and 10 unknown system and can be solved similar 

to system 2. 
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The relative error with respect to the experimental velocity values ( )

ex

iu  is defined as: 
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Figure 2 shows the time convergence quality for different samplings. The depicted results 

compare relative error values E for cases 1, 2 and 3. We can deduce that if we decrease the 

time step of sampling, the relative errors decay at least with order -2.6. This feature of the 

results guarantee the time convergence of the method. Conversely, we have found that however 

decreasing the Runge-Kutta time step tends to better match in each individual time samplings, 

the gain saturates for very fine Runge-Kutta time steps. This indicates that the sampling enjoys 

the main contribution in approaching the predicted values to the experiment, while for each 

sampling time step Runge-kutta time step less than ten times smaller than the sampling time 

step would not make more gain. Therefore, in this study this ratio has been adopted through all 

results. 

 

Figure 2: The Relative Error versus Different Sampling Times. Cases 1, 2 and 3 correspond 

to δt=9.7E-4, 1.6E-3, and 3.1E-3 respectively. Slope of the Solid line is -2.6. 

For case 4, Fig. 3 shows the effect of applying the least-squares technique where the original 

data points are n = 20. For this approximation relative error value in equation 4 is 12.96 which 

is obviously larger than the typical values obtained for the non-least-squares cases. However, 

the least-squares technique provides the least possible discrepancy between the predictions and 

the experimental data. Furthermore, we should be aware of the effect of the round-off errors in 

the computations of the least-squares technique. For example, if we apply the least-squares 

technique trivially for the 10 points system the components of vector C slightly vary up to 

second floating point values. Some other methods like singular value decomposition can also 

be used to solve the over-determined system. 

3.0 ANALYSIS OF THE LINEARIZED MODEL 

As mentioned before, if a model reconstructs the original experimental data, then its 

mathematical specifications will give information about the original dynamical features. 

Therefore, in order to analyze basic dynamics of a system we follow the process of linearization 
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[22] to have the benefits of the excellent linearity principles theoretical background. This is 

one of the reasons that researchers seek models that are as simple as possible. 

 

Figure 3: Extracted Experimental Velocity Time Series (red) and the Modeled Values 

Obtained from Least-squares Technique (green) Corresponding to case 4. 

Non-linear systems behave close to their corresponding linear model in the vicinity of the 

equilibrium points. Thus, we take advantage of modeling the system with the very simple 

linearized model. The non-homogeneous linearized form of the system 1a and 1b reduces to: 

 
2

3 2 12

d y dy
c c y c

dt dt
− − =            (5) 

 

The solution for this model is a superposition of the homogeneous solution and one particular 

solution for the non-homogeneous equation that is a direct function of c1. Here, we investigate 

the homogeneous part, considering that the trace and determinant of the corresponding system 

are c3 and -c2 respectively. Real and complex eigenvalues of the system are seen to be a direct 

function of these two parameters. Therefore, a low-dimensional assessment of the system is 

possible. Fig. 4 reveals the corresponding schematic Trace-determinant diagram. In this figure 

different scenarios of the stability of the manifolds based on different values of the equation 

parameters are represented schematically. 

 

Figure 4: Schematic Trace-Determinant Diagram for Classification of Fixed Points of the 

Linearized System 5. Trace = c3, Determinant = -c2. 
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4.0 EXTERNAL VISCOUS AND THERMAL FORCING 

In order to investigate the effect of extra viscous forcing due to additive nanoparticles we use 

RFT to explain the force on the sperm. RFT is itself a low-dimensional simplification to the 

slender body theory where slender filaments are approximated in the zero-Reynolds number 

limit. RFT is first presented by [23] and its relations are well described in [24] for a helical 

pattern that is the common movement path for a typical sperm. In RFT the sperm movement is 

considered as elements travelling with velocity ˆˆu u uη ζ⊥= +


 where u

  and u⊥ are respectively 

velocities parallel and normal to the tangential vector with unit vectorsη̂ , and ζ̂ . In addition, 

the local drag coefficients c

and c⊥  are assigned to relate the local viscous forces per unit mass 

to the local velocity components. Here, we deal with the parallel velocity values, since parallel 

drag force acts corresponds to this velocity component, in a way that the total acceleration 

tangent to the movement direction can be written as ˆa c uη= −
  

. For a filament moving in a 

plane through a liquid with viscosity μ far from a solid body RFT approximates the c

 as: 

 

2

2 1
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           (6) 

 

In which, λ  is the wavelength of the flagellar bending waves, and r is the approximate radius 

of the filament. For water at 36oC, 66 8 .mλ µ= ±  The length of head of sperm is also about 10 

μm. Since, in our creeping flow regime in the lack of inertia the only governing force of the 

system is the viscous forcing, we introduce the remarkable extra viscous effects due to the 

added nanoparticles as an additive acceleration term to the second equation of system 1a and 

1b. 

The contribution of adding nanoparticles to change in the viscosity of the base flow (here water) 

is investigated via experimental relation of Brinkman [15]. In this relation the viscosity of the 

nanofluid is approximated as a function of the viscosity of the base flow μbf containing a dilute 

suspension of nanoparticles with volume fraction ϕ. The formula is valid only for spherical 

nanoparticles [15]. Based on this relation we can find δμ the change in the viscosity of the 

medium which is the cause of the extra viscous forcing. 

 

( )
2.5

1
1

1
bf

δµ µ
φ

 
= − 

 − 
          (7) 

 

For water at 36 ,o C 0.7 .
bf

mPasµ = This way we can model the nanofluid as a single-phase and 

approximate the extra acceleration force imposed on the system by using δμ instead of μ in 

Eqn. 6. 

For the effect of temperature change on the viscosity of the surrounding flow we employ the 

extrapolated values from the experiment of [25]. Fig. 5 shows the solution space of the system 

corresponding to case 1, 2, and 3 for two typical values ϕ = 0.1 and 0.2 with and without 

temperature forcings. In this figure the vertical axis is the percentage of deviation of the 

acceleration and the horizontal axis represents its base velocity values. Based on the figure the 

acceleration is triggered mostly for some unique velocity values. In fact as the time sampling 
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is increased from case 1 to case 3 the number of triggered velocity values are increased. 

Furthermore, for each case we can see that extra volume fractions makes more deviations but 

with the same trend. On the other hand increasing the temperature from 36 to 38oC moderates 

this implied deviation. 

 

Figure 5: Percentage of Deviation of the Acceleration of the Sperm Swimming in a 

Nanofluid versus Base Velocity Values. Red Symbols: ϕ=0.1, T=36oC, Green Symbols: 

ϕ=0.2, T=36oC, Blue Symbols: ϕ=0.2, T=38oC. 

5.0 CONCLUSIONS 

We have derived a differential equation system for the time evolution of the experimental 

parallel velocity values of a sperm moving in pure water. The choice of parallel component is 

arbitrary and the whole framework can be extended for normal velocity or angular moments as 

well. This system mimics the real pattern acceptably. Furthermore, the system can also follow 

more sampled points via a least-squares analysis. Therefore, we can use this concept as a low-

dimensional assessment of comparable experiments. On the other hand, one can investigate the 

obtained differential system near its equilibrium points to enjoy linearity benefits. We have 

sketched a trace-determinant diagram to show how we can control the dynamics by adjusting 

few constants in the second equation of the system. Finally, we have forced the system by an 

additive viscous force term due to the presence of nanoparticles in the base ow while the 

modified viscosity of this nanofluid suspension is modeled as a function of the viscosity of the 

pure water and the nanoparticles volume fraction in a single-phase analysis. It can be seen that 

the deviation of acceleration occurs mainly in some unique velocity values where extra volume 

fractions contributes to more triggered values. On the other hand this amplification is 

moderated by increasing the temperature of the media. One may consider the effect of solid 

walls and other governing phenomena by adding more forcing functions as well. The model 

can also be used for extrapolation of the values in short ranges. However, investigation of more 

complex systems needs some couplings of low-dimension models, the proposed framework 

can be a basis for more effective fertilization approaches. 

REFERENCES 

[1] B.M. Friedrich, I.H. Riedel-Kruse, J. Howard, F. Julicher, High-precision tracking of 

sperm swimming fine structure provides strong test of resistive force theory, The Journal 

of Experimental Biology 213 (2010) 1226-1234. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 17, No. 1. Pages 18-27, 2016 

 

 

26 

 

Penerbit

Akademia Baru

[2] P. Perona, A. Porporato, L. Ridolfi, On the Trajectory Method for the Reconstruction of 

Differential Equations from Time Series, Nonlinear Dynamics 23 (2000) 13-33. 

[3] A. Porporato, L. Ridolfi, Some dynamical properties of a differential model for the 

bursting cycle in the near-wall turbulence, Physics of Fluids 14 (2002) 4278-4283.  

[4] S. Sharafatmandjoor, N.A. Che Sidik, F. Sabetghadam, A Least-Squares-Based 

Immersed Boundary Approach for Complex Boundaries in the Lattice Boltzmann 

Method, Numerical Heat Transfer, Part B: Fundamentals 64 (2013) 407-419. 

[5] J.P. Crutchfield, B.S. McNamara, Equations of motion from a data series, Complex 

Systems 1 (1986) 417-452. 

[6] U. Parlitz, L. Junge, L. Kocarev, Synchronization-based parameter estimation from time 

series, Physical Review E 54 (1996). 

[7] J.C. Kirkman-Brown, D.J. Smith, Sperm motility: is viscosity fundamental to progress?, 

Molecular Human Reproduction 17 (2011) 539-544. 

[8] M.R. Abdulwahab, A Numerical Investigation of Turbulent Magnetic Nanouid Flow 

inside Square Straight Channel, Journal of Advanced Research in Fluid Mechanics and 

Thermal Sciences 1 (2014) 44-52. 

[9] N.H.M. Noh, A. Fazeli, N.A. Che Sidik, Numerical Simulation of Nanofluids for Cooling 

Efficiency in Microchannel Heat Sink, Journal of Advanced Research in Fluid Mechanics 

and Thermal Sciences 4 (2014) 13-23. 

[10] W. Penga, B. Minlia, L. Jizua, Z. Lianga, C. Wenzhenga, L. Guojiea, Comparison of 

Multidimensional Simulation Models for Nanofluids Flow Characteristics, Numer. Heat 

Trans., Part B: Fundamental (2014) 62-83. 

[11] F. Selimefendigil, H.F. Oztop, Estimation of the Mixed Convection Heat Transfer of a 

Rotating Cylinder in a Vented Cavity Subjected to Nanofluid by Using Generalized 

Neural Networks. Numerical Heat Transfer, Part A: Applications (2014) 165-185. 

[12] F. Alfieri, S. Gianini, M.K. Tiwari, T. Brunschwiler, B. Michel, D. Poulikakos, 

Computational Modeling of Hot-Spot Identification and Control in 3-D Stacked Chips 

with Integrated Cooling, Numerical Heat Transfer, Part A: Applications (2014) 201-215. 

[13] S. Sivasankarana, K.L. Pana, Natural Convection of Nanofluids in a Cavity with Non-

uniform Temperature Distributions on Side Walls, Numerical Heat Transfer, Part A: 

Applications (2014) 247-268. 

[14] A. Kazemi-Beydokhtia, H.A. Namaghia, S.Z. Herisa, Identification of the Key Variables 

on Thermal Conductivity of CuO Nanofluid by a Fractional Factorial Design Approach. 

Numer. Numerical Heat Transfer, Part B: Fundamentals (2014) 480-495. 

[15] H.C. Brinkman, The viscosity of concentrated suspensions and solutions. The Journal of 

Chemical Physics 20 (1952) 571-581. 

[16] N. Bachok, A. Ishak, I. Pop, Stagnation-point ow over a stretching/shrinking sheet in a 

nanouid, Nanoscale Research Letters 6 (2011) 623. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 17, No. 1. Pages 18-27, 2016 

 

 

27 

 

Penerbit

Akademia Baru

[17] M. Mehrabi, M. Sharifpur, J.P. Meyer, Viscosity of nanofluids based on an artificial 

intelligence model, International Communications in Heat and Mass Transfer 43 (2013) 

16-21. 

[18] N.A. Che Sidik, M. Khakbaz, L. Jahanshaloo, S. Samion, N.A. Darus, Simulation of 

forced convection in a channel with nanofluid by the lattice Boltzmann method, 

Nanoscale Research Letters 8 (2013) 178. 

[19] H.G.R. Kefayati, Simulation of Ferrofluid Heat Dissipation Effect on Natural Convection 

at an Inclined Cavity Filled with Kerosene/Cobalt Utilizing the Lattice Boltzmann 

Method, Numerical Heat Transfer, Part A: Applications (2014) 509-530. 

[20] W. Penga, L. Jizua, B. Minlia, W. Yuyanab, H. Chengzhia, Z. Lianga, Numerical 

Simulation on the Flow and Heat Transfer Process of Nanofluids Inside a Piston Cooling 

Gallery, Numerical Heat Transfer, Part A: Applications (2014) 378-400. 

[21] T. Eisenhammer, A. Hubler, N. Packard, K.A.S. Kelso, Modeling Experimental Time 

Series with Ordinary Differential Equations. Biological Cybernetics 65 (1991) 107-112. 

[22] M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems, and 

an Introduction to Chaos, Third Edition, Elsevier Academic Press, 2012. 

[23] J. Gray, G.J. Hancock, The propulsion of sea-urchin spermatozoa. Journal of 

Experimental Biology 32 (1955) 802-814. 

[24] E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Swimming in Circles: Motion 

of Bacteria near Solid Boundaries, Biophysical Journal 90 (2006) 400-412. 

[25] J. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective 

viscosities and thermal conductivities of aqueous nanofluids containing low volume 

concentrations of Al2O3 nanoparticles, International Journal of Heat and Mass Transfer 

51 (2008) 2651-2656. 


