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Abstract -In this work we have begun a comparative study of the propagation of sound waves in 

carbon nanotubes has single wall using nonlocal elasticity for two different materials such as 

aluminum designated by (AL) and Nickel (Ni ), one based on the theories of beams of Euler-bernoulli 

and Timoshenko, the constructions are based on these two materials grace to its lightness and 

hardness it Frequency equations and modal shape functions of Timoshenko beams structures with 

some typical boundary conditions are also derived from nonlocal elasticity. The research work 

reveals the significance of the small-scale effect on wave propagation in single-walled CNTs. 

Copyright © 2016 Penerbit Akademia Baru - All rights reserved. 
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1.0 INTRODUCTION 

Since the discovery of carbon nanotubes (CNTs) in the early 1990’s by Iijima [1], the CNTs 

has attracted worldwide attention in many areas of science and industry and stimulated 

extensively experimental and theoretical studies [2]. Numerous studies showed that CNTs 

possess extraordinary physical properties such as the ratios of high stiffness-to-weight and 

strength-to-weight and enormous electrical and thermal conductivities over other known 

materials. CNTs are cylindrical macromolecules composed of a highly ordered sheet of 

carbon atoms in a periodic hexagonal arrangement rolled into a tube. 

Many believe that carbon nanotubes may provide good reinforcing materials for the 

development of a new class of nanocomposites [3,4]. In particular, CNTs expect to have lots 

of uses in nano-electron such as nano-switch, nano-devices, sensors and (high frequency) 

micromechanical oscillators [5–9]. In recent years, the micro-wave absorbing effect and 

electromagnetic characteristics of CNTs has also attracted considerable interest for theoretical 

and practical importance in fundamental science and application [10–12]. So, understanding 

the effect of magnetic field on the characteristics of wave propagation in CNTs is essential 

and may give a useful help in applications for nano-engineering. Carbon nanotubes (CNTs) 

possess remarkable electronic, thermal and mechanical properties [1–3], leading to many 

potential applications for nanoelectronics, nanodevices and nanocomposites [4–7].  
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Hence, understanding the mechanical and physical properties of CNTs is essential to their 

applications in engineering. The study of vibration and wave propagation in CNTs is a major 

topic of current interest [8]. Many theoretical and experimental [9–16] methods are used to 

estimate and measure the mechanical and physical properties of CNTs. Since controlled 

experiments at nanoscales are difficult, it is nearly impossible direct measurement of their 

properties [17,18]. It is well known that a molecular dynamics method (MD) [19,20] has been 

highly developed to simulate the properties of the material with microstructures. 

However,MD simulations remain expensive and formidable especially for large-scale 

systems. The study of wave propagation in carbon nanotubes is only recently things. 

Sudak [15] studied infinitesimal column buckling of CNTs, incorporating van der Waals 

forces and small-scale effects, and showed that the critical axial strain decreases, compared to 

the results with classical continuum beam model, where the small length scale increases in 

magnitude. Zhang et al. [16] proposed a nonlocal multi-shell model for the axial buckling of 

CNTs under axial compression. Their results showed that the effect of the small-scale on 

axial buckling strain is related to the buckling mode and the length of tubes. Wang [17] 

studied the dispersion relations for CNTs considering small-scale effects.  

Wang and Hu [18] studied the flexural wave propagation in a single-walled CNT (SWCNT) 

through the use of the continuum mechanics and molecular dynamic simulation based on the 

Terroff–Brenner potential. Lu et al. [19,20] analyzed dynamic properties of flexural beams 

using a nonlocal elasticity model. A qualitative validation study showed that results based on 

the nonlocal continuum mechanics are in agreement with the published experimental reports 

in this field. In this paper, based on the theory of nonlocal elasticity, a single-elastic beam 

model is developed for transverse propagation wave in SWCNTs, which considers the scale 

effect in the formulation of stress tensors. The wave characteristic solution is studied with 

respect to the vibrational mode, the scale coefficient, and diameters of SWCNTs. 

2.0 MATHEMATICAL FORMULATION 

2.1 Theory of Nonlocal Elasticity 

The length scales associated with nano structures like CNTs are such that to apply any 

classical continuum techniques, we need to consider the small length scales such as lattice 

spacing between individual atoms, grain size, etc. This makes the consistent classical 

continuum model formulation very challenging.  

This theory assumes that the stress state at a reference point, in the body is regarded to be 

dependent not only on the strain state at x but also on the strain states at all other points x=0 

of the body. This is in accordance with atomic theory of lattice dynamics and experimental 

observations on phonon dispersion. 

The most general form of the constitutive relation in the nonlocal elasticity type 

representation involves an integral over the entire region of interest. The integral contains a 

nonlocal kernel function, which describes the relative influences of the strains at various 

locations on the stress at a given location. The constitutive equations of linear, homogeneous, 

isotropic, non-local elastic solid with zero body forces are given by 

0, =jijσ  
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where Cijkl is the elastic modulus tensor of classical isotropic elasticity, σij and εij are stress 

and strain tensor, respectively, and ui is the displacement vector. ( )τα   ,'xx −  is the nonlocal 

modulus or attenuation function which incorporates into the constitutive equations the 

nonlocal effects at the reference point x produced by local strain at the source 'x . 'xx − is 

Euclidean distance. In τ = e0a/l [12], e0 is a constant appropriate to each material, a is an 

internal characteristic length (e.g. length of C–C bond, lattice parameter, granular distance), 

and l is an external characteristic length (e.g. crack length, wavelength). It is noted that the 

value of e0 needs to be determined from experiments or by matching dispersion curves of 

plane wave with those of atomic lattice dynamics. In the limit when the effect of strains at 

points other than x is neglected, one obtains classical (local) model of elasticity by setting 

e0= 0. 

For the nonlocal Timoshenko beam theory, the Hook’s law of carbon nanotube can be 

expressed as the following partial differential forms:
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Thus, the scale coefficient e0a in the modeling will lead to small-scale effect on the response 

of structures in nano-size. To investigate the small-scale effect on the wave solutions of 

SWCNTs, nonlocal Euler–Bernoulli and Timoshenko beam models are proposed hereinafter. 

3.0 NONLOCAL TIMOSHENKO BEAM MODEL 

According to the Timoshenko beam theory, the displacement field of any point in the beam 

writes: 
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Where x is the longitudinal coordinate measured from the left end of the beam, z the 

coordinate measured from the mid-plane of the beam, w the transverse displacement, u the 

longitudinal displacement, u0(x) and w0(x) are the displacement components of a point 

located on the neutral axis and xz
0γ  is the transverse shear strain measured on the mean-line of 

the beam (Eq. 7): 
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where )(0 xφ  is the total section rotation measured on the  mean-line of the beam. The linear 

Green–Lagrange strain tensor writes: 

 

dx

xd
z

dx

xdu
zxx

)()(
)( 00 φ

ε −=                                                                                                                            

)()( 0 xx
xzxz γγ =                (5) 

 

The bending moment can be defined by 

 

∫=

cA

cxdAzM σ                                                                                                                             (6)   

 

A is the cross-section area of the beam, It should be pointed out that for the Timoshenko 

beam theory, both bending moment M and the shear force V are independent.  Therefore, for 

the nonlocal model, these resultant forces are linked to the nonlocal stress components xyτ  

through the relations (9) and (11) and the constitutive relations (4) and (5). The similar 

remarks have been reported by Lu et al. [20]. Substituting Eq. 8 and 9 into the nonlocal 

constitutive relation Eq. 4 leads to 
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I is the moment of inertia, the shear force can be defined by 
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From the relations Eqs. 5, 7, 8, and 11, the shear force for the nonlocal model can be 

expressed as 
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where  β  is the form factor of shear depending on the shape of the cross section. The 

recommended value of b, the adjustment coefficient, is 10/9 for a circular shape of the cross 

area [26]. Now, it is straightforward to write out the dynamic equation for the beam element 

of length dx subjected to bending M and shear force V as follows:  
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The explicit expressions of the nonlocal bending moment M and the nonlocal shear force V 

can be obtained by substituting Eqs. 13, and 14 into Eqs. 10 and 12 as 
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Substitution of Eqs. 15, and 16 into 13, and 14 leads to the following nonlocal Timoshenko 

beam model 
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Eqs. 17, and 18 are the consistent basic equations of the nonlocal Timoshenko beam model 

based on the constitutive relations (4) and (5). The similar equations are found recently by Lu 

et al. [20]. Consequently, in the nonlocal Timoshenko beam model, both the nonlocal 

bending moment and the nonlocal shear force need to be determined based on relations (4) 

and (5). This conclusion is confirmed in literature [18,20]. 

4.0 FLEXURAL WAVE DISPERSION IN DIFFERENT BEAM MODELS 

To study the flexural wave propagation in an infinitely long beam, let the dynamic deflection 

and slope be given by [27,28] 
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where W  is the amplitude of deflection of the beam, and φ  is the amplitude of the slope of 

the beam due to bending deformation alone. In addition, ω  is the frequency of the wave 

motion. Substitution of Eqs. 19 into Eqs. 17 and 18 leads to the following two equations: 
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From Eqs. 20, and 21, the solution for the wave propagation in CNTs via nonlocal 

Timoshenko beam model can be derived from an eigenvalue problem searching for nontrivial 

solution of the variables of W , and φ . The wave solution based on the nonlocal Timoshenko 

beam model, ignoring rotary effect, is thus obtained as 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 18, No. 1. Pages 20-34, 2016 

 

25 

 

Penerbit

Akademia Baru

2)(
L

n
ae

IT

nT

πυ

υ

2
0 )(1

1

+

=             (20) 

 

The above equation is identical to that given by Lu et al. [20]. And ITυ  is CNTs phase 

velocity based on the local Timoshenko beam model which is given by 
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The asymptotic phase velocity aITυ  at n      ∞ based on the local Timoshenko beam model can 

be determined as well from Eq. 23 as follows: 
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The corresponding frequency-vibrational mode numbers n from the relation 

on )/( LnnTnT πυω = , and are given by 
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As is remarked in Eq. 22, the Eq. 25 is identical to that given by Lu et al. [20]. The 

asymptotic phase frequency anTω  at n     ∞ based on the nonlocal Timoshenko beam model 

can be determined as well from Eq. 25 as follows:      

     

)/()/(

/1

0 AIAGEI

AEI

ae
anT

ρρβ

ρ
ω

+
=

 
          (24) 

 

If neither the rotary inertial nor the shear deformation is taken into account, Eqs. 17, and 18 

lead to the dynamic equation of a nonlocal elastic Euler beam as follows: 
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Eq. 27 is identical to the equation of motion for the nonlocal Euler beam model given by Lu 

et al. [19,20] in the case where the distributed transverse force is zero. Solving Eq. 27 for the 

nonlocal phase velocity nEυ  give 
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where IEυ  is the wave phase velocity based on the local Euler–Bernoulli beam model given 

by 
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It can be observed from Eqs. 22, and 28 that the wave velocity ratio by Timoshenko model is 

identical to Euler–Bernoulli model: 

 

IE

nE

IT

nT

υ

υ

υ

υ
=               (28) 

 

Eq. (30) shows that the velocity ratio between nonlocal model and local model using Euler–

Bernoulli or Timoshenko theory can be investigated in the same way. The asymptotic phase 

velocity anEυ  at n      ∞ based on the nonlocal Euler–Bernoulli beam model can be determined 

as well from Eq. (28) as follows: 
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5.0 GENERAL SOLUTIONS FOR DIFFERENT BOUNDARY CONDITIONS 

For harmonic flexural wave propagation in an infinite beam governed by the equation of 

motion (17) and (18), the solution can be assumed in the form: 
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Using Eq. 32, Eqs. 17, and 18 can be expressed as 
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Eqs. 33, and 34 can be transformed into two uncoupled differential equations by eliminating 

W  or φ as follows: 
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The general solutions for Eqs. 36, and 37 are, respectively, given by [30] 
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The constants Ct and Dt are, however, not independent of one another. Through Eq. 33, they 

are related as follows: 

 

γγχχ Ψ=Ψ=Ψ=Ψ= 44332211 ,,, CDCDCDCD          (39) 

 

where 

  

χ

χχα
χ

L

ca
22222

)1( −−
−=Ψ            (40) 

γ

γγα
χ

L

ca
22222

)1( −−
=Ψ             (41) 

 

Now, the constants must be determined using the proper boundary conditions in the same 

way as is discussed in Ref. [19]. 

5.1 SIMPLY SUPPORTED BEAM 

The simply supported boundary condition is specified by w = 0 and M = 0, whereMis the 

bending moment given in Eq. (15). The condition M = 0 cannot be simply replaced 

by 0
2

2

=
∂

∂

x

w
. It is correct for the classical beam model but is wrong under the nonlocal beam 

model. In some of published work (e.g. Ref. [31]), the boundary conditions have been 

incorrectly defined. Therefore, the formulas and results obtained therein should be rechecked. 

For harmonic free vibration, the boundary condition of the simply supported nonlocal 

Timoshenko beam in the non-dimensional form is 
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In view of W= 0, the non-dimensional moment condition can be simplified to 
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By substituting Eqs. 38, and 39 into Eqs. 43, and 44, and then by using the relationships 

between the constants Ci and Di in Eq. (41), we arrive at an eigen value problem defined by 

the following matrix equation: 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

                                                                                 ISSN (online): 2289-7879 | Vol. 18, No. 1. Pages 20-34, 2016 

 

28 

 

Penerbit

Akademia Baru

 

0
sinhsinh

sinhsinh

4

2 =
















ΨΨ C

C

γγχχ

γχ

γχ

           (44) 

 

Since C1 = C3 = 0. The eigen values (frequencies) are obtained by setting the determinant of 

the matrix to zero and then solving the characteristic equation. In this stage, we will find the 

same frequencies as illustrated in Section 4. The corresponding mode shapes for simply 

supported beams are given by: 
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It can be noticed from Eq. 46 that the vibration modes do not include any scale effect 

parameter. 

 

5.2 Clamped–Clamped Beam 

The boundary conditions of clamped–clamped beam are specified by W = 0 and 0=Φ  

at 1,0=ξ . 47 By substituting the general solutions Eqs. 38, and 39 into the boundary 

conditions and noting the relationships between the constants Ci and Di in Eq. 41, we arrive at 

an eigen value problem defined by the following matrix equation: 
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The characteristic equation is obtained by setting the determinant of the matrix to zero. The 

eigen values (frequencies) are computed from solving the characteristic equation. The 

corresponding modal shape function are obtained as 
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5.3 Cantilever Beam 

For harmonic free vibration, the boundary conditions of a cantilever beam, according to Eqs. 

15, and 16 in the non-dimensional form, are specified by W = 0, and 0=Φ  at 1,0=ξ , and 
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By substituting the general solutions Eqs. 38, and 39 into the boundary conditions and noting 

the relationships between the constants Ci and Di in Eq. (41), we arrive at an eigen value 

problem defined by the following matrix equation: 
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The characteristic equation is obtained by setting the determinant of the matrix to zero. The 

eigenvalues (frequencies) are computed from solving the characteristic equation. 

6.0 DISCUSSON 

Based on the formulations obtained above with the nonlocal beam models, the wave 

properties of single-walled nanotubes are discussed here. The material and geometry 

constants of CNTs are given in Table 1 [25,29], and the shear module can be determined 

from the relation G=0.5E/((1+υ). The thickness of CNT t=0.34 nm is chosen [25] with 

diameter d = 5 nm and the length of nanotube is 36.8 nm. Parameter a describes internal 

characteristic length. The length of a C– C bond, which is 0.142 nm, is chosen for the 

analysis of CNTs [14,15]. On the other hand, parameter e0 was given as 0.39 by Eringen [12]. 

Table 1: Material constants of AL and Ni 

Aluminum  
υ=0.364,   ρ=2700Kg/m3   

,E=67000Mpa 

Nickel  
υ=0.312,   ρ=8900Kg/m3   

,E=21000Mpa 

To examine the influence of the small scale on vibration of single-walled nanotubes, let us 

compare the local and nonlocal results. The dispersion curves of the transverse wave 

propagation of the SWNT with d = 5 nm, based on local and nonlocal Euler–Bernoulli beam 

models, respectively, are shown in Fig. 1 at different values of the nonlocal parameter, 

namely, e0a= 1,3, and 6 nm. It is seen that the difference of the phase velocities becomes 

more obvious at higher vibrational mode numbers n, although this difference is almost 

invisible at small vibrational mode numbers n = 10 for the given domain of scale parameter 

e0a. The local Euler–Bernoulli beam model shows a virtual linear variation, whereas the 

velocity from the nonlocal model have their asymptotic values as given in Eq. 31. On the 

other hand, the derived phase velocities diminish with increasing the scale parameter e0a. 
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Figures 2, and 3 give a comparison of the CNTs phase velocity and frequency based on local 

and nonlocal Timoshenko beam model. It is seen that both frequency and phase velocity 

decrease with increasing the scale parameter e0a. This means that the dynamical properties 

(frequency, phase velocity, etc.) of the nanotubes based on the classical beam theories are 

over estimated. Figure 2 shows that the phase velocity from the local Timoshenko beam 

model has its asymptotic value as given in Eq. (24). 
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Figure 1: Phase velocity of flexural wave versus vibrational mode numbers by Euler-

Bernoulli model. 
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Figure 2: Phase velocity of flexural wave versus vibrational mode numbers by Timoshenko 

model. 
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Figure 3:  Wave frequency versus vibrational mode numbers by Timoshenko model. 
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Figure 3 shows a linear variation of frequency value versus the vibrational mode numbers for 

the local Timoshenko model. Further, a constant value of the frequency at higher vibrational 

mode numbers is observed for the nonlocal Timoshenko model. This constant value 

decreases with high scale parameter e0a. The asymptotic value of frequency is given in Eq. 

26. 

Figure 4 shows the variation of phase velocity ratio versus the scale parameter e0a for 

different values of the vibrational mode number n. It can be observed that the velocity ratio 

reaches unit at e0a= 0. At higher vibrational mode number, the ratio is seen to virtually 

approach unit. This investigation further demonstrates the conclusion that the phase velocity 

decreases as scale parameter increases and vibrational mode number decreases. 
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Figure 4:  Small effect on phase velocity ratio of flexural wave versus vibrational mode. 

In Fig. 5, the ratio of the phase velocity versus the diameter of the CNT at e0a =3nm is 

plotted. The four curves represent the variation of the velocity ratio at vibrational mode 

numbers n = 10, 20, 30, and 40. It is clearly seen that the velocity ratio is lower at smaller 

diameters. Therefore, it can be concluded that CNTs wave solutions are diameter dependent 

based on nonlocal elasticity. The small-scale effect on diameter becomes almost unnoticeable 

at larger diameters. The diameter dependence of [32]. 
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Figure 5:  Phase velocity ratio of flexural wave versus diameter at e0a= 3 nm. 

Wave solution for CNTs is first observed in the manuscript as all previous studies [33] 

indicated the diameter independent buckling solution of CNTs via nonlocal elasticity [34]. 
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7.0 CONCLUSION 

The main contribution in this paper is to describe the sound wave propagation in single 

walled for two materials (Al) and (Ni), the free vibration of short SWCNTs is studied in the 

present research via the nonlocal continuum beam models. Nonlocal Euler–Bernoulli and 

Timoshenko beam models enable the investigation of small-scale effects on a CNT’s 

dispersion solutions. The characteristics of sound wave propagation in single-walled carbon 

nanotubes is very significant, It is shown that the dynamical properties of the nanotubes 

based on the classical beam theories are over estimated. Hence, the work in the manuscript 

not only reveals the significance of the small-scale effect on CNTs mechanical response, but 

also points out the limitation of the applicability and feasibility of local continuum models in 

analysis of CNTs mechanical behaviors. 
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