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Abstract –We present the analysis and numerical simulations of incompressible Newtonian fluids for 

unsteady flows in a straight pipe and in deformed pipe with concave and convex deformation of the 

upper wall. An approach of modeling of blood flow is considered with an unsteady Navier-Stokes 

problem with a pulsatile flow for which we can establish analogy with existing cardio vascular systems. 

We apply the Finite Element Methods to obtain solutions and analyze the evolution of the flow over 

time. For the numerical simulations of fluid flows in complex geometries, FreeFem++ based on finite 

element method is used and we analyze the behavior of velocity and pressure qualitatively along time. 
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1.0 INTRODUCTION 

Incompressible Newtonian fluids flow is important to understand flow dynamics of biological 

fluids. This paper is mainly concerned with the analysis and numerical approximation of the 

nonstationary problem that models the motion of incompressible Newtonian fluids in different 

geometries. Given the complex behavior of this fluid, the second order partial differential 

governing equations are non-linear and they have the parabolic characteristic. The numerical 

simulations to unsteady Navier-Stokes equations were obtained computationally, by 

implementing the Finite Element Method [18]. 

Although there are several types of finite elements, we deal only with the discretization of the 

Navier-Stokes problem using a Lagrange Finite Element of type 12 PP − for velocity and 

pressure respectively [5, 11, 18]. Through the application of the finite element method for the 

Navier-Stokes system, we present the results of numerical simulations and all results will be 

presented here for two-dimensional case. 

The method Hood-Taylor is applied to the unsteady Navier-Stokes equations, and the 

corresponding linear system is solved by the direct method of Crout [10]. For this problem, we 
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approach the evolution in time of the solution, following the method of Characteristics 

Galerkin. The choice of solver and validation of the numerical method was made by 

considering the problem of Kim-Moin in square domain   = [0.25, 1.25] × [0.5, 1.5] for which 

it was considered for a refine mesh and a coarse mesh with several times steps [10]. 

All meshes and simulations were done in FreeFem++, the free software [7, 20] with its own 

high level programming language [17] based on the Finite Element Method to solve partial 

differential equations. FreeFem++ uses an automatic mesh generator based on Delaunay-

Voronoi algorithm where the number of internal points is proportional to the number of points 

on the boundaries. We develop a programming code in FreeFem++ to find ),( pu using the 

variational formulation from the Navier-Stokes equations and use Crout method as a solver to 

solve the system. The direct numerical simulations from the variational formulation for the 

time discretization can be used, straightforwardly implemented on the FreeFem++. 

From a wide range of applications of Newtonian fluids, we can mention in particular the 

behavior of blood in large arteries, since blood can be considered as a homogeneous and 

incompressible Newtonian fluid. For this reason, we have chosen some fictitious geometries 

similar to existent in some areas of cardio-vascular system [14] as well as geometries 

corresponding to pathological situations. 

For the numerical simulations of the fluid flow we choose different case studies. As a first 

option we simulate the flow in a straight pipe whose boundary is made up of two rigid walls. 

Second option, we choose a pipe with deformation on the upper wall as analogy of the 

pathological situations in cardio vascular system. To simulate an abnormal narrowing of a 

blood vessel, usually called stenosis, we define the upper wall with a concave deformation. To 

simulate a dilation of the vascular wall, designated as aneurysm, we define a convex 

deformation on the upper wall. We present the qualitative behavior of normal and tangential 

velocity and the pressure inside these geometries. The motivation to consider of these cases is 

that similar types of real engineering problems are very prevalent [21, 22]. 

2.0 NAVIER-STOKES EQUATIONS AND FINITE ELEMENT APPROXIMATION 

Let Ω  is a bounded domain of ℝ� , � = 2,3 with Lipschitz continuous boundary Ω∂ . We use 

different function spaces with different notations details of which can be found in [1, 3, 15]. 

Without loss of generality, we consider an incompressible fluid confined into a domain with 

fixed boundary. Mathematically, for each ],[ 0 Ttt ∈  (to simplify, we take from now 00 =t ), we 

write the unsteady Navier-Stokes equations with the Dirichlet boundary conditions gu = on 

Ω∂  (adherence conditions). The condition 0=g  is called the homogeneous Dirichlet boundary 

conditions (or no-slip boundary conditions) i.e., 0=u on Ω∂ , which describes a fluid confined 

into a domain with fixed boundary (the boundary is at rest) [12, 16]. Given f , find ),( pu  such 

that 
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where f  is a given external force field per unit mass, u  is the velocity field, 0u  is the known 

initial velocity field, p is the rate between the pressure and the density and  ν is the constant 

kinematic viscosity. 

The variational or weak formulation of Navier-Stokes equation consists of the integral 

equations over Ω obtained by integration, after multiplying the momentum equation and 

continuity equation by appropriate test functions. Let us suppose that )],0([2 Ω×∈ TCu  and 

)],0([1 Ω×∈ TCp  are the classical (or strong) solution of (1). Consider two Hilbert spaces 

)(1

0 Ω= HV   and )(2

0 Ω= LQ and take Vv ∈ and Qq ∈ be two arbitrary test functions. Applying 

the Green’s formula for the integration by parts and taking into account that v  vanishes on the 

boundary and after simplifying we get the variational formulation of the Navier-Stokes 

problem as: 
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for all ).()(),( 2

0

1

0 Ω×Ω∈ LHv q Here ))((
2

1
)( T

uuuD ∇+∇= is the deformation tensor. Taking 

into the definitions of the following bilinear and trilinear forms: 

)(:)(2))(),((2),( vDuDvDuDvu ∫
Ω

== ννa , ∫
Ω

⋅∇−=⋅∇−= vvv pppb ),(),( , and

∫
Ω

⋅∇⋅=∇⋅= vuwvuwvuw )(),)((),,(c  

we can reformulate the variational formulation of the Navier-Stokes problem as follows: 

],0[ Tt ∈∀ , given ))(;,0( 12 Ω∈ Hf TL and )(1

00 Ω∈ Hu with 00 =⋅∇ u , find  

);,0();,0(),( 22 QTLTLp ×∈ Vu  such that 
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for all  ).()(),( 2

0

1

0 Ω×Ω∈ Lq Hv  

It can be proved [9] that the problem (3) is well posed and equivalent to (1). The existence and 

uniqueness of theorem for the solutions of Navier-Stokes system can be found in [4-6, 9]. 

We consider finite element method (FEM) [18] to approximate the numerical solutions of 

Navier-Stokes problem (3). The FEM is a method which approaches the solution of partial 

differential equations (PDEs) and is a general technique for constructing approximate solutions 

to boundary value problems in dimension )3(, ≤dd . All results will be presented here for the 

two-dimensional case, where we will do the application of these concepts and presentation of 

numerical simulations. Although there are several types of finite elements, in the following, we 

deal only with the discretization of the Navier-Stokes problem, using a Lagrange Finite 

Element of type 12 PP − .The solution ),( pu of the problem (3) lives in a space of infinite 

dimension. In this circumstance, it is generally impossible to calculate the exact solution. Then 

we determine an approximation of u  and p , respectively hu and hp , each one defined in finite 

dimensional appropriate spaces hV , such that dim
0

))(lim)((
→

+∞==
h

h hIhIV and dependent on a 

parameter 0>h . These spaces are formed by polynomials and for all function hv  in hV (in 

particular hu  and hp  for the appropriate spaces) we have 

∑
=

=∈=
I

i

iih IiIRv
1

,,1,, Lαϕα , where },,,{ 21 Iϕϕϕ L  is a basis of hV . 

This is the principle of the Finite Element Method. The FEM can be studied in details in [2, 6, 

8, 11]. We use classical Galerkin method to find the solution. We consider Galerkin’s method 

for constructing approximate solutions to the variational boundary-value problem (2) or its 

abstract formulation (3). Galerkin’s method consists of seeking an approximate solution (2) in 

a finite-dimensional subspace hV  of the space of admissible functions where the solution lies 

in this subspace rather than in the whole space. The natural Galerkin approximation for problem 

(1) is a mixed method which is based on Lagrange multiplier formulations of constrained 

problems. We refer to mixed approximation methods as those associated to the approximation 

of saddle point problems, in which there are two bilinear forms and two approximation spaces 

satisfying a compatibility condition known as the discrete LBB (or inf-sup) condition [8, 19] 

which reads as follows: 

There exists )oftindependen(0 h>β  such that  
{ } { }

( )
β≥

∇

∈∈

h

hhhh

Q
hhh

hh

VvQq qvv
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Let 0}{ >Τ hh be a family of triangulations and h denotes a discretization parameter and let hV and 

hQ  be two finite dimensional spaces such that )(1 Ω∈ HVh  and ).(2 Ω∈ LQh We let 

)(: 1

0

0 Ω∩= HVV hh and )(: 2

0 Ω∩= LQM hh . 

In these spaces, the discrete finite element approximation problem of (3) can be written as 

follows: 
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As motion is non-stationary we need to discretize the Navier-Stokes equations over time. There 

are several methods of time discretization. In this paper we use Characteristic Galerkin Method 

which associates backward Euler scheme of first order defined by 

	
	� �
���, . � = 
�����,.��
���,.��������   

The Characteristic Galerkin Method evaluates time derivatives of vector field on Lagrangian 

frame, appealing to characteristic lines or trajectories described by a material particle when it 

has been driven by the field at the velocity of the field. We describe the motion of material 

particle of Newtonian fluid during the time interval�
�, 
�� ⊂ �0, ��, �� > 0�, which was in 

position   at instant 
! by  

"�;�$:  → "�
; 
�,  �  

and define its characteristics line or trajectory, with the same flow direction, by the only 

solution of Cauchy problem  

'�(�� �
; 
�,  � = 
�
; "�
; 
�,  ��, 
 ∈ �0, ��"�
�; 
�,  � =     

Now taking an uniform mesh of [0,T] defined by 
� = *Δ
, * = 0, … , -.�, Δ
 being the time 

step and applying the backward Euler scheme we can write the scheme for the problem (1), 

denoting 
�/"��0� ≈ 
2�0 − Δt5�t6��, 7�� = 56�7∗�  
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��� + Δt∇p6�� − 2νΔt∇. >�
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       (6) 

The discrete variational formulation of (6) is as follows: 
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where )(11 ∗++ +∆= xufg nnn t .  
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We can rewrite the above matrical equation in a simpler way 
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3.0 MATHEMATICAL MODELING AND IMPLEMENTATION OF BOUNDARY 

CONDITION 

With the aim of modeling the blood flow we consider the fluid confined in a domain with upper 

and lower boundary as rigid walls denoted by wΓ , an upstream section 1S  and downstream 

section 2S through which the fluid enters and leaves Ω  respectively. An inflow parabolic 

profile with respect to time is prescribed on upstream section, while on downstream section 

homogeneous Neumann conditions are assigned 1S  and 2S  are fictitious boundaries, since the 

vascular system is closed and there is no such boundary. We also assume that the flow tends 

smoothly to equilibrium as +∞→t , which mathematically translated by .0=f Combined 

form of above boundary conditions can be provided as follows: 



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T being the Cauchy stress tensor. The first condition of (9) guarantees the perfect adherence of 

the fluid to the wall while the second stages of the fluid enter with a pressure given by 


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
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



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5.2
cos1
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tPin π
 and the last indicates that there is no normal reaction over the boundary. 

We suppose that the fluid is initially at rest, although some time-varying transition should be 

expected before reaching the time-periodic regime, the main characteristics of the flow patterns 

are presented even when starting the simulation from the at-rest state. The input profile T · n 

on 1S  is shown in Fig. 3.1 

 

Figure 3.1: The input profile of inflow Neumann boundary condition. 

Taking the test function { }wonvvVv Γ=Ω∈=∈ 0:)(1H and applying the Green’s formula 

results 
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So, the discrete variational problem of Navier-Stokes equations with boundary condition as 

follows: 
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4.0 FLOWS IN A STRAIGHT PIPE 

To analyze the flow in a straight pipe we consider the propagation of a Newtonian fluid in a 

straight pipe of length 6=L by imposition of two fictitious borders { } ]1,0[01 ×=S  and 

{ } ]1,0[62 ×=S with a pulsatile pressure type on inlet 















−−

5.2
cos1

2

tP
in

π
. With this aim, we 

have taken the 2D rectangle ],1,0[]6,0[ ×=Ω and solved the problem with the Crout method 

on a structured mesh of 1200 elements, with 2541 nodes P2 for the velocity and 671 nodes P1 

for the pressure (Fig. 4.1). 
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Figure 4.1: Structured mesh employed in a straight pipe. 

We take a step time mst 01.0=∆ and the interval of time [0, 10ms]; a kinematic viscosity 

poise1=ν and ./2000 2cmdynesPin =   

The normal velocity increases from the walls until the center, from inlet to outlet (Fig. 4.2 - 

column at the left) along the pipe, symmetrically relative to the longitudinal axis as a 

consequence of the propagation of the impulse of the pressure within the pipe. In tangential 

velocity we can identify an anti-symmetrical behavior with respect to the longitudinal axis of 

symmetry of the pipe. 

  
t=0.5ms t=0.5ms 

  

t=1.5ms t=1.5ms 

 
 

t=2.5ms t=2.5ms 

  
t=3.5ms t=3.5ms 

  
t=5ms t=5ms 

Figure 4.2: Contour plots of normal velocity (on the left) and of pressure (on the right) at 

different instant of time. 

The following plots show the action of each component of velocity over the displacement of 

the fluid. Both lead the fluid into the center of the pipe and towards the downstream. 
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Figure 4.3: The representative vectorial filed of each component of velocity. 

These behaviors are visible at any instant of time. However, the maximum magnitude is 

reached at time t = 2.5ms and t = 7.5ms corresponding to the maximum value of the pressure 

at the inlet tube, and the minimum value of the magnitude of the normal speed occurs at instant 

times t = 5ms and t = 10ms, which is when the inlet pressure is zero. In fact, the magnitude of 

normal velocity has the same sinusoidal behavior of inflow (Fig. 4.4). 

 

Figure 4.4: Variation of magnitude of the normal velocity in function of time 

We can observe a propagation of pressure along the pipe. The increase and decrease of 

parabolic profile is directly related with the increase and decrease of inlet impulse (Fig. 4.2 - 

column at the right). The pressure varies on inlet keeping constant over time at the outlet. This 

means that the wave of inlet impulse is not strong enough to travel until the end of pipe, 

finishing by dissipate. The whole flow pattern is shown in Fig. 4.5 as instantaneous streamlines 

and the velocity vector plots. The behavior is the same along the time. We can observe a 

unidirectional flow laminar type (flow where there is a minimum of agitation of the fluid 

layers). For each time, we can observe the adjacent streamlines are equally distant which 

suggests a constant average speed and constant volume flow rate. 

  

Figure 4.5: The representative vector plot (on the left) and the streamlines (on the right). 

To confirm that, we computed the volume flux of fluid crossing a vertical line iS  of the mesh, 

corresponding to the position 60,,0, K== iihxi  and cmh 01= , on the axis, i.e., 

∫∫ ==

ii S

n

h

S

n

hi

n dyudynuxQ ..)( ,1  
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Figure 4.6: The volume flux of fluid at different times 

The behavior of velocity and pressure at ]10,5[ msmst ∈ repeats comparatively to the qualitative 

behavior at ]5,0[ msmst ∈ . 

5.0 FLOWS IN A DEFORMED PIPE 

5.1 Concave deformation of the upper wall 

We take a pipe with a concave deformation of the top wall. We consider the kinematic viscosity 

1=ν and the same time step mst 01.0= . The mesh is unstructured of diameter

cm 0.1606051=h , being cm 0.0554262min =h the diameter of the smallest element. The mesh 

is formed by 1948 elements with 1070 nodes P1 and 2679 nodes P2. 

 

Figure 5.1: Unstructured mesh employed, in a pipe with concave deformation of the upper 

wall. 

The figures below show the normal and tangential velocity (cm/s) at three instants of time 

significant for their behaviors close to the stenosis. 

t=0.5ms t=2.5ms t=3.5ms 

   

Figure 5.2: Normal velocity at different instants of time, in a pipe with concave deformation 

of the upper wall. 
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t=0.5ms t=2.5ms t=3.5ms 

  
 

Figure 5.3: Tangential velocity at different instants of time, in a pipe with concave 

deformation of the upper wall. 

We observe that the tangential velocity has an anti-symmetric behavior relatively to the axis of 

symmetry of stenosis. The minimum values are reached at the first half of the narrowing and 

the maximum values are reaching in the other half part. The following plots show the action of 

each component of velocity over the displacement of the fluid. While the normal velocity 

pushes the fluid against the upper wall slightly towards the downstream, the tangential velocity 

has the opposite behavior in the first half of the pipe and then reversing their action. 

  

Figure 5.4: The representative vectorial field of each component of velocity, in a pipe with 

concave deformation of the upper wall. 

We notice that the pressure decreases abruptly on stenosis. 

t=0.5ms t=2.5ms t=3.5ms 

   

Figure 5.5: Pressure at different instants of time, in a pipe with concave deformation of the 

upper wall. 

We computed the average quantities on each vertical line iS  of the mesh, corresponding to the 

position 60,,0, K== iihxi  and cmh 01= , on the axis. In particular, we computed the diameter 

of the pipe and the averaged pressure at each time: 

∫==

iS

n

h

i

i

n

ii dyp
xA

xpSmeansxA
)(

1
)()()(  

The Fig. 5.6 shows the averaged pressure at different instants. It is clear from this plot that the 

propagating inlet impulse is associated to these quantities. 
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Figure 5.6: The average pressure of fluid ( )i

n xp , at different times, in a pipe with concave 

deformation of the upper wall. 

 
t=0.5ms t=0.5ms 

t=1.5ms t=1.5ms 

  
t=2.5ms t=2.5ms 

 

t=3.5ms t=3.5ms 

  
t=5ms t=5ms 

Figure 5.7: The whole flow pattern: velocity vector plots and streamlines at five different 

times, in a pipe with concave deformation of the upper wall. 
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Figure 5.8: The volume flux of fluid )( i

n xQ , at different times, in a pipe with concave 

deformation of the upper wall. 

As in the case of a straight tube the magnitude of the velocity also increases with increase in 

the input pulse. Values vary significantly with the distance in area of stenosis and also in time 

during the period of the inlet impulse. It reaches the maximum value in narrowing at the same 

time as maximum of inlet impulse occurs (see streamlines – Fig. 5.7). The minimum value is 

reached behind the stenosis. As can be observed in the vector field in the corners of the stenosis 

exerts some tension, which being much higher at the right where a recirculation arises and it 

increases with the growth of inlet impulse and decreases as the input pulse reduces. The 

proximity of streamlines inside the stenosis indicates the increase of average velocity as we 

refer before and the decrease of volume flux as we can confirm with the Fig. 5.8. 

5.2 Convex deformation of the upper wall 

We take a pipe with a convex deformation of the top wall. We consider the kinematic viscosity 

1=ν and the same time step mst 01.0= as before. The mesh is unstructured of diameter

cm 0.153968=h , being cm 0.0664441min =h the diameter of the smallest element. The mesh 

is formed by 1582 elements with 867 nodes P1 and 3315 nodes P2. 

 

Figure 5.9: Unstructured mesh employed, in a pipe with convex deformation of the upper 

wall. 

Here we observe two distinct flows, one inside the dilatation part and other in the straight pipe. 

Inside the aneurysm we observed the formation of recirculation of flow. As we can see from 

the vector plots, there is a big tension on the wall due to the deceleration of the local velocity. 

This recirculation does not travel out of the bulged region, it remains within the aneurysm. We 

also observe that this recirculation increases with the inlet impulse and the center of vortex 

moves to the center of dilation for decreasing its intensity and decreases rapidly the remaining 
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inverse flows when the inlet impulse weakens. For other way the flow in the pipe has minimum 

of agitation. It is laminar type. The magnitude of velocity decreases in pipe in the area of the 

aneurysm. From the streamlines we observe the waves of inlet impulse. In the zone of dilation, 

the streamlines are spaced, which allows us to conclude that a decrease average speed and an 

increasing volume flux in this place, as we can see in Fig. 5.10. 

  
t=0.5ms t=0.5ms 

  
t=1.5ms t=1.5ms 

  
t=2.5ms t=2.5ms 

  
t=3.5ms t=3.5ms 

  
t=5ms t=5ms 

Figure 5.10: The whole flow pattern: velocity vector plots and streamlines at five different 

times, in a pipe with convex deformation of the upper wall. 

The behavior of components of velocity and pressure are qualitatively the same along the time. 

The normal velocity is lower in the region of dilation. We continue to observe anti-symmetric 

behavior of the tangential velocity, this time, in relation to the axis of symmetry of zone 

rounded, assuming the maximum value before of deformation contrary to what happens with 

the narrowing of the field (deformation concave). The following plots show the action of each 

component of velocity over the displacement of the fluid. While the normal velocity pushes 

the fluid against the upper wall. 
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Figure 5.11: The volume flux of fluid )( i

n xQ , at different times, in a pipe with concave 

deformation of the upper wall. 

The figures below show the normal and tangential velocity (cm/s) at three instants of time 

significant for their behaviors close to the stenosis. The tangential velocity has four distinct 

actions. First pushes the fluid to the center of the pipe then pushes in the direction of expansion. 

Within the aneurysm tangential velocity pushes out the fluid after and then it transports down 

to the outlet. The magnitude of the pressure varies according to the variation of the input pulse, 

decreasing from upstream to downstream, remaining virtually unchanged at the end of the tube. 

We can better verify this behavior taking into account the variation of the average 

pressure along the tube. 

 

   
t=0.5ms  t=2.5ms  t=3.5ms 

Figure 5.12: Normal velocity at different instants of time, in a pipe with convex deformation 

of the upper wall. 

   
t=0.5ms  t=2.5ms  t=3.5ms 

Figure 5.13: Tangential velocity at different instants of time, in a pipe with convex 

deformation of the upper wall. 
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Figure 5.14: The representative vectorial field of each component of velocity, in a pipe with 

convex deformation of the upper wall. 

t=0.5ms t=2.5ms t=3.5ms 

   

Figure 5.15: Pressure at different instants of time, in a pipe with convex deformation of the 

upper wall. 

 

Figure 5.16: The average pressure of fluid ( )i

n xp , at different times, in a pipe with convex 

deformation of the upper wall. 

6.0 DISCUSSION AND CONCLUSIONS 

The results of numerical simulations of incompressible Newtonian fluid flows in various 

geometries is presented and analyzed. Flow behavior of different test cases is investigated an 

approach of modeling of blood flow and the boundary conditions considered attempted to 

describe the conditions in the model of blood flow. 

By comparing the simulations results from their velocity, velocity vectors, pressure, 

streamlines and volume flux many differences can be noted due to the geometry of the domain. 

We observed that for the flow in a deformed pipe with concave deformation the tangential 

velocity has an anti-symmetric behavior to the axis of stenosis and a recirculation arises at the 

right which is directly related to the inlet impulse. And for the convex deformation in the upper 

wall we see the anti-symmetric behavior of tangential velocity in relation to the axis of 

symmetry of zone rounded and the formation of recirculation of flow takes place inside the 

aneurysm which remains same within the bulged region. 
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