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An exact analysis of unsteady free convection flow of fractionalized viscous fluid over an 
oscillating vertically inclined plate is obtained. The phenomenon of exponential heating 
is added into account for thermal aspects of an inclined plate. Moreover, in the model of 
problem, additional effects like thermo diffusion and slip are also used. Caputo fractional 
derivative is used in the model. The novelty of present study is to analyze the effect of 
angle of inclination on the flow phenomena and the model is generalized by using 
Fourier’s and Fick’s laws. The governing dimensionless equations for velocity, 
concentration, and temperature profiles are solved using Laplace transform method and 
compared graphically. The effects of different parameters like fractional parameter, 
thermo diffusion parameter, and slip parameter are discussed through numerous graphs. 
From figures, it is observed that Prandtl and Smith numbers have decreasing effect on 
velocity profile, whereas thermo diffusion and mass Grashof numbers have increasing 
effect on velocity of fluid. 
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1. Introduction 
 

Convection flow with porous media has numerous applications such as flows in soils, solar power 
collectors, heat transfer correlated with geothermal systems, heat source in the field of agricultural 
storage system, heat transfer in nuclear reactors, heat transfer in aerobic and anaerobic reactions, 
heat evacuation from nuclear fuel detritus, and heat exchangers for porous material. Mass and heat 
transfer occur mostly in nature due to temperature and concentration differences respectively. 
Today research work in Magnetohydrodynamics (MHD) has substantial significance as these flows 
are absolutely prevailing in nature. 

The important significance of non-Newtonian fluids can be seen in applied mathematics, 
engineering, and physics. It has various significance in many areas, such as uses of lubricants, 
biological fluids food processing, or plastic manufacturing. Some commonly examples of non-
Newtonian fluids are custard, colloids, melted butter, paint, ketchup, starch suspensions, blood, 
toothpaste, gels, shampoo, and corn starch. 
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MHD flow has many implementation in meteorology, distillation of gasoline, energy generators, 
geophysics, accelerators, petroleum industry, astrophysics, polymer technology, aerodynamics, 
boundary layer control, and for material process such as glass fiber drawing, extrusion, and casting 
wire. Kai-Long Hsiao [1] studied the MHD heat transfer thermal extrusion system with Maxwell fluid. 
The solution for unsteady flow of magnetic field in cylinder is obtained by Shah et al., [2]. The 
influence of slip and heat transfer effect on MHD flow with porosity has been observed by Das. [3]. 
Author in [4] discussed the solution of Jeffrey fluid flow with thermal radiation. 

Furthermore, convection flow in the existence of porosity has wide applications such as ground 
water hydrology, oil extraction, geothermal systems, cooling system, store of nuclear waste 
materials, energy efficient drying processes, solid matrix heat exchangers, and wall cooled catalytic 
reactors. Exact solution for magnetohydrodynamics flow through a plate in the existence of porosity 
is obtained by Ahmad et al., [5]. Fractional differential equation are analyzed by [6,7]. 

Kumar et al., [8] studied the influence of thermo-diffusion and radiation on MHD free convection 
flow. Sandeep et al., [9] worked on the flow of fluid with heat source. Authors in [10] studied the 
heat and mass transfer through an inclined plate. Ali et al., [11] analyzed the conjugate effects of 
heat and mass transfer over an inclined vertical plate. He obtained the solution for time dependent 
concentration and temperature. Convection flow immersed in a porous media through a plate is 
discussed in [12-14]. 

The impact of conjugate flow of MHD fluid is discussed by Khan et al., [15]. Aladig et al., [16] 
focused on the stream analysis model. MHD flow through an accelerated surface in the existence of 
porous media is discussed by Chaudhary et al., [17]. Authors in [18] also analyzed the solution of 
velocity field graphically. Ramzan et al., [19] examined the solution of Brinkman fluid with heat 
generation and chemical reaction, whereas, the solution for convection flow with non-uniform 
temperature through a moving plate is obtained by Seth et al., [20]. The solution of nanofluid with 
ramped temperature is studied by Khalid et al., [21]. 

The discussion of mass diffusion has empirical uses in numerous areas of engineering and applied 
sciences. This phenomena plays a vital role in cooling of nuclear reactor, tabular reactor, chemical 
industry, mixture of terracotta material, petroleum industry, and decomposition of rigid materials. 
Seddeek et al., [22] examined the MHD fluid flow with thermal radiation. An intensive study of 
chemical reaction with heat source/sink is studied by Shah et al., [23]. Seth et al., [24] obtained the 
solution of unsteady magnetohydrodynamic flow of fluid over a plate with ramped condition. The 
solution of convection flow of MHD Casson fluid through a channen with heat generation/obsorption 
is obtained by [25]. The exact solution of MHD fluid with mass transfer immersed in a porous media 
is studied by Ali et al., [26]. The exact solution of magnetohydrodynamic flow of a Brinkman fluid 
perpendicular to the plate is focused by Khan et al., [27]. The analytical investigation of Brinkman 
fluid flow with variable concentration, temperature, and velocity is obtained by Ali et al., [28]. 
Authors in [29] studied the Brinkman type nanofluid with slip effect. The unsteady flow of fractional 
fluid is analyzed by Shah et al., [30]. The study of nanofluids over a plate is discussed in [31,32]. The 
effects of Hall and ion slip on unsteady MHD free convective rotating flow is studied by [33,34]. 

In this problem, the model of unsteady free convection flow of viscous fluid over an inclined plate 
is considered. The impact of slippage and thermo diffusion is added into account. Firstly, the 
governing equations have been made non-dimensional and then solved analytically. The model is 
fractionalized by using Fourier’s and Fick’s Laws. The results for velocity profile, temperature profile, 
and concentration profile are obtained and then analyzed graphically. Various graphs are plotted 
and discussed for different parameters, which are used in the flow model.       
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2. Mathematical Description of the Model 
 

Let us consider the unsteady free convection flow of an incompressible viscous fluid over an 
inclined plate. The fluid is flowing vertically upward along 𝑦⋅-axis and the 𝑥⋅-axis is normal to the 
plate. The plate is inclined to vertical direction with an angle 𝐴. The plate and fluid have 
concentration 𝐶∞

⋅  and temperature 𝑇∞
⋅  at time 𝑡1

⋅ = 0 with zero velocity. But for 𝑡1
⋅ > 0, the plate 

starts to oscillate in the plane with uniform velocity 𝑈1𝑓(𝑡⋅). The concentration and temperature of 
the plate is increased to 𝐶𝑤

⋅  and 𝑇⋅ = 𝑇𝑤
⋅ (1 − 𝑎𝑒−𝑏⋅𝑡⋅

) + 𝑇∞
⋅  respectively. We made the following 

assumption: 
i. The Fluid’s conducting property is supposed to be slight and hence the magnetic Reynolds 

number is negligible. 
ii. Viscous dissipation and Joule heating in energy Eq. are neglected. 

iii. Electric field is neglected. 
iv. It is further supposed that there is no applied voltage, as the electric field is absent. 

In view of above assumption and using Boussinesq’s approximation, the convection flow of 
viscous fluid with Soret effect through a plate, linear momentum equation [12,19,35] is 
 

𝜌
𝜕𝑢1(𝑥⋅,𝑡1

⋅ )

𝜕𝑡1
⋅ =

𝜕𝜏(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅ + 𝜌𝑔𝛽𝑇⋅(𝑇⋅ − 𝑇∞
⋅ )𝑐𝑜𝑠(𝐴) + 𝜌𝑔𝛽𝐶 ⋅(𝐶⋅ − 𝐶∞

⋅ )𝑐𝑜𝑠(𝐴),              (1) 

 
shear stress 𝜏 is  
 

𝜏 = 𝜇
𝜕𝑢1(𝑥⋅,𝑡1

⋅ )

𝜕𝑥⋅ .                        (2) 

 
thermal equation is  
 

𝜌𝐶𝑝
𝜕𝑇⋅(𝑥⋅,𝑡1

⋅ )

𝜕𝑡1
⋅ = −

𝜕𝑞(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅ ,                      (3) 

 
where 𝑞1(𝑥⋅, 𝑡1

⋅ ) is the thermal flux, its constitutive equation is obtained by Fourier’s law given by  
 

𝑞1(𝑥⋅, 𝑡1
⋅ ) = −𝛼0

𝜕𝑇⋅(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅
.                     (4) 

 
Diffusion equation is  
 
𝜕𝐶 ⋅(𝑥⋅,𝑡1

⋅ )

𝜕𝑡1
⋅ = −

𝜕𝐽(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅ −
𝐷𝐾𝑇

𝑇𝑚

𝜕𝑞(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅ .                   (5) 

 
where 𝐽1(𝑥⋅, 𝑡1

⋅ ) is mass flux rate. The constitutive Eq. of molecular diffusion is obtained by Fick’s Law  
 

𝐽1(𝑥⋅, 𝑡1
⋅ ) = −𝐷𝑚

𝜕𝐶 ⋅(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅
.                     (6) 

 
where 𝐷𝑚 is the diffusivity constant. 

The initial and boundary conditions for the flow model are [14,29]  
 
𝑢1(𝑥⋅, 𝑡1

⋅ ) = 0,   𝑇⋅(𝑥⋅, 𝑡1
⋅ ) = 𝑇∞,   𝐶⋅(𝑦⋅, 𝑡1

⋅ ) = 𝐶∞
⋅ ,   𝑦⋅ > 0,    𝑡1

⋅ = 0,          (7) 
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𝑢1(0, 𝑡1
⋅ ) − 𝑅1

𝜕𝑢1

𝜕𝑥⋅
= 𝑈1𝑓(𝑡1

⋅ ),   𝑇⋅(0, 𝑡1
⋅ ) = 𝑇∞

⋅ + 𝑇𝑤
⋅ (1 − 𝑎𝑒−𝑏⋅𝑡⋅

),   𝐶⋅(0, 𝑡1
⋅ ) = 𝐶𝑤

⋅ ,   𝑡1
⋅ > 0,    (8) 

 
𝑢1(𝑥⋅, 𝑡1

⋅ ) → 0,   𝑇⋅(𝑥⋅, 𝑡1
⋅ ) → 0,   𝐶⋅(𝑥⋅, 𝑡1

⋅ ) → 0,     𝑥⋅ → ∞,     𝑡1
⋅ > 0.             (9) 

 

 
3. Generalized Model 
 

To write the flow model in dimensionless form, we used the following dimensionless variables  
 

𝑥∗ =
𝑈𝑥⋅

𝜈
 ,        𝑡∗ =

𝑈2𝑡1
⋅

𝜈
,        𝑇∗ =

𝑇⋅ − 𝑇∞
⋅

𝑇𝑤
⋅ − 𝑇∞

⋅
,       𝑢∗ =

𝑢1

𝑈⋅
,       

𝐺𝑟∗ =
𝜈𝛽𝑇⋅(𝑇𝑤

⋅ −𝑇∞
⋅ )

𝑈3
,       𝐶∗ =

𝐶 ⋅−𝐶∞
⋅

𝐶𝑤
⋅ −𝐶∞

⋅ ,       𝐺𝑚∗ =
𝜈𝛽𝐶⋅(𝐶𝑤

⋅ −𝐶∞
⋅ )

𝑈3
.          (10) 

 
Eq. (1) is fractionally generalized by Blair and Caffyn [36] 

 

𝜏 = 𝐿𝛽𝐷𝑡
1−𝛽 𝜕𝑢(𝑥,𝑡)

𝜕𝑥
,       1 ≥ 𝛽 > 0,                 (11) 

 
where 𝐿𝛽 = 𝑛1𝐾1−𝛽 = 1 when 𝛽 → 1. Put Eq. (11) into Eq. (1) and using non-dimensional 

parameters from Eq. (7), we have  
 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝐿𝛽𝐷𝑡

1−𝛽 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝐺𝑟𝑇(𝑥, 𝑡)𝑐𝑜𝑠(𝐴) + 𝐺𝑚𝐶(𝑥, 𝑡)𝑐𝑜𝑠(𝐴),         (12) 

 
Eq. (3) is generalized by using Fourier’s Law defined by Povstenko and Hristov [37,38]  

 

𝑞 = −𝐾𝛾𝐷𝑡
1−𝛾 𝜕𝑇(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0,                 (13) 

 
where thermal conductivity has generalized coefficient 𝐾𝛾. Put Eq. (13) into Eq. (3) and making non-

dimensional results, we have  
 
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

1

𝑃𝑟
𝐷𝑡

1−𝛾 𝜕2𝑇

𝜕𝑥2,                     (14) 

 

where 𝑃𝑟 =
𝜌𝜈𝐶𝑝

𝐾𝛾
 is the generalized Prandtl number. 

Eq. (5) is generalized by using Fick’s Law defined by  
 

𝐽 = −𝐷𝛼𝐷𝑡
1−𝛼 𝜕𝐶(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0.                 (15) 

 
where molecular diffusion has generalized coefficient 𝐷𝛼. Put Eq. (15) into Eq. (5) and making non-
dimensional results, we have  
 
𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

1

𝑆𝑐
𝐷𝑡

1−𝛼 𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2
+ 𝑆𝑟𝐷𝑡

1−𝛾 𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
,               (16) 

 

where 𝑆𝑐 =
𝜈

𝐷𝛼
 is the generalized Schimdt number. 
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Taking inversion left operator on Eq. (12), (14), and (16), we obtain  
 

𝐼𝑡
1−𝛽 𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) = 𝐷𝑡

𝛽
𝑢(𝑥, 𝑡) = 𝐿𝛽

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 + 𝐼𝑡
1−𝛽

𝐺𝑟𝑇(𝑥, 𝑡)𝑐𝑜𝑠(𝐴) + 𝐼𝑡
1−𝛽

𝐺𝑚𝐶(𝑥, 𝑡)𝑐𝑜𝑠(𝐴),   (17) 

 

𝐼𝑡
1−𝛾 𝜕𝑇(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑡

𝛾
𝑇(𝑥, 𝑡) =

1

𝑃𝑟

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
, (18) 

 
 for 𝛼 = 𝛾  
 

𝐼𝑡
1−𝛼 𝜕𝐶(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑡

𝛼𝐶(𝑥, 𝑡) =
1

𝑆𝑐

𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2
+ 𝑆𝑟

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2
. (19) 

 
with dimensionless initial and boundary conditions are  
 
𝑢(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) = 0,   𝑥 > 0,    𝑡 = 0, (20) 
 

𝑢(0, 𝑡) − 𝑅
𝜕𝑢

𝜕𝑥
= 𝑓(𝑡), 𝑇(0, 𝑡) = 1 − 𝑎𝑒−𝑏𝑡,   𝐶(0, 𝑡) = 1,   𝑡 > 0, (21) 

 
𝑢(𝑥, 𝑡) → 0,     𝑇(𝑥, 𝑡) → 0,     𝐶(𝑥, 𝑡) → 0,      𝑥 → ∞,   𝑡 > 0, (22) 
 
where 𝐷𝑡

𝛼𝑢(𝑥, 𝑡) represents the Caputo fractional derivative of 𝑢(𝑥, 𝑡) as  
 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = {

1

𝛤(1−𝛼)
∫

𝑡

0

1

(𝑡−𝑠)𝛼

𝜕𝑢(𝑥,𝑠)

𝜕𝑠
𝑑𝑠, 0 ≤ 𝛼 <   1;  

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
, 𝛼 = 1.   (23) 

 
4. Solution of Problem 
 

Eq. (17)-(19) with initial and boundary conditions has been solved analytically. 
 
4.1 Calculation of Temperature 
 

By applying Laplace transform on Eq. (18), we have  
 

𝑠𝛾𝑇(𝑥, 𝑠) =
1

𝑃𝑟

𝜕2𝑇(𝑥,𝑠)

𝜕𝑥2
. (24) 

 
Boundary conditions satisfying Eq. (24) are  

 

𝑇(0, 𝑠) =
1

𝑠
−

𝑎

𝑠+𝑏
,       𝑇(𝑥, 𝑠) → 0,   𝑥 → ∞.   (25) 

 
 Eq. (24) is solved using conditions given in Eq. (25), which results in 
 

𝑇(𝑥, 𝑠) = (
1

𝑠
−

𝑎

𝑠+𝑏
)𝑒−𝑥√𝑃𝑟𝑠𝛾

, (26) 

 
Suitable form of Eq. (26) is  

 

𝑇(𝑥, 𝑠) = (
𝑠𝛾

𝑠
−

𝑎𝑠𝛾

𝑠+𝑏
)

𝑒−𝑥√𝑃𝑟𝑠𝛾

𝑠𝛾 .                                                                                                                       (27) 
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Analytical solution of Eq. (27) is  
 

𝑇(𝑥, 𝑡) = ∫
𝑡

0
[𝐻1(𝑡 − 𝑝) − 𝑎𝐻2(𝑡 − 𝑝)]𝑓1(𝑥, 𝑝)𝑑𝑝, (28) 

 
where  
 

𝑓1(𝑥, 𝑝) = ∫
∞

0
𝑒𝑟𝑓𝑐(

𝑥√𝑃𝑟

2√𝑢
)

1

𝑝
𝜙(0, −𝛾, −𝑢𝑝−𝛾)𝑑𝑢, (29) 

 
𝑥 is the space coordinate, 𝑃𝑟 is the generalized Prandtl number, 𝛾 is fractional parameter, and by 

using formula 𝐿−1(
𝑒−𝑎√𝑠𝛼

𝑠𝛼 ) = ∫
∞

0
𝑒𝑟𝑓𝑐(

𝑎

2√𝑢
)

1

𝑡
𝜙(0, −𝛼, −𝑢𝑡−𝛼)𝑑𝑢,  

 

𝐻1(𝑡) =
𝑡−𝛾

𝛤(1−𝛾)
, (30) 

 
𝐻2(𝑡) = −𝑡𝛾𝐸1,1−𝛾 (−𝑏𝑡). (31) 

  
4.2 Nusselt Number 
 

From Eq. (27), the 𝑁𝑢 can be calculated in the following way  
 

𝑁𝑢 = −
𝜕𝑇

𝜕𝑥
|𝑥=0 = −𝐿−1{

𝜕𝑇

𝜕𝑥
|𝑥=0} = ∫

𝑡

0
[𝐻1(𝑡 − 𝑝) − 𝑎𝐻2(𝑡 − 𝑝)]

𝑝
𝛾
2

−1
√𝑃𝑟

𝛤(
𝛾

2
)

𝑑𝑝. (32) 

 
4.3 Calculation of Concentration 
 

By applying Laplace transform on Eq. (19), we have 
 

𝑠𝛼𝐶(𝑥, 𝑠) =
1

𝑆𝑐

𝜕2𝐶(𝑥,𝑠)

𝜕𝑥2 + 𝑆𝑟
𝜕2𝑇(𝑥,𝑠)

𝜕𝑥2 . (33) 

 
 Boundary conditions satisfying Eq. (33) are  
 
𝐶(0, 𝑠) = 𝑠−1,       𝐶(𝑥, 𝑠) → 0,   𝑥 → ∞. (34) 
 
 Eq. (33) is solved by using conditions given in Eq. (34), we have  
 

𝐶(𝑥, 𝑠) = 𝑠−1𝑒−𝑥√𝑆𝑐𝑠𝛼
+

𝑆𝑟𝑆𝑐𝑃𝑟𝑠𝛼(
1

𝑠
−

𝑎

𝑠+𝑏
)

𝑠𝛼(𝑃𝑟−𝑆𝑐)
[𝑒−𝑥√𝑆𝑐𝑠𝛼

− 𝑒−𝑥√𝑃𝑟𝑠𝛾
].   (35) 

 
 Suitable form of Eq. (35) is  
 

𝐶(𝑥, 𝑠) =
1

𝑠1−𝛼

𝑒−𝑥√𝑆𝑐𝑠𝛼

𝑠𝛼
+ [

𝑆𝑟𝑆𝑐𝑃𝑟

𝑃𝑟−𝑆𝑐
][

1

𝑠1−𝛼
−

𝑎𝑠𝛼

𝑠+𝑏
][

𝑒−𝑥√𝑆𝑐𝑠𝛼

𝑠𝛼
−

𝑒−𝑥√𝑃𝑟𝑠𝛾

𝑠𝛼
]. (36) 

 
 By taking 𝛼 = 𝛾, Eq. (36) is solved analytically as  
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𝐶(𝑥, 𝑡) = ∫
𝑡

0
𝐻1(𝑡 − 𝑝)𝑓2(𝑥, 𝑝)𝑑𝑝 + [

𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
] ∫

𝑡

0
[𝐻1(𝑡 − 𝑝) − 𝑎𝐻2(𝑡 − 𝑝)] ×  

[𝑓2(𝑥, 𝑝) − 𝑓1(𝑥, 𝑝)]𝑑𝑝, (37) 
 
where  
 

𝑓2(𝑥, 𝑝) = ∫
∞

0
𝑒𝑟𝑓𝑐(

𝑥√𝑆𝑐

2√𝑢
)𝑝−1𝜙(0, −𝛾, −𝑢𝑝−𝛾)𝑑𝑢. (38) 

  
4.4 Sherwood Number 
 
 In order to calculate the Sherwood number, we use Eq. (36) in the following relation 
 

𝑆ℎ = −
𝜕𝐶

𝜕𝑥
|𝑥=0 = −𝐿−1{

𝜕𝐶

𝜕𝑥
|𝑥=0} = ∫

𝑡

0

𝐻1(𝑡 − 𝑝)
𝑝

𝛾
2

−1
√𝑆𝑐

𝛤(
𝛾
2)

𝑑𝑝 + 

[
𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
] ∫

𝑡

0
[𝐻1(𝑡 − 𝑝) − 𝑎𝐻2(𝑡 − 𝑝)][

𝑝
𝛾
2

−1
√𝑆𝑐

𝛤(
𝛾

2
)

−
𝑝

𝛾
2

−1
√𝑃𝑟

𝛤(
𝛾

2
)

]𝑑𝑝. (39) 

 
4.5 Calculation of Velocity 
 
 By applying Laplace transform on Eq. (17), we have  
 

𝑠𝛽𝑢(𝑥, 𝑠) = 𝐿𝛽
𝜕2𝑢(𝑥,𝑠)

𝜕𝑥2 +
1

𝑠1−𝛽 𝐺𝑟𝑇(𝑥, 𝑠)𝑐𝑜𝑠(𝐴) +
1

𝑠1−𝛽 𝐺𝑚𝐶(𝑥, 𝑠)𝑐𝑜𝑠(𝐴), (40) 

 
Boundary conditions satisfying Eq. (40) are  
 

𝑢(0, 𝑠) − 𝑅
𝜕𝑢(0,𝑠)

𝜕𝑥
=

𝑠

𝑤2+𝑠2 ,       𝑢(𝑥, 𝑠) → 0,   𝑥 → ∞. (41) 

 
Eq. (40) is solved by using conditions given in Eq. (41), we obtain 
 

𝑢(𝑥, 𝑠) =
𝑠

𝑤2+𝑠2

1+𝑅√𝐿𝛽
−1𝑠𝛽

𝑒
−𝑥√𝐿𝛽

−1𝑠𝛽

+ [
(

1

𝑠
−

𝑎

𝑠+𝑏
)𝑐𝑜𝑠(𝐴)

𝑠1−𝛽(𝑃𝑟𝑠𝛾−𝐿𝛽
−1𝑠𝛽)

][𝐺𝑟 −
𝐺𝑚𝑆𝑟𝑃𝑟𝑆𝑐

𝑃𝑟−𝑆𝑐
][

1+𝑅√𝑃𝑟𝑠𝛾

1+𝑅√𝐿𝛽
−1𝑠𝛽

𝑒
−𝑥√𝐿𝛽

−1𝑠𝛽

−

𝑒−𝑥√𝑃𝑟𝑠𝛾
] + [

𝑐𝑜𝑠(𝐴)

𝑠1−𝛽(𝑆𝑐𝑠𝛼−𝐿𝛽
−1𝑠𝛽)

][
𝐺𝑚

𝑠
+ (

1

𝑠
−

𝑎

(𝑠+𝑏)
)(

𝐺𝑚𝑆𝑟𝑃𝑟𝑆𝑐

𝑃𝑟−𝑆𝑐
)][

1+𝑅√𝑆𝑐𝑠𝛼

1+𝑅√𝐿𝛽
−1𝑠𝛽

× 𝑒
−𝑥√𝐿𝛽

−1𝑠𝛽

− 𝑒−𝑥√𝑆𝑐𝑠𝛼
].(42) 

 
By taking 𝛼 = 𝛽 = 𝛾, suitable form of Eq. (42) is  
 

𝑢(𝑥, 𝑠) = [
𝑠

𝑤2+𝑠2 [
𝑅√𝐿𝛽

−1𝑠
3𝛼
2 −𝑠𝛼

𝑅2𝐿𝛽
−1(𝑠𝛼−𝑅−2𝐿𝛽)

] + [
𝑐𝑜𝑠(𝐴)

𝐿𝛽
−1𝑅2(𝑃𝑟−𝐿𝛽

−1)
][𝐺𝑟 −

𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
][

𝑠𝛼

𝑠2 −
𝑎

𝑏𝑠1−𝛼 +

𝑎𝑠𝛼

𝑏(𝑠+𝑏)
][

𝑅2√𝐿𝛽
−1𝑃𝑟𝑠𝛼

𝑠𝛼−𝐿𝛽𝑅−2 +
(𝑅√𝐿𝛽

−1−𝑅√𝑃𝑟)𝑠
𝛼
2

𝑠𝛼−𝐿𝛽𝑅−2 −
1

𝑠𝛼−𝐿𝛽𝑅−2] + [
𝑐𝑜𝑠(𝐴)

𝐿𝛽
−1𝑅2(𝑆𝑐−𝐿𝛽

−1)
][

𝐺𝑚

𝑠2−𝛼 +
𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
(

1

𝑠2−𝛼 −
𝑎

𝑏𝑠1−𝛼 +

𝑎𝑠𝛼

𝑏(𝑠+𝑏)
)][

𝑅2𝑠𝛼√𝐿𝛽
−1𝑆𝑐

𝑠𝛼−𝐿𝛽𝑅−2
+

𝑠
𝛼
2 (𝑅√𝐿𝛽

−1−𝑅√𝑆𝑐)

𝑠𝛼−𝐿𝛽𝑅−2
−

1

𝑠𝛼−𝐿𝛽𝑅−2
]][

𝑒
−𝑥√𝑠𝛼𝐿𝛽

−1

𝑠𝛼
] − [

𝑐𝑜𝑠(𝐴)

(𝑃𝑟−𝐿𝛽
−1)

][𝐺𝑟 −
𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑆𝑐−𝑃𝑟
](

1

𝑠2−𝛼
−
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𝑎

𝑏𝑠1−𝛼 +
𝑎𝑠𝛼

𝑏(𝑠+𝑏)
)[

𝑒−𝑥√𝑃𝑟𝑠𝛼

𝑠𝛼 ] − [
𝑐𝑜𝑠(𝐴)

(𝑆𝑐−𝐿𝛽
−1)

][
𝐺𝑚

𝑠2−𝛼 +
𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑆𝑐−𝑃𝑟
(

1

𝑠2−𝛼 −
𝑎

𝑏𝑠1−𝛼 +
𝑎𝑠𝛼

𝑏(𝑠+𝑏)
)][

𝑒−𝑥√𝑠𝛼𝑆𝑐

𝑠𝛼 ]. (43) 

 
Analytical solution of Eq. (43) is  
 

𝑢(𝑥, 𝑡) = ∫
𝑡

0
[𝐺1(𝑡 − 𝑝) − 𝐺2(𝑡 − 𝑝) + (

𝑐𝑜𝑠(𝐴)

𝑅2𝐿𝛽
−1(𝑃𝑟−𝐿𝛽

−1)
)(𝐺𝑟 −

𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
)𝐺3(𝑡 − 𝑝) + 

(
𝐺𝑚𝑐𝑜𝑠(𝐴)

𝑅2𝐿𝛽
−1(𝑆𝑐−𝐿𝛽

−1)
)𝐺4(𝑡 − 𝑝)]𝑓3(𝑥, 𝑝)𝑑𝑝 − (

𝑐𝑜𝑠(𝐴)

𝑃𝑟−𝐿𝛽
−1)(𝐺𝑟 −

𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
) ∫

𝑡

0
𝐺5(𝑡 − 𝑝)𝑓1(𝑥, 𝑝)𝑑𝑝 −

(
𝐺𝑚𝑐𝑜𝑠(𝐴)

𝑆𝑐−𝐿𝛽
−1 ) ∫

𝑡

0
𝐺6(𝑡 − 𝑝)𝑓2(𝑥, 𝑝)𝑑𝑝. (44) 

 
where  

𝑓3(𝑥, 𝑝) = ∫
∞

0
𝑒𝑟𝑓𝑐(

𝑥√𝐿𝛽
−1

2√𝑢
)𝑝−1𝜙(0, −𝛾, −𝑢𝑝−𝛼)𝑑𝑢, (45) 

  

𝐺1(𝑡) =
√𝐿𝛽

𝑅
∫

𝑡

0
(𝑡 − 𝑝)−

𝛼

2
−1𝐸𝛼

1,−𝛼

2
(𝐿𝛽𝑅−2(𝑡 − 𝑝)𝛼)𝑐𝑜𝑠(𝑤𝑝)𝑑𝑝, (46) 

  

𝐺2(𝑡) =
1

𝐿𝛽
−1𝑅2 ∫

𝑡

0
(𝑡 − 𝑝)−1𝐸𝛼

1(𝑅−2𝐿𝛽(𝑡 − 𝑝)𝛼)𝑐𝑜𝑠(𝑤𝑝)𝑑𝑝, (47) 

  

𝐺3(𝑡) = ∫
𝑡

0

[
(𝑡 − 𝑧)1−𝛼

𝛤(2 − 𝛼)
−

𝑎

𝑏

(𝑡 − 𝑧)−𝛼

𝛤(1 − 𝛼)
+

𝑎

𝑏
(−(𝑡 − 𝑧)𝛼𝐸1,1−𝛼 (−𝑏(𝑡 − 𝑧)))] 

[𝑅2√𝑃𝑟𝐿𝛽
−1𝑧−1𝐸𝛼

1(𝑅−2𝐿𝛽𝑧𝛼) + (𝑅√𝐿𝛽
−1 − 𝑅√𝑃𝑟)𝑧

𝛼
2

−1𝐸𝛼
1,𝛼

2
(𝑅−2𝐿𝛽𝑧𝛼) − 

(𝑧𝛼−1𝐸𝛼,𝛼 (𝑅−2𝐿𝛽𝑧𝛼))]𝑑𝑧, (48) 

  

𝐺4(𝑡) = ∫
𝑡

0

[
(𝑡 − 𝑧)1−𝛼

𝛤(2 − 𝛼)
+

𝑆𝑟𝑆𝑐𝑃𝑟

𝑃𝑟 − 𝑆𝑐
(
(𝑡 − 𝑧)1−𝛼

𝛤(2 − 𝛼)
−

𝑎

𝑏

(𝑡 − 𝑧)−𝛼

𝛤(1 − 𝛼)
+ 

𝑎

𝑏
(−(𝑡 − 𝑧)𝛼𝐸1,1−𝛼 (−𝑏(𝑡 − 𝑧))))][𝑅2√𝑆𝑐𝐿𝛽

−1𝑧−1𝐸𝛼
1(𝑅−2𝐿𝛽𝑧𝛼) + 

(𝑅√𝐿𝛽
−1 − 𝑅√𝑆𝑐)𝑧

𝛼

2
−1𝐸𝛼

1,𝛼
2

(𝑅−2𝐿𝛽𝑧𝛼) − (𝑧𝛼−1𝐸𝛼,𝛼 (𝑅−2𝐿𝛽𝑧𝛼))]𝑑𝑧, (49) 

  

𝐺5(𝑡) =
𝑡1−𝛼

𝛤(2−𝛼)
−

𝑎

𝑏

𝑡−𝛼

𝛤(1−𝛼)
+

𝑎

𝑏
(−𝑡𝛼𝐸1,1−𝛼 (−𝑏𝑡)) (50) 

  

(𝑡) =
𝑡1−𝛼

𝛤(2−𝛼)
+

𝑆𝑟𝑆𝑐𝑃𝑟

𝑃𝑟−𝑆𝑐
(

𝑡1−𝛼

𝛤(2−𝛼)
−

𝑎

𝑏

𝑡−𝛼

𝛤(1−𝛼)
+

𝑎

𝑏
(−𝑡𝛼𝐸1,1−𝛼 (−𝑏𝑡))). (51) 

  
4.6 Skin friction 
 
 In order to find the Skin friction, we use Eq. (43) in the following relation  
 

𝜏 = −
𝜕𝑢

𝜕𝑥
|𝑥=0 = −𝐿−1{

𝜕𝑢

𝜕𝑥
|𝑥=0} = ∫

𝑡

0
[𝐺1(𝑡 − 𝑝) − 𝐺2(𝑡 − 𝑝) + (

𝑐𝑜𝑠(𝐴)

𝑅2𝐿𝛽
−1(𝑃𝑟−𝐿𝛽

−1)
)  
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(𝐺𝑟 −
𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
)𝐺3(𝑡 − 𝑝) + (

𝐺𝑚𝑐𝑜𝑠(𝐴)

𝑅2𝐿𝛽
−1(𝑆𝑐−𝐿𝛽

−1)
)𝐺4(𝑡 − 𝑝)]

𝑝
𝛼
2

−1
√𝐿𝛽

−1

𝛤(
𝛼

2
)

𝑑𝑝 − (
√𝑃𝑟𝑐𝑜𝑠(𝐴)

𝑃𝑟−𝐿𝛽
−1 )(𝐺𝑟 −

𝐺𝑚𝑆𝑐𝑆𝑟𝑃𝑟

𝑃𝑟−𝑆𝑐
) ∫

𝑡

0
𝐺5(𝑡 − 𝑝)

𝑝
𝛼
2

−1

𝛤(
𝛼

2
)

𝑑𝑝 − (
𝐺𝑚𝑐𝑜𝑠(√𝑆𝑐𝐴)

𝑆𝑐−𝐿𝛽
−1 ) ∫

𝑡

0
𝐺6(𝑡 − 𝑝)

𝑝
𝛼
2

−1

𝛤(
𝛼

2
)

𝑑𝑝. (52) 

 
5. Results and Discussion 
 
 Analytical solution for free convection flow of viscous fluid with combined concentration and 
temperature gradient over an oscillating vertically inclined plat is obtained. The generalized model 
is solved with Caputo fractional derivative. The graph of concentration profile, temperature profile, 
and velocity profile are plotted for different parameters. 

Figure 1 represents the effect of 𝑆𝑟 on 𝑢(𝑥, 𝑡) without slippage. It is noted that the 𝑢(𝑥, 𝑡) 
increases with increasing values of 𝑆𝑟. Physically, mass buoyancy force increases with increasing 
values of 𝑆𝑟 which raises the fluid motion. Figure 2 represents the effect of 𝑆𝑟 on fluid velocity with 
slippage. The behavior of 𝐺𝑚 on 𝑢(𝑥, 𝑡) with non slippage is reported in Figure 3. From this graph, 
it is concluded that the magnitude of fluid velocity rises by raising the values of 𝐺𝑚. 𝐺𝑚 is the relative 
strength of viscous force and concentration buoyancy force. As 𝐺𝑚 increases, the motion of fluid is 
accelerated due to an increment of buoyancy force. The behavior of 𝐺𝑚 on 𝑢(𝑥, 𝑡) with slip effect 
is reported in Figure 4. Figure 5 represents the impact of different values of 𝐺𝑟 on 𝑢(𝑥, 𝑡) with slip 
and non-slip effects. From this graph, it is noted that velocity distribution is directly proportional 
with 𝐺𝑟. Physically, 𝐺𝑟 is a relation between viscous force and buoyancy force. Therefore, with an 
increment in the values of 𝐺𝑟, buoyancy force is increased which raises the magnitude of 𝑢(𝑥, 𝑡). 

Figure 6 represents the behavior of 𝑃𝑟 on the 𝑢(𝑥, 𝑡) with slippage and non-slippage. 𝑃𝑟 
represents the ratio of momentum (product of mass and velocity) diffusion to thermal diffusion. In 
the problems of heat transfer, 𝑃𝑟 manages the thickness of boundary layer and momentum 
(velocity). For larger values of 𝑃𝑟, diffusion of heat becomes slow as compared to the fluid 
momentum (velocity) which decreases the thermal conductivity (thickness) and raises the boundary 
layer momentum. Figure 7 shows the influence of 𝑆𝑐 on 𝑢(𝑥, 𝑡). Graph shows that for increasing 
values of 𝑆𝑐, the diffusion of molecule increases which reduces the fluid level. Figure 8 shows the 
influence of angle of inclination 𝐴 on 𝑢(𝑥, 𝑡). Graph shows that for increasing values of 𝐴, velocity 
distribution is decreased. Figure 9 shows the influence of 𝛼= 𝛽= 𝛾 on 𝑢(𝑥, 𝑡) with non-slip and slip 
effect. Graph shows that for increasing values of fractional parameters, fluid velocity is increased. 
The behavior of fractional parameter and 𝑃𝑟 on 𝑇(𝑥, 𝑡) is displayed in Figure 10. This figure shows 
that temperature increases with increment in the values of fractional parameter. Figure 10 indicates 
the influence of 𝑃𝑟 on temperature 𝑇(𝑦, 𝑡). Temperature distribution decreases with increasing 
values of 𝑃𝑟 as shown in graph. 

The behavior of 𝑃𝑟 and 𝑆𝑐 on 𝐶(𝑥, 𝑡) are shown in Figure 11. The concentration level is 
accelerated with decreasing 𝑃𝑟 as depicted in graph. Figure 11 shows the influence of 𝑆𝑐 on 𝐶(𝑥, 𝑡). 
The concentration level increases with reducing values of 𝑆𝑐 as highlighted in figure. The behavior 
of 𝑆𝑟 and fractional parameter on 𝐶(𝑥, 𝑡) are shown in Figure 12. The concentration level is 
accelerated with increasing values of 𝑆𝑟 as depicted in graph. Figure 12 shows the influence of 
fractional parameter on 𝐶(𝑥, 𝑡). The concentration level increases with increasing values of 
fractional parameter as highlighted in figure. Figure 13 shows the comparison of present work with 
Khalid et al., [35]. If we take fractional parameters 𝛽 = 𝛾 = 𝛼 → 1, 𝐺𝑚 = 𝑆𝑟 = 0, inclined angle =
0 and in the absence of Casson parameter of Khalid et al., [35] work, the fluid profiles are identical 
which shows the authenticity of present work. 
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Fig. 1. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameter 𝑆𝑟 at 𝑅 = 0, 𝐺𝑟 = 4, 𝐴 = 0, 𝐺𝑚 =
4, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16 

   
Fig. 2. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝑆𝑟 at 𝑅 = 0.4, 𝐺𝑟 = 4, 𝐴 =
0, 𝐺𝑚 = 4, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16 

 

    
Fig. 3. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameter 𝐺𝑚 at 𝑅 = 0, 𝑤 = 0, 𝐺𝑟 =
4, 𝐴 = 0, 𝑆𝑟 = 0.3, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16.0 
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Fig. 4. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝐺𝑚 at 𝑅 = 0.4, 𝑤 = 0, 𝐺𝑟 =
4, 𝐴 = 0, 𝑤 = 0, 𝑆𝑟 = 0.3, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16.0 

 

 
 

Fig. 5. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameter 𝐺𝑟 at 𝐴 = 0, 𝑤 =
𝜋

3
, 𝐺𝑚 = 4, 𝑆𝑟 =

0.3, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16.0 

 

  

Fig. 6. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝑃𝑟 at 𝐴 = 0.0, 𝑤 = 0.0, 𝐺𝑚 =
7, 𝑆𝑟 = 0.3, 𝐺𝑟 = 6, 𝑆𝑐 = 2.5 
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Fig. 7. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameter 𝑆𝑐 at 𝐴 = 0, 𝑤 = 0.0, 𝐺𝑚 =
4, 𝑆𝑟 = 0.3, 𝐺𝑟 = 4, 𝑃𝑟 = 16.0 

 

  
Fig. 8. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝐴 at 𝐺𝑚 = 4, 𝑆𝑟 = 0.3, 𝐺𝑟 =
4, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16.0 

 

  
Fig. 9. Velocity diagram 𝑢(𝑥, 𝑡) for various values of fractional parameter at 𝐴 = 0, 𝐺𝑚 = 4, 𝑆𝑟 =
0.3, 𝐺𝑟 = 4, 𝑆𝑐 = 2.5, 𝑃𝑟 = 16.0 
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Fig. 10. Temperature distribution 𝑇(𝑥, 𝑡) for various values of fractional parameter and 𝑃𝑟 

 

  
Fig. 11. Concentration distribution 𝐶(𝑥, 𝑡) for various values of parameter 𝑃𝑟 and 𝑆𝑐 

 

  
Fig. 12. Concentration distribution 𝐶(𝑥, 𝑡) for various values of 𝑆𝑟 and fractional parameter 
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Fig. 13. Velocity and Temperature distribution for comparison of our work with Asma et al., [35] 

 
6. Conclusion 
 

Analytical solution of free convection flow of viscous fluid has been obtained via Laplace 
transform. Different parameters used in the model are plotted and discussed. The model is solved 
with fractional derivative known as Caputo fractional derivative. 

Here are the following main points which have been summarized for this model: 
i. Thermal buoyancy forces lead to accelerate the 𝑢(𝑥, 𝑡). 

ii. Velocity distribution retards with decreasing values of fractional parameter. 
iii. The 𝑢(𝑥, 𝑡) decreases as Prandtl number increases. 
iv. The 𝑢(𝑥, 𝑡) increases as values of𝑆𝑐 decreases. 
v. The 𝑢(𝑥, 𝑡) increases with increasing values of 𝑆𝑟. 

vi. The 𝑢(𝑥, 𝑡) increases as inclined angle 𝐴 decreases. 
vii. The temperature of fluid increases with decreasing vales of 𝑃𝑟. 

viii. Temperature of fluid is an increasing function of fractional parameter. 
ix. The concentration level of the fluid decreases with increasing values of 𝑃𝑟. 
x. The concentration level is a decreasing function of 𝑆𝑐. 

xi. The concentration level is an increasing function of fractional parameter. 
xii. The concentration level is an increasing function of 𝑆𝑟. 
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