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In this work, a novel hybrid nanofluid model with advanced thermophysical 

properties is considered for Casson fluid. The exact solutions are evaluated for non-

integer derivative equations via Laplace technique. The unsteady flow, MHD, 

radiation and porous medium are considered. For the hybrid concept, alumina and 

copper nanoparticles are used in this research investigation. The problem is modeled 

using Caputo definition of non-integer derivatives. The influence of concerned 

parameters is depicted physically and graphically on the heat, concentration and flow 

of the hybrid nanofluid. The effect of volume fraction of both the nanoparticles on 

flow of hybrid nanofluids is observed. It is found that velocity increases with 

increasing values of , ,Gr β and ,k  whereas M decreases. 
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1. Introduction 

 

The heat transfer of working fluids is improved using various techniques, one of which is to 

suspend nanoparticles to the working fluid. Maxwell’s work [1] in this regard was the pioneer 

research. After that a practical implementation of this concept was carried out by Choi [2] to 

enhance thermal conductivity and rate of heat transfer. Azwadi et al., [3] performed a process of 

preparation and factors affecting the performance of hybrid nanofluid. They found that the thermal 

characteristics of hybrid nanofluid were higher in comparison to the base fluid and fluid containing 

single nanoparticles respectively. Besides experimental studies, most of the researchers attracted 

towards the theoretical research work in this area in implementations of the proposed concepts 

and models in their work [4-9]. Another advanced concept of “hybrid nanofluids” was found to 

achieve better outcomes in this area. Those with the new thermophysical properties and modified 

models were expected to provide the desired efficiency both theoretically and experimentally. This 

work is fascinating to the researchers because of having a lot of space of new researches and 

investigations. 
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Minea [10] studied hybrid nanofluids based on Fe3O4, MgO, Ag CuO, Cu and MWCNTs 

numerically along with the estimation of their viscosities. They found that maximum viscosity 

augmentation (i.e. 140.5% and 178.5% respectively) is obtained for CuO-Cu hybrid nanoparticles. 

Toghraie et al., [11] measured thermal conductivity of ZnO-TiO2/EG hybrid nanoparticles 

experimentally at temperature 25 to 50
o
C and volume fraction 0-3.5%. They observed that at high 

temperature the variation of thermal conductivity enhancement with volume fraction is greater 

than at lower temperature. They discussed various correlations for thermal conductivities of 

nanofluids defined by previous researchers and proposed a new correlation for the thermal 

conductivity of ZnO-TiO2/EG hybrid nanofluids with high accuracy, using experimental findings. Devi 

and Devi [12] numerically investigated two-dimensional flow of hydromagnetic hybrid nanofluid 

with suction using Nachtsheim-Swigert shooting iteration method along with R.K. Fehlberg 

integration method. They used Cu-Al2O3/water hybrid nanofluids. Since oxide nanoparticles have 

less thermal conductivities than metal nanoparticles. For this reason, a high-volume fraction of 

oxides nanoparticles is required to achieve the desired thermal efficiencies. 

All the above discussed literature is based on experimental study of hybrid nanoparticles. Since 

there are some theoretical studies done in this area. Iqbal et al., [13] studied numerically the hybrid 

nanofluids in rotating transport in Oscillating vertical channel. They considered hall current thermal 

radiation with three different shapes of nanoparticles. They found that heat transfer augments with 

volume fraction and platelets shapes of hybrid nanoparticles are found to have the highest 

temperature. Cao et al., [14] examined on fractional Maxwell viscoelastic nanofluid over a moving 

plate. Zainal et al., [15] investigated the effect of using hybrid nanofluid, silver/graphene (Ag/HEG) 

in horizontal circular pipe of 0.01m diameter with constant heat flux, 1000W/m
2
. They used 

AnsysFluent software to predict the heat transfer coefficient and Nusselt number for forced 

convection heat transfer of Ag/HEG+water nanofluid. Azhar et al., [16] studied fractional nanofluid 

over a moving vertical plate and concluded that fractional nanofluids have higher heat transfer rate 

compared to ordinary nanofluids. Few others recent studies on fractional nanofluids can be found 

in ref [17-19]. 

Studies are done in the area of hybrid nanofluids experimentally or frequently in numerical 

solutions while there is a lack for exact solutions research in this area. Moreover, problem on 

Casson hybrid nanofluids is not reported yet for non-integer derivative model. Thus, the aim of the 

present research work is to find analytical solution for flow of Casson hybrid nanofluids with 

Sodium Alginate base fluid using Caputo time fractional derivatives model. Here in this work, Cu 

and Al2O3 metal nanoparticles are considered because of their high thermal conductivities. 

 

2. Formulation and Solution of the Problem  

 

Consider unsteady flow of Sodium Alginate based hybrid nanofluid (Cu and Al2O3) modelled 

using Caputo time fractional derivative in a vertical channel. The flow is induced due to mixed 

convection. In vertical channel, T0 and Td  show lower and upper plate temperatures while C0 and Cd 

shows concentration at lower and upper plate. The governing equations of momentum, energy and 

mass are 
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The density ,hbnfρ thermal expansion coefficient ( ) ,
hbnf

ρβ heat capacitance ( )p hbnf
cρ and 

thermal conductivity ,hbnfσ are derived by using the relations 
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where 
1 2, ,φ φ  are the nanoparticles volume fraction, ,fρ 1,sρ  and 2s

ρ  is the density of the base 

fluid and hybrid nanoparticles, the volumetric coefficient of thermal expansions of nanoparticles 

and base fluids are denoted by 1,sβ
2 ,sβ  and 

fβ  respectively, 1, 2,( ) ( )p s p sc c and ( )p fc  is the specific 

heat capacities of nanoparticles and base fluids at constant pressure. Here 
f

k  and 
1 2,s sk k are 

thermal conductivities of base fluid and nanoparticles. Using the non-dimensional variables 
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The following non-dimensional differential Eqs are obtained (asterisk* is omitted for 

convenience) 
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and ( , )
t

D u y t
α  represent the Caputo time-fractional derivative of ( , )u y t , defined as 
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Applying the Laplace transform to Eqs. (7)-(9) and using Eq. (10), we obtain 
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Solutions after Inverse Laplace transform:  
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Table 1 

Thermophysical properties of base fluid and graphene nanoparticles 

Physical 

properties 
3( / )kg mρ  ( / )pc J kgK  ( / )S mσ  ( / )k W mK  5 110 ( )Kβ −×  

Sodium 

Alginate 
989 4175 5.5*10

-6 
0.6376 21 

Copper 1φ  8933 385 59.6*10
6 

400 1.67 

Alumina 2φ  3970 765 35*10
6 

40 0.85 

  

 

3. Graphical Results and Discussion  

 

Hybrid nanofluids flow with mixed convection is studied for analytical solutions in a channel 

under effect of MHD and porosity. Graphical illustrations are made for effect of different 

parameters on concentration, temperature and velocity of the hybrid nanofluid. For the graphical 

presentation, the thermophysical properties for base fluid and nanoparticles are taken from the 

Table 1. 
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The effect of embedded parameters on the flow, temperature and concentration of the 

fractional nanofluid (0,1),α ∈  is observed through figures 1-6. Figure 1 depicts the effect of 

radiation parameter on fluid temperature; the temperature of nanofluid is an increasing function of 

radiation parameter N . The increasing radiation parameter increases heat absorption which leads 

to increase the fluid temperature. Fig 2 illustrates the influence of nanoparticles volume fraction 2
φ

on concentration profile while keeping the copper’s volume fraction constant as 1 0.04φ = . It 

depicts that concentration decreases when nanoparticles volume fraction increases. Fig 3 shows 

the behavior of nanofluid flow with the varying values of M . The resistive force emerges due to 

magnetic field causes a resistance in the flow, hence minimizes the flow of nanofluid. The viscous 

forces get dominant in this case.  

 

  
Fig. 1. Temperature profile for different values 

of radiation parameter N 

Fig. 2. Concentration profile for different 

values of volume fraction 2.φ  

 

 

 
 

Fig. 3. Velocity profile for different values of 

magnetic parameter M  

Fig. 4. Velocity profile for different values of 

volume fraction Gr  

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 44, Issue 1 (2018) 131-139 

138 

 

Penerbit

Akademia Baru

Figure 4 depicts that velocity of nanofluid is a maximizing function of volume fraction number 

Gr  for constant 
1 2

0.04, 0.03φ φ= = . For fractional nanofluids the increasing buoyancy forces rises 

the nanofluid flow. The fluid flow is found to be increasing with increasing porosity parameter k  

illustrated in Fig 5. Fig 6 is displayed to show the behavior of flow with varying values of Casson 

parameter. We can see that velocity is increasing function of Casson parameter, β . 

 

  

Fig. 5. Velocity profile for different values of 

porosity parameter k   

Fig. 6. Velocity profile for different values of 

Casson parameter  .β  

 

 

4. Conclusions 

 

In this research work, the analytical solutions for hybrid nanofluid with copper and alumina 

oxide are obtained using Caputo-time fractional derivates. Exact expressions of velocity, 

concentration and temperature are evaluated using Laplace transform method and then depicted 

graphically for various parameters. Temperature increases with increase in N at t . Velocity 

maximizes with increasing values of , ,Gr β and k  while decreases with rising values of .M  

Furthermore, the analytical solutions obtained in this study not only because they are solutions of 

some fundamental flows, but also serve as accuracy standards for other methods, such as 

numerical, asymptotic or experimental. 
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