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1. Introduction 

 

The study of flow between the porous or non-porous disk has significant importance due to its 

applications in both scientific and industry. These types of flows have applications in bio-mechanics, 

semiconductor manufacturing process with rotating wafers, hydrodynamical machines, etc. Hiemenz 

[1] was the first researcher to propose the basic two dimensional stagnation flow towards plate. 

Later, this study was extended to three dimensional case Howarth [2] and Davey[3].  Axisymmetric 

stagnation flow on a cylinder was solved by Wang [4]. Many researchers have investigated the 

problem on fluid flow between porous plates/ disks with suction or blowing[5, 6-10]. Rasmussen[11] 

numerically analysed the problem of flow between two porous co-axial disks. Chapman and 

Bauer[12] presented the asymptotic and numerical solution for stagnation point viscous flow 

between porous plates with uniform blowing. Later, the problem of steady stagnation point flow of 

an incompressible micro-polar fluid between two porous disks with uniform blowing was analyzed 

by Agarwal and Dhanpal [13]. They have used shooting techniques for numerical solutions. Elcrat [14] 

obtained the theorem of existence and uniqueness for non-rotational fluid motion between fixed 
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porous disks with arbitrary suction or blowing. Bujurke et al., [15] discussed the solution of viscous 

flow between two parallel porous plates by computer extended series analysis followed by Euler 

transformation to increase the validity of series. A brief review of works on stagnation point flow can 

be found in paper by Wang [16,17]. Mahapatra and Gupta [18] studied the laminar steady stagnation-

point flow of a viscoelastic fluid over a stretching surface; they studied flow when the stretching 

velocity of the surface is more (less) than the free stream velocity. Following this work, an extensive 

work has been carried out by many experts on the stagnation-point flow of viscoelastic fluid past a 

stretching surface. In all the above analysis of flow with porous boundaries, a zero slip condition was 

assumed, which characterizes flow with the solid boundary walls. Howeve, the effect of slip was not 

considered by them. Beavers and Joseph [19] proved the existence of slip velocity at a porous surface 

through theoretical explanations and experimental observations. The historical background to 

Beavers - Joseph conditions at the interface of porous media and clear fluid were reported by Neild 

[20]. Ashwini et al., [21,22] have implemented successfully these Beavers - Joseph conditions in the 

analysis of flow in channels and pipes.  

It is clear from the literature that no attempts have been made to analyse the influence of slip 

velocity on the stagnation point flow of an incompressible viscous fluid between porous plates.  The 

current analysis has developed a model for the same by taking into consideration the velocity slip 

effects and filled this gap. The obtained solutions are in well agreement with that of Chapman and 

BauerError! Reference source not found. for smaller and large values of Reynolds number when slip 

effect is zero. The resulting governing equations with slip boundary conditions are solved by two 

novel semi-analytical techniques for different values of slip coefficient at different Reynolds number. 

The influence of slip coefficient on pressure gradient, variations in dimensionless axial velocity, 

dimensionless axial velocity derivative in the presence of velocity slip have been analysed. 

 

2. Mathematical Formulation  

 

Consider a steady, axially symmetric, laminar flow of a viscous incompressible fluid between two 

parallel porous disks separated by a distance L2  (Figure 1). The fluid with uniform velocity having 

magnitude V  is injected through both porous plates, continuously which flows radially towards 

middle plane 0=Z .   

Under the assumed conditions, the relevent continuity and momentum equations which governs 

the flow field and pressure distribution are [9],  
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Fig. 1. Geometry of axi-symmetric flow between porous plates 

with uniform injection velocities 
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r-momentum and z-momentum equations. 
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It is assumed that 0=θv . 

The boundary conditions are,  

=zv V− at =z L  (3) 

=r slipv v at =z L  (4) 

= 0zv  at = 0z  (5) 

= 0rv

z

∂

∂
 at = 0z  (6) 

and 
0=P P  at = 0, = 0r z  (7) 

The boundary conditions (6)  and (7) are due to planar symmetry, that is we consider only upper 

half of the flow field and Equation (4) is the slip boundary condition by Beavers and Joseph [16]. The 

slip velocity at porous surface is being proportional to shear rate at the porous boundary, we have 

ξ
φ

∂

∂
− r

slipr

v
vv == , where 

L

k

α
φ =  is the slip coefficient. 

Because of the symmetrical geometrical properties and uniform boundary conditions, it allows to 

assume,  

)(= zrv r ϕ   (8) 
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Substituting (8) and (9) into (1) and (2) concludes that the quantity, ]/[ r
r

P

∂
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−  is a constant. Equation 

(1) becomes,  
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Now, with dimensionless quantities defined as,  
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Equation Error! Reference source not found. reduces to  
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or 

 

)()(=)( ξθξθξθ ′′′′′′′ Re   (12) 

 

The boundary conditions (4)-(7) reduces to,  

 

= 1θ −  at = 1ξ  (13) 

= 0θ at = 0ξ  (14) 

= 0θ ′′ at = 0ξ  (15) 

and =θ ϕθ′ ′′− at = 1ξ where = ,
k

L
ϕ

α
−  slip coefficient. (16) 

Also, from (2), (7) and (10) the solution for pressure gradient can be rewritten as,  
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From (8) and (9) the radial component of velocity is given by,  
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Thus Equation (12) along with boundary conditions (13)-(16) describes the entire flow situation 

and expressions for ),( Rξθ , )(RDp  provides solution to the problem. Solution of Equation (12) is 

usually solved by direct integration which frequently involves more than one integration process 

because of two point nature of boundary conditions. Thus the use of proposed series method 

provides an attractive alternative approach. Also, the terms in the series method are capable of 

providing results to any desired accuracy. 

 

3. Method of Solution 

3.1 Series Solution Method 

 

We seek the solution of equation (12) for small values of R  can be expressed in the form of 

power series as,  
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substituting equation (19) into equation (12) and comparing like powers of R  on both sides, we get,  
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the boundary conditions are,  

 

(0) =0, (0)=0, 0
n n
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0
(1) = 1, (1) =0, 1n nθ θ− ∀ ≥  (22) 

 

(1) = (1) 0n n nθ ϕθ′ ′′− ∀ ≥  (23) 

 

The solution of above system of equations up to term in R  are,  
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  (24) 

The solution for 0=φ  is given by Chapman and Bauer [9].  

 

Computer extended perturbation solution: 

 

As the series (20) is slowly converging, it is not possible to analyze the problem accurately with 

just two terms [23,24]. We need sufficiently large number of universal polynomial coefficients which 

reveal the true nature of the solution represented by series (19) [25,26]. Manually evaluating the 

coefficients beyond second order terms is very difficult as one proceeds to higher approximations 

the algebra becomes cumbersome. Towards this goal, we proposed recurrence relations along with 

Mathematica, which efficiently generates higher order terms of the series. 

The axial velocity component is directly obtained as )(ξθ  and dimensionless axial velocity 

derivative is,  

n
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The dimensionless pressure gradient pD  is represented by the series,  

 

(1)2(1)
2

= θθ ′′+′′′
R

D p
  (26) 

 

Coefficients of the series (19) representing )(ξθ  and pressure gradient (26) are decreasing in 

magnitude and have no fixed sign pattern. Domb-Sykes plot [27] is drawn to find the nature of 

nearest singularities which restricts convergence of the series. 

 

3.2 Homotopy Analysis Method 

 

To compare the solution obtained by extended series method, we also solve the governing 

equations with boundary conditions by another useful semi analytical technique called Homotopy 

analysis method (HAM). As HAM does not depend on a small parameter like other series methods 

and allows to transfer a non-linear problem into an infinite number of linear sub-problems, along 

with Padé sum it guarantees convergence of the solution in any case. 
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Zeroth-order deformation problem: 

 

We seek solution of Equation (12) by using HAM and choose the base function to express )(ξθ

[28,29]. The initial guess which satisfies the boundary conditions is 
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and auxiliary linear operator is given by,  

 

θθ ′′′′=][L   (28) 

 

The above linear operator which satisfies the following property,  
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where 
321 ,, CCC  and 

4
C  are constants to be determined. If [0,1]∈q  then the zeroth order 

deformation problem can be constructed as,  
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with relevant boundary conditions,  
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where 10 ≤≤ q  is an embedding parameter, h and H  are non-zero auxiliary parameter and auxiliary 

function respectively. Further, N  is a non-linear differential operator and is defined as,  
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For 0=q  and 1=q , Equation (29) has solution, 
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)(=,0)( 0
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As q varies from 0 to 1, ),( qξθ  varies from initial guess )(
0

ξθ  to exact solution )(ξθ By Taylor's 

theorem, Equation (32) can be expressed as  
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where, 0=|
!

1
=)( qm

m

m
qm ∂

∂ θ
ξθ . Convergence of the above series (33) depends on the convergence 

control parameter h, which is chosen in such a way that (33) is convergent at 1=q . Then we have,  
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m th-order deformation problem: 

 

Differentiating the zeroth order deformation problem equation-(29)  'm' times with respect to q 

and lastly setting 0=q . The resulting th
m  order deformation problem becomes,  
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and the homogeneous boundary conditions are,  
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m
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We systematically utilized Mathematical software, Mathematica to obtain the solution for system 

of linear equations (35) with appropriate homogeneous boundary conditions (36). The solutions up 

to second order approximations are shown is Eq. (41). 

 

Convergence of HAM: 

 

The proposed series (34) contains the auxiliary parameter h which influences the convergence 

region and rate of approximations for the HAM solutions. This parameter is known as convergence 

control parameter. To ensure this series converges, we need to choose a suitable value for h. To 

obtain the permissible ranges of the parameter h, h-curves are plotted (Fig.6). Figure 6 shows −h

curve for the series 
pD  for corresponding values of R  and slip coefficient φ at 10th order 

approximation. 
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4. Results  

 

The equation of motion for steady stagnation point flow between two parallel plates is governed 

by nonlinear differential equation (12) together with boundary conditions (13)-(16) are solved by 

computer extended series method and Homotopy Analysis Method. We study the effect of slip 

coefficient on velocity profiles and pressure gradient at different Reynolds number. The results for 

velocity profiles and pressure gradient have been presented through figures and tables. 

The proposed series expansion scheme using recurrence relation and Mathematica software we 

generate large number 30)=(n  of universal polynomial functions )(ξθn  for different slip coefficients 

φ. The series representing velocity profiles )(ξθ , )(ξθ ′  and pressure gradient 
pD  are analyzed using 

Padé approximants for larger Reynolds number R for different slip coefficients. Domb-Sykes plot 

given in Figure 2 shows the singularity restricting convergence of the series representing velocity 

profiles, which gives the nature and location of nearest singularity. After extrapolation, using rational 

approximation yields the radius of convergence of series (25) to be 9.07441, 9.10747 and 9.37207 for 

= 0, 0.1ϕ and 0.5 respectively.  

The influence of slip coefficient on the velocity profiles are shown in Figure 3 which are found to 

be identical with HAM curves. It shows that velocity profiles are decreasing with increasing value of 

R . It is also observed that the shape of axial velocity profiles does not depend very strongly on 

Reynolds number. 

Figure 4 shows the variation of axial velocity derivative profiles for different values of Reynolds 

number R. It is noted that larger values of Reynolds number R  results in linear profiles.  Influence of 

slip coefficient φ on pressure gradient is explained by Figure 5. It is seen that pressure gradient, Dp 

decreases with the influence of φ and attains a constant value Dp =4, 3.55 and 3.32 for φ = 0, 0.1 and 

0.5  respectively. To check validity of the methods, results were compared for  φ = 0  with that of 

Chapman and Bauer Error! Reference source not found. are given in Table 1. The agreement with 

earlier findings is an excellent lending support to the methods proposed. 
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Fig. 2. Domb-Syke plot for velocity profiles 

 

 

  

 
Fig. 3. Variation in dimensionless axial velocity for different Reynolds number R  
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Fig. 4. Variation in dimensionless axial velocity derivative for different Reynolds number 

 

 

 

Fig. 5. Dimensionless pressure gradient as a function 

of Reynolds number for different slip coefficient 

0,0.1,0.5=φ    
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To compare and prove efficiency of the results obtained by Computer extended Series method, 

the problem is additionally analyzed by homotopy analysis method (HAM) alongside Padé sum to 

accelerate convergence of the series. We plot h-curves to discover the convergence range and 

furthermore the rate of approximations for the series representing (0)θ ′  and 
pD  when 0=0.1,= φR  

respectively from th
10  order HAM approximations. The range for admissible values of h for different 

values of R  and φ  is different. From the figures 6 and 7 it is observed that series representing (0)θ ′  

and 
pD  are convergent when 0.12.2 −≤≤− h   and 0.72.8 −≤≤− h  respectively. 

 

 
Fig. 6. h-curves for �′(0) -10th order approximations 

 

 

 
Fig. 7. h-curves for pressure gradient, �� -10th order approximations 
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5. Conclusions 

 

In this article, we have examined the steady stagnation point flow between two permeable plates 

by Computer Extended Series method (CES) and Homotopy Analysis Method (HAM). The impact of 

non-zero tangential slip velocity on velocity field and pressure gradient are analysed. The validity of 

series solution is extended to a large values of Reynolds number by utilizing analytic continuation. 

The examination affirms that the proposed methods converges to the solution for very large values 

of Reynolds number as compared to the earlier findings when slip coefficient is reduced to zero.    
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Appendix 

 

Table 1: Values of �, �′ and �� at various Reynolds number for � = 0. 

z 

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000 

–q –q' –q –q' –q –q' –q –q' –q –q' –q –q' –q –q' 

0.0 0.00000 1.50338 0.00000 1.53258 0.00000 1.70672 0.00000 1.89268 0.00000 1.96497 0.00000 1.98889 0.00000 1.99669 

0.1 0.14983 1.48817 0.15269 1.51549 0.16955 1.67288 0.18594 1.79784 0.18958 1.80091 0.18996 1.80014 0.19000 1.80001 

0.2 0.29662 1.44257 0.30197 1.46449 0.33250 1.57691 0.35651 1.60876 0.35967 1.59975 0.35997 1.60020 0.36000 1.60010 

0.3 0.43733 1.36665 0.44448 1.38034 0.48326 1.43217 0.50732 1.40768 0.50975 1.40012 0.50997 1.40012 0.51000 1.40001 

0.4 0.56894 1.26051 0.57697 1.26425 0.61936 1.25417 0.63804 1.20658 0.63982 1.20065 0.63998 1.20015 0.64000 1.20001 

0.5 0.68844 1.12432 0.69632 1.11780 0.73360 1.05809 0.74864 0.99947 0.74987 1.00053 0.74999 1.00005 0.75000 1.00001 

0.6 0.79281 0.95820 0.79958 0.94290 0.81219 0.85170 0.83913 0.80440 0.83992 0.80040 0.83999 0.80000 0.84000 0.80000 

0.7 0.87910 0.76252 0.88401 0.74151 0.90652 0.64065 0.90951 0.60330 0.90995 0.60037 0.91000 0.60004 0.91000 0.60004 

0.8 0.94434 0.53739 0.94741 0.51588 0.97926 0.42772 0.95978 0.40221 0.95998 0.40021 0.96000 0.40002 0.96000 0.40002 

0.9 0.98560 0.28313 0.98644 0.26799 0.98930 0.21394 0.98995 0.20113 0.98999 0.20012 0.99000 0.20001 0.99000 0.20001 

1.0 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 

Dp 63.09800 9.19263 4.28365 4.02186 4.00200 4.00024 4.00000 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2: Values of �, �′ and �� at various Reynolds number for � = 0.1. 

z 

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000 

–q –q' –q –q' –q –q' –q –q' –q –q' –q –q' –q –q' 

0.0 0.00000 1.38778 0.00000 1.41525 0.00000 1.61832 0.00000 1.87774 0.00000 1.89683 0.00000 1.90396 0.00000 2.00126 

0.1 0.14983 1.37607 0.15269 1.40186 0.16955 1.54860 0.18643 1.79871 0.18721 1.87223 0.19003 1.89003 0.19000 1.97819 

0.2 0.29662 1.34096 0.30197 1.36239 0.33250 1.50813 0.36036 1.77256 0.37014 1.85270 0.37994 1.86238 0.38200 1.86336 

0.3 0.43733 1.28249 0.44448 1.29684 0.48326 1.41534 0.51912 1.61563 0.52794 1.67828 0.53007 1.68588 0.53100 1.68666 

0.4 0.56894 1.20076 0.57697 1.20765 0.61936 1.28119 0.63870 1.29610 0.64808 1.29841 0.64941 1.30192 0.65002 1.31897 

0.5 0.68844 1.09584 0.69632 1.09255 0.73360 1.05024 0.75046 1.02223 0.75944 1.02300 0.76141 1.15300 0.76100 1.15659 

0.6 0.79281 0.96791 0.79958 0.97561 0.81219 0.98805 0.83494 0.98771 0.84659 0.98935 0.84951 0.99497 0.85002 1.00559 

0.7 0.87910 0.81923 0.88401 0.81923 0.90652 0.81923 0.92276 0.81923 0.93309 0.81923 0.93010 0.81923 0.93002 0.81923 

0.8 0.94434 0.64360 0.94741 0.62210 0.94926 0.49351 0.95520 0.31813 0.96296 0.27555 0.96107 0.27068 0.96003 0.27019 

0.9 0.98560 0.44761 0.98644 0.42790 0.98930 0.32315 0.98685 0.20892 0.98654 0.18506 0.99968 0.18241 0.99014 0.18215 

1.0 1.00000 0.22934 1.00000 0.21779 1.00000 0.17705 1.00000 0.14861 1.00000 0.03702 1.00000 0.00423 1.00000 0.00043 

Dp 48.76843 7.32153 4.62626 3.55640 3.55252 3.55008 3.55000 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3: Values of �, �′ and �� at various Reynolds number for � = 0.5. 

z 

R=0.1 R=1 R=10 R=100 R=1000 R=10000 R=100000 

–q –q' –q –q' –q –q' –q –q' –q –q' –q –q' –q –q' 

0.0 0.00000 1.20203 0.00000 1.21972 0.00000 1.37390 0.00000 1.46613 0.00000 1.65482 0.00000 1.65518 0.00000 1.60045 

0.1 0.12000 1.19593 0.12174 1.21277 0.13243 1.31704 0.18024 1.39115 0.18977 1.40967 0.18558 1.41199 0.18900 1.41179 

0.2 0.23878 1.16422 0.24209 1.18523 0.26066 1.29770 0.26666 1.31058 0.27242 1.32099 0.28194 1.37565 0.28452 1.44098 

0.3 0.35512 1.14721 0.35968 1.15753 0.38575 1.20593 0.39629 1.22787 0.40932 1.23657 0.40847 1.24043 0.40001 1.25800 

0.4 0.46782 1.10464 0.47316 1.10992 0.50275 1.12422 0.51677 1.10066 0.51983 1.02352 0.52169 1.00362 0.52200 1.00037 

0.5 0.57565 1.05000 0.58124 1.04964 0.60856 1.03185 0.60956 1.13994 0.61172 1.01388 0.62587 1.00282 0.62106 1.00220 

0.6 0.67742 0.98334 0.68269 0.97745 0.70859 0.92218 0.71647 0.58910 0.72582 0.12774 0.74009 0.01446 0.74029 0.00147 

0.7 0.77192 0.90474 0.77633 0.89378 0.79795 0.83221 0.80296 0.79870 0.81448 0.78782 0.80816 0.78615 0.80030 0.78597 

0.8 0.85797 0.81429 0.86109 0.79973 0.87498 0.72901 0.87904 0.59023 0.87793 0.17378 0.90169 0.02147 0.90040 0.00220 

0.9 0.93439 0.71209 0.93595 0.69601 0.94490 0.62515 0.95604 0.58251 0.95858 0.28550 0.95887 0.04511 0.95890 0.00479 

1.0 1.00000 0.59823 1.00000 0.58347 1.00000 0.60218 1.00000 0.10657 1.00000 0.01316 1.00000 0.00135 1.00000 0.00000 

Dp 25.47242 3.94584 3.32353 3.32112 3.32005 3.32001 3.32000 
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