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Turning to the well-known Couette flow, we again, but now in a new formulation, consider 
the steady motion of an incompressible viscous fluid in a channel with two parallel flat 
walls, one of which is stationary while the other moves at a constant speed in its plane. In 
the classical formulation of this problem on a layered (laminar) fluid flow in a channel, the 
wall velocity and the constant pressure drop along the channel are independent quantities 
and are considered predetermined. However, when a solid body moves along the fluid 
surface, the fluid particles are set in motion. This occurs due to the arising pressure 
generated in the fluid caused by the movement of the solid body. Therefore, here the 
pressure or pressure drop is not predetermined but is determined as a result of solving 
the corresponding two-dimensional boundary value problem of a steady flow of a viscous 
fluid in a channel. For this, the corresponding boundary value problem of a fluid flow in 
the channel is formulated based on the linearized Navier-Stokes equations obtained from 
the general nonlinear Navier-Stokes equations for a steady flow of a viscous fluid 
neglecting the convective terms, which is true for small Reynolds numbers. Using the 
Fourier integral transform method, an exact (closed) solution to this boundary value 
problem is constructed; the velocity and pressure components are determined. Then it is 
shown that the resulting solution, different from the known Couette flow solution, also 
satisfies the original nonlinear Navier-Stokes equations, the continuity equation, and 
boundary conditions. A comparative analysis of the new solution with the Couette flow 
solution is carried out. The well-known Hagen-Poiseuille problem is also discussed from 
the point of view of establishing the conditions for the laminar axisymmetric and steady 
flow of an incompressible viscous fluid in a straight circular pipe According to the study's 
results, to implement laminar flow under the indicated conditions, the pressure drop 
along the pipe must be constant. The study demonstrates that this condition is 
simultaneously sufficient, and therefore, the necessary and sufficient condition is 
established for a laminar flow in a straight circular pipe. 
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1. Introduction 
 

The Navier-Stokes partial differential equations describing the flow of a viscous fluid are generally 
nonlinear and so complicated that they cannot be solved exactly. If the flow is steady and the viscous 
fluid is incompressible, these equations are somewhat simplified, but remain nonlinear. They are 
greatly simplified turning into linear differential equations when the nonlinear convective terms are 
neglected in them. Such a simplification is justified if the velocities are very small or if the dynamic 
coefficient of viscosity of the fluid is very large. Then the friction forces significantly exceed the inertia 
forces, and, consequently, the latter can be neglected in comparison with the former. This 
linearization approach is characterized by small Reynolds numbers Re, when usually Re < 1. The 
solutions to the Navier-Stokes equations obtained in this way are called slow or creeping solutions. 

Despite these and other difficulties, exact solutions of a sufficiently large number model problems 
of viscous fluid mechanics are obtained by a semi-inverse method, when, based on the characteristics 
of the problem under consideration, the mode of distribution of velocities in a viscous fluid medium 
is set in advance, and then the governing Navier-Stokes equations, the continuity equation, and the 
corresponding boundary conditions are satisfied. These solutions are of considerable theoretical and 
practical interest. They are summarized in monographs and in numerous articles [1-6]. In a study by 
Fefferman [7], the existence and smoothness of the Navier-Stokes solutions is studied. The flow of 
nanofluids was studied by modern numerical methods [8,9]. Recent Deep Neural Network solutions 
to the three-dimensional potential problems in non-homogeneous media are presented by Guo et 
al., [10]. The fundamentals of fluid dynamics are described in detail by Batchelor [11], where methods 
for simplifying the basic equations of viscous fluid mechanics as well as a comparative analysis of 
experimental and theoretical results are given. In the paper by Savenkov [12], the linear stage of 
three-dimensional disturbance development in the Poiseuille-Couette flow in the case when both 
walls move in the lateral direction was studied based on the asymptotic triple-deck theory. It is shown 
that the lateral wall motion has no effect on the velocity of the wave packet in the longitudinal 
direction, and the packet itself does not bifurcate. A class of viscous parallel flow problems, Couette 
and Hagen-Poiseuille flows, have been computationally solved and plotted using Python. SymPy and 
NumPy modules by Pawar et al., [13]. In the study by Lopes and Siqueira [14], an analytical solution 
for steady Couette, Poiseuille, and Couette–Poiseuille flows of incompressible Newtonian fluids in 
semi-elliptical channels under the no-slip condition at the boundaries is constructed. A mapping 
function to rewrite the problem in an elliptical coordinate system coupled with Fourier's method for 
the solution of a Laplace equation with Dirichlet-type boundary conditions is applied. The closed 
solutions to the incompressible Navier-Stokes equations are obtained by Babu [15] for fluid parallel 
flow as well as using the lubrication approximation. In study by Marušić‐Paloka [16], an exact solution 
for a steady fluid flow through a channel with upper wall attached to an elastic spring is derived. The 
upper wall displacement caused by the fluid-wall interaction is calculated from a quadratic equation. 
A new exact solution to the Navier-Stokes equations is also given Prosviryakov [17]; it is a 
superposition of the Couette flows for each component of the velocity vector. In research done by 
Sarukhanyan et al., [18], the regularities of changes in the hydrodynamic characteristics of a viscous 
incompressible fluid in flat diffusers were studied depending on the diffuser opening angle and the 
Reynolds number. For fixed values of the opening angle and the Reynolds number, the conditions for 
separation of the flow from a stationary wall, where the flow velocity changes sign, are derived. The 
monograph is devoted to the study of mathematical issues of solving boundary value problems in the 
mechanics of an incompressible viscous fluid [19]. 

In the present paper, based on the ideas and approaches outlined, we again, but in a new 
formulation, consider the classical Couette flow - the problem of a steady flow of an incompressible 
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viscous fluid in a channel with two parallel flat walls, the lower one of which is stationary, while the 
upper one moves in its plane at a constant speed. In the classical formulation of this problem, within 
the framework of the semi-inverse method of solving it, the wall velocity and pressure or pressure 
drop along the length of the channel are independent quantities and are considered prescribed. 
However, since when a solid body moves along the surface of a fluid, its particles are set in motion 
due to the pressure that has arisen in the fluid, it becomes necessary to consider such formulation of 
the problem when the pressure in the channel is generated by the velocity of the moving wall. For 
this purpose, assuming the flow to be planar (two-dimensional), first, for the linearized Navier-Stokes 
equations for the channel section, the corresponding two-dimensional boundary value problem is 
considered. For this purpose, assuming the flow to be planar (two-dimensional), first, we considered 
the corresponding two-dimensional boundary value problem for the linearized Navier-Stokes 
equations for the channel section. By the Fourier integral transform method, we obtained an exact 
solution to this problem. As a result, the velocity and pressure components in the channel are 
determined. Then we showed that this solution also satisfies the governing nonlinear Navier-Stokes 
equations, the continuity equation, and boundary conditions. Ultimately, as far as we know, a new 
solution to the problem under consideration is obtained, different from the Couette flow solution. 

The well-known Hagen-Poiseuille solution is also discussed in order to establish the necessary 
and sufficient condition for a laminar axisymmetric flow in a steady-state regime of an incompressible 
viscous fluid in a straight circular pipe. 
 
2. Methodology 
2.1 Formulation of the Problem and Derivation of the Basic Equations 
 

Let a channel  , ;x z h y h = −    −    of height 2h  and infinite length in the direction of 

the 0z axis, referred to the right rectangular coordinate system Oxyz, be filled with an incompressible 
viscous fluid with dynamic viscosity coefficient   and density .const =  Further, let the lower wall 

of channel y h= −  be fixed, and the upper wall, parallel to it, move in its plane in the direction of the 

0x axis with a constant speed of U . We will assume that the fluid flow is steady and that there are 
no body forces. Since the pattern of the distribution of velocities and pressure in all sections of the 

channel   perpendicular to the 0z axis is the same, we arrive at a two-dimensional flow in a planar 

channel  ;x h y h = −    −    located in the 0xy plane with 

( , ), ( , ), ( , ) 0, ( , ),u u x y v v x y w w x y p p x y= = = = =  where , ,u v w are velocity components along 

the axes 0x, 0y, 0z, respectively, and p is the pressure. Then the Navier-Stokes equations will take 

the form [2] 
 

( )

2 2

2 2

2 2

2 2

,

( , ) ,

u u p u u
u v

x y x x y

v v p v v
u v x y

x y y x y



 

     
+ + = + 

     

     
+ + = +  

     

          (1) 

 
and the continuity equation will take the form 
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( )0 ( , ) .
u v

x y
x y


 

+ = 
 

           (2) 

 
Eq. (1) and Eq. (2) should be considered under the boundary conditions 
 

( , ) 0, ( , ) 0,

( , ) , ( , ) 0 ( ).

y h y h

y h y h

u x y v x y

u x y U v x y x

=− =−

= =

= =

= = −   
       

(3) 

 
Now, according to the model adopted above, we neglect the nonlinear convective terms on the 

left-hand sides of Eq. (1). As a result, we get 
 

( )

2 2

2 2

2 2

2 2

,

( , )

.

p u u

x x y
x y

p v v

y x y







    
= +  

    


   
= +    

          (4) 

 
If we differentiate the first of these equations with respect to x, the second with respect to y, add 

the results and take into account the continuity of Eq. (2), then we find that the pressure ( , )p x y  is 

a harmonic function in  : 
 

( )
2 2

2 2
0 ( , ) .

p p
p x y

x y


 
 = + = 

             

(5) 

 
Next, we construct a solution to the boundary value problem consisting of differential Eq. (4), Eq. 

(5), Eq. (2) and boundary conditions (3). For this purpose, we introduce the Fourier transformants in 
the coordinate x: 
 

   ( , ); ( , ); ( , ) ( , ); ( , ); ( , ) ,i xu y v y p y u x y v x y p x y e dx  


−

=   

 
where   is the spectral Fourier parameter, and the Fourier transform is treated in the sense of the 
theory of generalized functions [20]. After applying the Fourier transform to both sides of the 
indicated equations and boundary conditions, we arrive at the following one-dimensional boundary 
value problem in Fourier transformants: 
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( )

2
2

2

2
2

2

2
2

2

;

;

0; ,

0;

( , ) 0; ( , ) 0;

( , ) 2 ( ) ( ),

y h y h

y h

d u
u i p

dy

d v dp
v

dy dy

dv
i u h y h

dy

d p
p

y

u y v y

u y U

  

 





 

    

=− =

=

  
− = −  

 
  
 − = 
  

 − = −  




− =



 = =

 = −   


        (6) 

 
where ( )  is the known Dirac delta function. 

The general solution of the fourth equation from (6) is represented by the formula 
 

( , ) cosh( ) sinh( ) ( ),p y A y B y h y h  = + −          (7) 

 

where A and B  are arbitrary constants. We substitute this solution into the right-hand sides of the 
first two equations of (6). We have 
 

 

 

2
2

2

2
2

2

cosh( ) sinh( ) ,

sinh( ) cosh( ) ( ).

d u i
u A y B y

dy

d v
v A y B y h y h

dy


  




  



− = − +

− = + −  

 

 
The general solutions of these differential equations, consisting of the sums of general solutions 

of homogeneous equations and particular solutions of inhomogeneous equations, are given by the 
formulas 
 

 ( , ) cosh( ) sinh( ) cosh( ) sinh( ) ( );
2

iy
u y C y D y B y A y h y h    


= + − + −        (8) 

 

 ( , ) cosh( ) sinh( ) sinh( ) cosh( ) .
2

y
v y E y F y B y A y    


= + + +        (9) 

 
Now we substitute these expressions for ( , )u y  and ( , )v y  into the third equation of (6) – into 

the continuity equation in Fourier transformants. Hence, we obtain the following dependencies 
between the constants included in (8) and (9): 
 

, .
2 2

B A
E iD F iC

 
= − = −  

 

Substituting these expressions for the constants E and F into (9), we find 
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( , ) cosh( ) sinh( )
2 2

sinh( ) cosh( ) ( ).
2

B A
v y iD y iC y

y
B y A y h y h

  
 

 


   
= − + −   
   

+ + −  

                 (10) 

 
We require that (8) and (10) satisfy the boundary conditions from (6). Then, to determine the 

constants A, B, C, and D, we obtain the following system of linear algebraic equations: 
 

 

 

 

cosh( ) sinh( ) cosh( ) sinh( ) 0,
2

cosh( ) sinh( ) cosh( ) sinh( ) 2 ( ),
2

cosh( ) sinh( ) sinh( ) cosh( ) 0,
2 2 2

cosh( )
2 2

ih
C h D h B h A h

ih
C h D h B h A h U

B A h
iD h iC h B h A h

B A
iD h iC

   


      


   
  


 

− + − =

+ − + =

   
− + − + + =   

   

   
− − −  

  
 sinh( ) cosh( ) sinh( ) 0.

2

h
h A h B h  













 − − =


               

(11) 

 
From the first two equations of system (11), by addition and subtraction, we easily find 
 

( ) tanh( ), ( ) coth( ).
cosh( ) 2 sinh( ) 2

U ih U ih
C A h D B h

h h

 
     

   
= + = +

               

(12) 

 
Substituting these expressions for the constants C and D into the third and fourth equations of 

system (11), after simple transformations, we obtain 
 

4 4
sinh( ) ( ), cosh( ) ( ).

sinh(2 ) 2 sinh(2 ) 2

i U i U
A h B h

h h h h

   
       

   
= =

− +                
(13) 

 
Finally, substituting (13) into (12) and the expressions for the constants A, B, C, and D into (7), (8), 

and (10), after simple calculations, we finally obtain for the Fourier transformants of the main 
characteristics of the problem under discussion: 
 

sinh ( )cosh ( ) sinh ( )cosh ( )
( ) 4 ( ) ;

sinh (2 ) 2 sinh (2 ) 2

h y y h
p y i U

h h h h

     
    

   

 
= + 

− + 
                 (14) 

 

   
sinh (2 ) cosh (2 ) cosh (2 ) sinh (2 )

( ) cosh ( ) sinh ( )
cosh ( ) sinh (2 ) 2 sinh ( ) sinh (2 ) 2

sinh ( )sinh ( ) cosh ( )cosh ( )
( ) 2

sinh (2 ) 2 sinh (2 ) 2

h h h h h h h h
u y y y

h h h h h h

h y h y
U y

h h h h

       
  

     

   
    

   

 − − − − 
= − 

− +  

 
 + + 

− + 
( ) ( );U h y h  −  

              

(15) 
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2 cosh ( )sinh ( ) 2 sinh ( )cosh ( )
( , ) ( )

sinh (2 ) 2 sinh (2 ) 2

cosh (2 ) sinh (2 ) 2cosh( )cosh( )
cosh( )

sinh ( ) sinh(2 ) 2 sinh(2 ) 2

sinh(2 ) c
( )

h y h y
v y i U y

h h h h

h h h h h y
y

h h h h h

h h
i U

     
   

   

     


    

 
  

 
= + 

+ − 

 − − 
− + 

+ +  

−
+

 
osh(2 ) 2sinh( )

sinh( ).
cosh( ) sinh(2 ) 2 sinh(2 ) 2

h h h
y

h h h h h

  


    

 − 
− 

− −  

                

(16) 

 
Now, by the formula for the inverse Fourier transform, according to formulas (14), (15), and (16), 

we have 
 

   
1

( , ); ( , ); ( , ) ( , ); ( , ); ( , ) .
2

i xp x y u x y v x y p y u y v y e d   




−

−

=   

 
To calculate these integrals, let us find out the behaviour of functions (14), (15), and (16) as

0 → . Taking into account (14), we can write: 
 

𝜆 𝑠𝑖𝑛ℎ(𝜆ℎ) 𝑐𝑜𝑠ℎ(𝜆𝑦)

𝑠𝑖𝑛ℎ(2𝜆ℎ)−2𝜆ℎ
=

𝜆(𝜆ℎ+
𝜆3ℎ3

3!
+...)(1+

𝜆2ℎ2

2!
+...)

2𝜆ℎ+
4

3
𝜆3ℎ3−2𝜆ℎ

∼
3

4𝜆ℎ2
(𝜆 → 0);                             (17) 

 

𝜆 𝑐𝑜𝑠ℎ(𝜆ℎ) 𝑠𝑖𝑛ℎ(𝜆𝑦)

𝑠𝑖𝑛ℎ(2𝜆ℎ)−2𝜆ℎ
=

𝜆(1+
𝜆2ℎ2

2!
+...)(𝜆ℎ+

4

3
𝜆3ℎ3+...)

4

3
𝜆3ℎ3

∼
3

4𝜆ℎ2
(𝜆 → 0).                 (18) 

 
Then, 
 

2

sinh( )cosh( ) cosh( )sinh( )
( , ) 2 ( ) ( )

sinh(2 ) 2 sinh(2 ) 2

sinh( )cosh( ) 1 sinh( )cosh( )
2 ( ) ( ) ( )

sinh(2 ) 2 sinh(2 ) 2

i x i x

i x

h y h y
p x y i U e d e d

h h h h

h y e h y
i U i d d

h h i h h

 



     
      

   

     
     

    

 

− −

− −

−

 
= + 

− + 

−
= − +

− − −

 

2 cosh( )sinh( ) 1
( ) ( ) .

sinh(2 ) 2

i xh y e
i d

h h i





  
  

  

 

− −

 −

−





−
+ − 

+ − 

 



 

 
Since Gelfand and Shilov [20], in terms of weak convergence 
 

1 sin( )
lim ( )
N

N
 

 →
= , 

 
then we have for the second integral 
 

sinh( )cosh( ) 1 sinh( )cosh( ) sin( )
( ) lim 0

sinh(2 ) 2 sinh(2 ) 2N

h y h y N
d d

h h h h

      
   

     

 

→
− −

= =
− −   
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in the sense of the principal value of the integral due to the fact that the integrand is odd. Now, taking 
into account (17), (18), and the known limit 
 

𝑙𝑖𝑚
𝜆→0

𝑒−𝑖𝜆𝑥−1

−𝑖𝜆
= х,  

 
we have 

2

3
( , ) ( ; ).

2

U
p x y x x h y h

h


= −    −  

                   
(19) 

 
Let us turn to (15). Let us find out the behaviour of the terms in (15) as 0 → . We can write 
 
𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 𝜆ℎ 𝑐𝑜𝑠ℎ( 2𝜆ℎ) − 𝜆ℎ

𝑐𝑜𝑠ℎ( 𝜆ℎ)[𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 2𝜆ℎ]
𝑐𝑜𝑠ℎ( 𝜆𝑦) 

=
(2𝜆ℎ + 4𝜆3ℎ3/3+. . . ) − 𝜆ℎ(1 + 2𝜆2ℎ2) − 𝜆ℎ

4𝜆3ℎ3/3
(1 + 𝜆2𝑦2/2+. . . ) 

=
4𝜆3ℎ3/3 − 2𝜆3ℎ3+. . .

4𝜆3ℎ3/3
∼ −

1

2
(𝜆 → 0); 

 
𝜆ℎ 𝑐𝑜𝑠ℎ( 2𝜆ℎ) − 𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 𝜆ℎ

𝑠𝑖𝑛ℎ( 2𝜆ℎ) + 2𝜆ℎ
=
𝜆ℎ(1 + 2𝜆2ℎ2+. . . ) − 2𝜆ℎ − 𝜆ℎ

4𝜆ℎ
 

=
−2𝜆ℎ+. . .

4𝜆ℎ
∼ −

1

2
(𝜆 → 0); 

 

2𝜆𝑦
𝑠𝑖𝑛ℎ( 𝜆ℎ) 𝑠𝑖𝑛ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 2𝜆ℎ
=
2𝜆𝑦(𝜆ℎ+. . . )(𝜆𝑦+. . . )

4𝜆3ℎ3/3
=

2𝜆3ℎ𝑦2

4𝜆3ℎ3/3
∼
3

2

𝑦2

ℎ2
(𝜆 → 0); 

 

2𝜆𝑦
𝑐𝑜𝑠ℎ( 𝜆ℎ) 𝑐𝑜𝑠ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) + 2𝜆ℎ
∼

𝑦

2ℎ
(𝜆 → 0). 

 
Then, using these relations, we have from (15) 
 

2

2

1 3 1
( , ) ( , ) ( ; ).

2 4 2 4

x y y
u x y u y e d U x h y h

h h

 




−

−

 
= = + − −    −   

 
                (20) 

 
Passing to the determination of ( , )v x y and proceeding in exactly the same way as above, from 

(16) we obtain: 
 
𝑖𝑈𝑦

2
∫

2𝜆 𝑐𝑜𝑠ℎ( 𝜆ℎ) 𝑠𝑖𝑛ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) + 2𝜆ℎ
𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

= 0; 

 
𝑖𝑈𝑦

2
∫

2𝜆 𝑠𝑖𝑛ℎ( 𝜆ℎ) 𝑐𝑜𝑠ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 2𝜆ℎ
𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

=
3

4

𝑥𝑦

ℎ2
; 

 
𝑖𝑈

2
∫

𝜆ℎ 𝑐𝑜𝑠ℎ( 2𝜆ℎ) − 𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 𝜆ℎ

𝑠𝑖𝑛ℎ( 𝜆ℎ)[𝑠𝑖𝑛ℎ( 2𝜆ℎ) + 2𝜆ℎ]
𝑐𝑜𝑠ℎ( 𝜆𝑦)𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

= −
𝑈

4

𝑥

ℎ
; 
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𝑖𝑈∫
𝑐𝑜𝑠ℎ( 𝜆ℎ) 𝑐𝑜𝑠ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) + 2𝜆ℎ
𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

=
𝑈

4ℎ
𝑥; 

 
𝑖𝑈

2
∫

𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 𝜆ℎ 𝑐𝑜𝑠ℎ( 2𝜆ℎ) − 𝜆ℎ

𝑐𝑜𝑠ℎ( 𝜆ℎ)[𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 2𝜆ℎ]
𝑠𝑖𝑛ℎ( 𝜆𝑦)𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

= 0; 

 

𝑖𝑈∫
𝑠𝑖𝑛ℎ( 𝜆ℎ) 𝑠𝑖𝑛ℎ( 𝜆𝑦)

𝑠𝑖𝑛ℎ( 2𝜆ℎ) − 2𝜆ℎ
𝛿(𝜆)𝑒−𝑖𝜆𝑥𝑑𝜆

∞

−∞

=
3𝑈

4ℎ2
𝑥𝑦.

 
 
Eventually, 
 

2 2

1 3 3
( , ) ( , ) 0.

2 4 4 4 4

x U U x U x U
v x y v y e d xy xy

h h h h

 




−

−

= = + − − =  

 
So 
 

( , ) 0 ( ; ).v x y x h y h= −  −                       (21) 

 
Now it is easy to see that the functions (19), (20), and (21) satisfy not only the boundary value 

problem (4)-(5)-(3), but also the nonlinear Navier-Stokes equations (1), the continuity equation (2), 
and the boundary conditions (3). Consequently, these functions represent the new elementary 
solution to the problem of the steady flow of an incompressible viscous fluid in a channel with flat 
parallel walls. This solution, like other exact elementary solutions, is theoretically valid for any 
Reynolds numbers. However, in reality, these solutions are valid up to a certain value of the Reynolds 
number, called the critical value. 
 
2.2 Comparison of the Solution (19)-(21) with the Couette Solution 
 

The solution, or Couette flow in a channel  , ; 0x z y h = −      with parallel walls, 

depending on the constant velocity U of the upper wall, is given by the formula [2] 
 

2

1 (0 ),
2

y h dp y y
u U y h

h dx h h

 
= − −   

                     
(22) 

 
where 
 

1 2p pdp
const

dx l

−
= − =  

 

is the constant pressure drop on the horizontal part of the channel   of length l . HereU  and 

/dp dx  are prescribed quantities. The same formula (22) in channel  , ;x z h y h = −    −    

is represented as 
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2 2

2
( ) 1 1 ( ).

2 2

U y h y dp
u u y h y h

h h dx

  
= = + − − −    

                      

(23) 

 
We also transform formula (20), for which we determine U  from (19), 
 

22
,

3

h dp
U

dx
=  

 
and substitute this expression into (20). We get 
 

2 2

2

3 2
( , ) 1

6

h dp y y
u u x y

dx h h

 
= = + − 

 
, 

 
that is, 
 

2 1
( , ) 1 ( ).

2 3

h dp y y
u u x y h y h

dx h h

  
= = + − −    

  
                   (24) 

 
Evidently, (24) does not coincide with Couette's solution (23), although both solutions give a 

parabolic distribution of horizontal velocities in the channel sections in the direction of movement of 
the upper wall. In addition, in (22) and (23) U  and /dp dx  are predetermined, while in the solution 

(19) to (21) only U  is predetermined. 
Solution (20) does not depend on the dynamic coefficient  , while (22) or (23) depend on it. 

However, here the pressure (19) depends on  ; it is generated by the velocity U  and is not given 

in advance. 
Next, in (19) and (20), we introduce dimensionless quantities, setting 

 
2

0 0

0 0

/ , / , ( ) ( , ) 2 ( , ) / ,

( ) ( , ) ( , ) / ,

x h y h p p p h h U

u u u h U

       

    

= = = =

= =
 

 
as well as the Reynolds number 
 

Re / / ; .hU hU    = = =  

 

Here is the kinematic coefficient of the viscous fluid and 2 / 2U  is the dynamic pressure. As a 

result, (19) is transformed into the form 
 

0

3
( ) ( )

Re
p   = −    ,

                     
(25) 

 

and in the coordinate plane ( )0( , ) ( )p   = , it is represented by a straight line passing through the 

origin, with slope 3/ Rek =  . Formula (20) can be written as 
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( )2

0

1
( ) 3 2 1 ( 1 1)

4
u    = + − −   ,

                    
(26) 

 

and in the coordinate plane 0( , )u , it is depicted as a parabola with an axis of symmetry 1/ 3 = −  and 

with a vertex at the point ( 1/3, 1/3)A − − . Thus, according to (26), it follows that in any vertical section 

of the channel, horizontal dimensionless velocities are distributed by the law of parabola with 
branches directed toward the movement of the channel upper wall. In this case, according to (19), 
the dimensionless pressure gradient 
 

2 3
0

2 4

h d p
P

U dx

 
= − = −  

 
 

 

and for 1 1/3−    or in the strip 0( ) 0h y h u −    , and, consequently, there is a reverse movement 

of a viscous fluid, that is, movement in the opposite direction of the channel upper wall movement. 
This is explained by the fact that, by (9), the pressure gradient in the direction of the 0x  axis is 
positive, i.e., the pressure in the channel increases as the x -coordinate increases. Since the fluid 
flows in the channel from places with high pressure to places with low pressure, particles near the 
stationary wall of the channel cannot overcome the pressure resistance, and, therefore, a backflow 
of the fluid occurs. The latter is compensated by the movement of the upper wall along the abscissa 
axis, and, moreover, near the upper wall, the fluid flows in the direction of the velocity .U  However, 
this compensation occurs partially, namely for 1/3 1   or in the strip / 3 .h y h  . For 1 1/3−    or in 

the strip / 3h y h−   , fluid particles are not able to overcome the resistance of the pressure that arises 

there, as a result of which a reverse movement of the fluid occurs. 
Thus, the main characteristics of the analysed new solution to the problem of the steady flow of 

an incompressible viscous fluid in a channel with parallel walls in a dimensionless form are 

represented by formulas (25), (26), as well as by the formula 0 ( , ) ( , ) / 0.v v h h U   = =  

It is obvious that for 0U =  the velocity and pressure components are identically equal to zero. 
This is due to the fact that the system of Eq. (11) has only a trivial zero solution and, consequently, 
the original two-dimensional boundary value problem (2) to (5) has a unique solution. 
 
3. On the Hagen-Poiseuille Flow 
 

Let us also briefly consider the Hagen-Poiseuille problem of an axisymmetric steady flow of an 
incompressible viscous fluid in a straight circular pipe of infinite length with radius a . In the case of 
laminar fluid flow and axial symmetry, the solution to this problem in a cylindrical coordinate system 
( , ,r z ) is given by formulas [2] 

 

( )

( )

2 21
( , ) ( , ) 0; ( , ) ;

4

0 ; ; 0 2 ,

r z

d p
v r z v r z v r z a r

d z

d p
const r a z

d z




 

= = = − −

=   −     

                    (27) 

 

according to which there is a parabolic velocity distribution along the pipe. Here ,rv v , and zv  are the 

velocity components in the radial, circumferential, and axial directions, respectively, i.e., along the 
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coordinate axes , ,r z . Solution (27) satisfies Schlichting [2] the nonlinear stationary Navier-Stokes 

equations for an incompressible viscous fluid in a cylindrical coordinate system, the continuity 
equation, and the boundary condition of fluid particles sticking to the cylindrical pipe surface. In this 
case, the pressure in each cross section is constant, and the pressure drop along the length of a 
straight pipe is also a constant quantity, that is, / (0 ; )dp dz const r a z=   −  . It follows 

that for the implementation of a laminar (layered) flow of a viscous fluid in a circular pipe, the 
condition /dp dz const= is a necessary condition. Let us show that this is also a sufficient condition 

for laminar flow. 
To this end, in a cylindrical coordinate system , ,r z , we consider the following boundary value 

problem for the reduced Navier-Stokes equations (without convective nonlinear terms) in the case 
of an axisymmetric steady flow of an incompressible viscous fluid in a straight circular pipe of radius 
a  in the absence of body forces: 
 

2 2

2 2 2

2 2

2 2

2 2

2 2

1
;

1
(0 ; );

0;

1
0;

( , ) ( , ) 0 ( ).

r r r r

z z z

r r r

r r a z r a

v v v vdp

dr r r r r z

v v vp
r a z

z r r r z

v v v

r r z

p p p
p

r r r z

v r z v r z z





= =

    
= + − +  

   
    
 = + +   −    

     
 

+ + =
 

   
 = + + =

  
= = −   

                (28) 

 
Using the method of the integral Fourier transform with respect to the variable z, as above, we 

show that in this case the solution of the boundary value problem (28) under the condition 
/p z const  = is indeed expressed by formulas (27). However, to simplify the calculations, we will 

prove this assertion using the following considerations. Since by the condition 
 

0 (0 ),
p

p const r a
z


= =  


 

 
from here, by integration, we get 
 

0( , ) ( ) (0 ),p r z p z h r r a= +    

 
where ( )h r  is a yet arbitrary function. But ( , )p r z  is a harmonic function in 

 0 ;D r a z=   −    . Therefore, it must satisfy the fourth equation of (28), the Laplace 

equation of the boundary value problem. Then the function ( )h r is determined from the equation 

 
1

( ) ( ) 0 (0 ),h r h r r a
r

 + =    
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having a general solution 
 

1( ) ln (0 ).h r C r C r a= +    

 
From the condition of boundedness of this function for 0r = , it follows that 0C = . We can also 

put 
1 0C = . As a result, we will have 

 

0 0; ( , ) ( ).
p

p const p p r z p z z
z


= = = = −   


 

 
Hence the pressure does not depend on r . Therefore, from (28) it follows that the radial 

velocities 
rv are determined by the boundary value problem 

 
2 2

2 2 2

1
0 (0 ; ),

0.

r r r r

r r a

v v v v
r a z

r r r r z

v =

   
+ − + =   −   

  
 =

.

                 

(29) 

 
Hence, based on the maximum principle for partial differential equations of elliptic type 

( , ) 0 ( , ) .rv r z r z D   The same result can be easily obtained directly by solving the boundary value 

problem (29). Indeed, we introduce the Fourier transformant with respect to the z coordinate 
 

( , ) ( , ) i z

r rv r v r z e dz


−

=  . 

 
Then the two-dimensional boundary value problem (29) is transformed into the following one-

dimensional boundary value problem: 
 

2
2

2 2

1
0 (0 ),

( , ) 0.

r r r
r

r r a

d v dv v
v r a

dr r dr r

v r



 =


+ − − =  


 =                    

(30) 

 

Next in (30) setting /r x = , we arrive at the boundary value problem: 

 
2

2 2

1 1
1 0,

0, ( / ).

r r
r

r x a r r

d V dV
V

dx x dx x

V V v x =

  
+ − + = 

 
 = =

                     

(31) 

 
The differential equation in (31) has two linearly independent solutions 1 1( ), ( )I x K x  – modified 

Bessel functions of the first and second kinds, respectively. But for 0 ( 0)x r= = , only the function 

1( )I r  is bounded. Therefore, the general solution of this equation has the form 

 

1 1( ) ( , ) ( ) (0 )r rV CI x v r CI r r a =  =   . 
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Subjecting this solution to the boundary condition from (30) or (31), we find 0,C =  since the 

equation 1( ) 0I r =  has no real roots. Hence 

 

( )( , ) 0 ( , ) 0 ( , ) .r rv r v r z r z D =  =   

 
Based on this, from the third equation in (28), the continuity equation, it follows that 

zv  does not 

depend on the z  coordinate. Then, according to (28), to determine the axial velocity component 
zv

, we obtain the following one-dimensional boundary value problem: 
 

2

02

1
(0 ),

0.

z z

z r a

d v dv
p r a

dr r dr

v =


+ =  


 =

 

 
The solution to this problem is represented by the second formula in (27). The assertion has been 

proven. 
As a result, the following theorem is proved: 

 
Theorem 1. In order for the axisymmetric steady flow of an incompressible viscous fluid in an infinite 
straight circular pipe to be laminar, it is necessary and sufficient for the pressure drop along the pipe 
to be constant,  
 

0 .
dp

p const
dz

= =  

 
Hence, under the same conditions, it follows: 
 
Theorem 2. In order for the flow of a viscous fluid in an infinite straight circular pipe to be turbulent, 
it is necessary and sufficient for the pressure drop along the pipe to be nonconstant,  
 
dp

const
dz

 . 

 
4. Conclusion 
 

For the problem of a steady flow of an incompressible viscous fluid in a channel with parallel 
walls, one of which is stationary and the other one moves at a constant speed in its plane, a new 
elementary solution is obtained, which differs from the well-known Couette flow solution. Unlike the 
Couette flow problem, where the velocity and the pressure drop along the length of the channel are 
predetermined, here, the pressure is generated by the velocity of the moving wall, and the pressure 
distribution law is determined from the linearized Navier-Stokes equations by Fourier analysis. A 
comparative analysis of these two solutions is carried out. Thus, it is shown that the reserves of 
mathematical analysis to obtain new simple solutions to problems in the mechanics of a viscous fluid 
have not yet been exhausted. 
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The well-known problem of Hagen-Poiseuille is again considered, and the necessary and sufficient 
condition for the laminar flow of a viscous incompressible fluid in an infinite straight circular pipe is 
established. The new solution to the Couette flow problem that we have obtained, as well as the 
Couette solution itself and the Hagen-Poiseuille solution does not depend on the Reynolds number, 
which is in conflict with the experimental data. It should also be noted that for the two problems 
considered here, creeping solutions, that is, the solutions of the linearized Navier-Stokes equations, 
also simultaneously satisfy the nonlinear Navier-Stokes equations for a steady flow of an 
incompressible viscous fluid. 

As a result, the known solutions to two problems of viscous fluid mechanics are supplemented 
with new elements. 
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