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Effective wind-driven cross ventilation requires a well-designed opening, such as a 

window, to allow sufficient exchange between indoor and outdoor air, especially when 

the building is surrounded by other buildings. Using computational fluid dynamics, the 

present study investigated the effect of different opening positions on wind-driven 

ventilation in a building in an area with a packing density of 25%. The renormalization-

group κ–ε turbulence model, a type of Reynolds-averaged Navier–Stokes (RANS) 

model, was used to characterize the airflow in cubical building blocks arranged in a 

square array. Nine different configurations of aligned cross openings and nine 

configurations with non-aligned outlet positions were tested. The ventilation rates 

obtained for the aligned cross openings showed that openings positioned at the 

uppermost of the windward and leeward façade provided highest ventilation rate. The 

ventilation rate was reduced by 75% when the openings were positioned at the bottom 

of the façade.  As for the fixed inlet in the centre, the ventilation rate was 100% higher 

when the outlet is at the top of the leeward façade compared to the bottom of the 

façade.  The outcomes of this study show that opening position is imperative in 

providing effective wind-driven cross ventilation in urban areas. 
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1. Introduction 

 

Wind-driven cross ventilation is one of the alternative strategies that are widely acknowledged 

for overcoming the effect of urban heat islands (UHIs) for a more sustainable environment in urban 

area. It has been shown to provide effective ventilation not just in isolated buildings, but also in 

buildings surrounded by other buildings [1]. However, wind-driven cross ventilation in a densely 

packed area (i.e. urban or suburban area) can be less effective owing to the lower wind speed, UHIs, 
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local noise, and air pollution [2]. Furthermore, the presence of surrounding buildings including the 

geometry could significantly affect the distribution of surface pressure on the building wall, which is 

the main parameter in the calculation of the ventilation rate, as the air flow is somewhat modified 

by the effect of building interference [3-4]. In a wind-tunnel study, the cross-ventilation rate was 

reduced by approximately 70% when a small pressure difference existed between the windward and 

leeward walls of a building that was sheltered on all sides by other buildings without openings [5]. 

Another computational study also showed that taking the surrounding buildings into account when 

estimating wind-driven ventilation can result in a difference of up to 96% in the air change rate per 

hour (ACH) [6]. In addition, increasing the aspect ratio of a street canyon leads to a reduction in the 

cross-ventilation rate [7] because the pressure difference between the windward and leeward walls 

is reduced when the buildings are closely packed together [8]. On the contrary, a numerical study on 

high-rise buildings with cross openings suggested that arranging the buildings in a staggered 

configuration can provide better wind-driven ventilation in such crowded area [9]. The findings of 

this study also indicated that the ventilation rate varies with the wind direction. 
Apart from that, indoor ventilation can also be improved by controlling the window openings 

according to the indoor and outdoor conditions [10]. Many cross-ventilation studies have focused on 

the design, including the position, size, and geometry, of openings. Using CFD, Seifert et al., [11] have 

extensively studied the effects of opening location, wall porosity, and wall thickness. The study 

mentioned that placing the opening on the upper level of a building with wall porosity of >10% can 

accelerate the airflow rate. In addition, the inlet-to-outlet ratio should also be considered in cross-

ventilation prediction [12]. Openings with an inlet-to-outlet ratio of less than unity can introduce 

indoor air with velocity which could influence the level of thermal comfort inside the building. In an 

isolated building, multiple openings on both windward and leeward façades can enhance the 

ventilation and provide uniform mixing inside the building if there is a large gap between these 

openings [13]. Nonetheless, published works on openings are limited to those in isolated buildings 

over a simplified interior of building rather than the more realistic condition in which the target 

building is surrounded by neighbourhood buildings. A few studies have reported the influence of 

surrounding buildings on indoor ventilation. For example, Tominaga and Blocken [5] performed wind 

tunnel experiment for investigating the effect of the surrounding buildings on cross ventilation of 

fixed opening with packing density of 25%. They found that the ventilation rate was reduced 

approximately 30% compared to isolated building due to the presence of surrounding buildings.  

However, it is still inadequate information since the systematic studies have not been performed 

with various position of opening configurations in urban buildings array.  
Hence, the present study aims to reveal the relationship between opening configurations (i.e. 

positions) and ventilation in a building within a large group of constructions by performing a CFD 

simulation with a three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) 

equation. Most of the existing computational studies are conducted on a single building model [11-

14] or building surrounded by other buildings [6,7,9,15] using the computational domain with the 

criteria suggested by the best practise guideline [16], with inlet boundary condition adopted from 

wind tunnel study. However, in simulating flow over a large building group, a periodic boundary 

condition can be used instead of a large computational domain in order to reduce the computational 

cost [17]. This boundary condition has been widely applied in the study of flow over cubical array to 

investigate various parameters such as flow characteristic and wind surface pressure distribution on 

buildings [18-20]. Nevertheless, the use of periodic boundary condition in simulating wind-induced 

cross ventilation in large group of buildings is scarce which is also due to the insufficiency of wind-

induced cross ventilation study in urban area.  
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In the present study, nine configurations of aligned cross openings on the windward and leeward 

façades were tested to evaluate the effect of different opening positions. Additionally, the effect of 

outlet position was also investigated by fixing the inlet on the central part of the windward façade 

and varying the outlet position on the leeward façade. Even though the ventilation rates are generally 

dependent on the approaching wind direction, the area packing density and the buildings 

arrangement, these parameters were fixed (as described in the next section) in the present study 

because the main focus was to investigate the effect of opening position. 
 

2. Methodology  

2.1 CFD Simulation 

2.1.1 Computational domain  

 

The computational domain was constructed to represent an infinitely repeating unit with an area 

packing density, λp, of 25%, defined by the ratio of total plan area of the building, Ap  to the total plan 

area of the floor, As. The size of the domain was 2H (Lx) × 2H (Ly) × 4H (Lz), where H is the building 

height, and Lx, Ly, and Lz are the lengths in the streamwise (x, parallel to the direction of airflow), 

spanwise (y, perpendicular to the direction of airflow), and vertical (z) directions, respectively, as 

illustrated in Figure 1.  

 

 
 

Fig. 1. Computational domain: (a) schematic view;                

(b) plan view 

 

A uniform Cartesian grid was applied in the present study. A grid-independence study was also 

conducted based on three grid resolutions – coarse, medium, and fine. A simplified cubic building 

model with a height of H = 0.25 m was placed in the centre of the computational domain. We selected 

this scale dimension that corresponding to the wind tunnel experiments could be conducted in the 

future to confirm the simulation results. The actual dimension should be at the scale of 1:40. The 

building model was constructed with cross openings, where the inlet was located on the windward 

façade and the outlet was on the leeward façade; the dimensions of the openings are shown in 

Figures 2(a) and 2(b) presented the possible opening positions to be evaluated in the present study. 

The size of each opening for a wall porosity of 8% was calculated from the ratio of the area of the 

opening to the area of the building wall (Aopening/Awall); these openings are considered to be small 
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ones according to Seifert et al., [11]. In this simulation we only considered the fixed size of opening 

with simplified building shape and array, and focus on the influence of opening positions. 

 

 

Fig. 2. Building model: (a) dimensions of opening;    

(b) possible locations of opening 

 

For cases with aligned cross openings (see Figure 3), both inlet (represented by numerals 1 to 

9) and outlet (represented by alphabets A to G) were placed directly opposite to each other. For 

cases with different outlet positions (see Figure 4), the inlet was fixed at position number 5 while 

the outlet position was varied from location A to G in each case.  

 

  
Fig. 3. Front (left) and side (right) view of 

configurations for aligned cross openings. 

Fig. 4. Front (left) and side (right) view of 

configurations for different outlet positions. 

 

2.1.2. Boundary conditions 

The simulations in the present study were conducted using an open-source software package 

called OpenFOAM (version 2.2.1) (OpenFOAM 2013). The renormalization-group (RNG) κ–ε 

turbulence closure model [21] was employed, where κ represents the turbulence kinetic energy and 

ε represents the turbulence dissipation rate; the flow field equations were solved using the SIMPLE 

method for pressure–velocity coupling [22]. All the simulations are carried out under the isothermal 

condition and the flow is assumed to be incompressible and steady state. The convergence of the 

flow fields were obtained when all the scaled residuals reached a minimum of 10−7 for x velocity, 10−5 
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for y and z velocity as well as κ and ε.  The convergence criteria are set to comply with the 

recommended constant residuals of 10−4 or less for all residuals [16,23]. The prevailing wind was 

assumed to flow at 0°, which is normal to the opening. The inflow is induced by a pressure gradient 

source, ∇p = ρu*/Lz where ρ is the air density, u* is the friction velocity and Lz is the domain height, 

based on a mean flow velocity, U of 8 m/s. The pressure gradient is calculated to adjust the volume 

averaged velocity in the whole domain to the desired mean velocity, U. The wind speed measured at 

a building height of H yielded an approximate Reynolds number (Reb = UHH/ν) of 80,000 for the 

building, where UH is the reference velocity at H, and ν is the kinematic viscosity. Additionally, the 

Reynolds number of airflow through the opening, Reo = UoDo/ν, ranged from 600 to 5000 for different 

configurations, where the parameter Uo represents the velocity at the opening, and Do represents 

the length of the opening. These Reynolds numbers are higher than those previously reported by 

Cermak et al., [24] for a Reynolds-number-independent flow, where Reb > 20,000 for flow around a 

bluff body and Reo > 300 for flow through an opening. 

Periodic boundary condition that is defined by the terms “cyclic” in OpenFOAM are imposed in 

both streamwise and spanwise direction to resemble a flow over large building groups as in urban 

area, see Figure 1. This type of boundary condition is usually used for simulating repeating geometries 

infinitely where it implies that all variables on the outflow boundary from the previous step of 

calculation are imposed on the inflow boundary in the next step calculation. Since the RANS equation 

only provides a time-averaged solution, the horizontal area (Lx × Ly) of the computational domain, 

which was 2H × 2H in this study, is considered sufficient for capturing the mean flow properties [20]. 

A non-slip boundary condition and a wall function based on the roughness height, Ks, and roughness 

constant, Cs, were applied to the domain floor (i.e. ground surface) and building surfaces. The values 

of 0.001 for Ks and 0.5 for Cs for the ground surface were selected in this study to produce a roughness 

height of z0 = 5 × 10−5. The values were based on the following expression [25]. 

 

�� =  
����

	
                     (1) 

 

where E is an empirical constant with a value of 9.8. The top boundary of the domain is treated as 

a free slip condition. 

 

2.2 Preliminary Simulation 

 

To the extent of the authors’ knowledge, the configuration of the simulation model proposed in 

the present study has not been used in any wind-tunnel experiment. Therefore, the first part of this 

preliminary simulation was carried out on a cubical solid block without opening as the closest 

comparable case to validate the accuracy of periodic boundary condition used in the present study. 

This preliminary simulation was performed to determine the best RANS closure model by comparing 

the results with earlier studies which used a direct numerical simulation (DNS) with higher-order 

accuracy that has been successfully validated against a wind tunnel study. The second part of the 

simulation involved the building with openings, and it included sensitivity evaluation of the effect of 

different grid resolutions. All the simulations in the preliminary stage were conducted using the 

computational settings described in section 2. 

 

2.2.1 Impact of turbulence models: Building with solid walls 

The selection of a turbulence model has a significant impact on the numerical errors and 

uncertainties which could affect the accuracy of the results. Thus, three types of RANS models, 
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namely RNG, realizable κ–ε (RKE), and shear–stress transport κ–ω (SST), were used in the sensitivity 

study to confirm the reliability of each closure model in predicting wind-driven cross ventilation. The 

simulations for each turbulence model were conducted using a grid resolution of H16 (‘16’ refers to 

the number of grid cells per building with height of H) that consists of 56,320 cells and a domain 

height of 4H. The use of finer grids and further extension of the domain height did not modify the 

spatially averaged profiles near the area of interest (i.e. below the canopy). As shown in Figure 5, the 

results of the spatially averaged mean-velocity over the entire horizontal plane (x-y) of the 

computational domain, Us, were compared with those of a previous study using a DNS model by 

Coceal et al., [19]. This comparison is intended to assess the capability of the RANS models used in 

the present study with periodic boundary condition in simulating flow over large group of buildings. 

The results were normalized against the respective spatially averaged mean velocity at a height of Z, 

with Z/H = 2. The mean velocity captured by the RANS models shows an underestimation in the lower 

half of the canopy. Moreover, the limitation of RANS models in accurately predicting the vortex in 

the street canyon resulted in negative values of spatially averaged velocity near the ground due to 

domination of reversing flow. On the other hand, larger discrepancies were also observed near the 

floor, especially when compared to the SST model. In addition, all three models overestimated the 

mean velocity near the top of the canopy, with a larger difference exhibited by the SST model. A 

comparison of the RANS and DNS results showed the former were consistent with those of an earlier 

study on the limitation of the RANS model in obtaining the mean air velocity within a building array 

[20]. Despite the limitation, all RANS models sufficiently reproduced the general patterns of the 

profiles. Hence, RANS is still considered reliable for investigating the airflow behaviour in cubical 

arrays and is believed to adequately serve the purpose of this study. Among the RANS models, RNG 

was chosen for the remaining tests because of its reasonable accuracy, computational cost, and most 

importantly, superior performance in cross-ventilation prediction in previous studies [11,14,26].  

 

 
Fig. 5. Normalized spatially averaged velocity 

profiles, Us/U2H, for different turbulence models. 

‘DNS_Coceal’ refers to the square array DNS data 

obtained by Coceal et al., [19] 

 

 

2.2.2 Impact of grid resolution: building with openings 

 

In the case of a building with openings, a uniform structured grid with a size of H25 which is 

constructed from 234,669 cells was selected as the coarse grid. The number of grids was slightly 
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higher than the minimum of ten grid cells per cube root of building volume suggested in the best 

practice guidelines [16]. The grid was then refined by a factor of two to medium resolution and fine 

resolution that are H50 (879,810 cells) and H100 (1,459,305 cells), respectively to satisfy the grid-

refinement criterion [23]. The convergence of the grid calculations was determined based on a 

comparison of the normalized ventilation rates, Q/Qref, obtained at the opening, where Q is the 

ventilation rate calculated from the integration of air velocity at the opening [27]. 

 

                  (2) 

 

In Equation (2), Uj,k is the mean velocity normal to the grid (∆yj, ∆zk) at the opening, and  

 [∆yjm, ∆yjm+1, …, ∆yjn] and [∆zkm, ∆zkm+1, …, ∆zkn] are the grid sizes within the opening. The absolute-

value notation for the velocity Uj,k indicates the summation of both inflow and outflow of air in the 

building. However, as Qin = Qout, the ventilation rate, Q, is corrected by a factor of ‘1/2’ in the 

equation. On the other hand, Qref is the reference ventilation rate defined by UH (velocity U obtained 

at a building height of H) × Aopening (area of the opening). Based on the results shown in Figure 6, the 

grid sensitivity was most significant inside the building in the area downstream of the inlet 

(represented by a distance X along the x direction, where X/H = 0–0.8).  

The ventilation rates presented in Figure 7 shows that the percentage difference between the 

normalized ventilation rates for grid sizes H25 and H100 was about 21%, while that for grid sizes H50 

and H100 was approximately 0.7%. Since a finer grid did not yield any significant difference in the 

ventilation rate, the medium grid resolution (H50) was considered sufficient and was selected for the 

rest of the study. 

 

  
Fig. 6. Normalized velocity profiles along the 

horizontal line for different grid resolutions 

Fig. 7. Normalized ventilation rates for different 

grid resolutions 

 

 

3. Results and Discussion 

3.1 Flow Distribution 

3.1.1 Building with aligned cross openings 

 

The effect of openings positions on airflow distribution inside building was further analysed based 

on the velocity vectors and contours of configurations 2B, 5E, and 8H presented in Figure 8. Higher 

velocity was observed at X/H = 0 for 2B owing to strong incoming airflow penetrating the opening in 

the upper part. The size of the air stream (jet) flowing through the inlet was also wider for 2B than 

,

1

2

jn kn

j k j kj jm k km
Q U y z

= =
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for 5E and 8H. A downwards penetrating inflow (attributed to the vortex upstream of the opening) 

and a small recirculation flow below the jet were observed for both configurations 2B and 5E. The 

openings positioned in the lower part of the building (e.g. 8H) experienced weaker ventilation 

because the incoming airflow near the inlet flowed vertically downwards and almost parallel to the 

windward façade. Furthermore, the separating flows from the building near the bottom part of the 

upstream canyon also restricted the amount of air entering the lower openings. In configurations 5E 

and 8H, the airflow leaving the outlet was driven by the recirculating flow in the downstream canyon 

and was therefore directed upwards, which is in contrast to the exiting airflow in configuration 2B. 

In addition, it is also worth mentioning that a larger calm zone (with air velocity of nearly zero) was 

observed in the upper half of the indoor space when the openings were located at the lower level of 

the building. 

 

 

 
Fig. 8. Velocity contours and vectors for three 

different opening configurations: (a)2B; (b) 5E;  

(c) 8H 

 

Contrary to the other cases, the flow in configuration 7I entered the building through the leeward 

opening and exited through the windward opening, as shown in Figure 9. The direction of airflow is 

defined by the counter-rotating vortex pair in the horizontal plane at Z/H = 0.22 (centre height of the 

opening) between the building blocks, where it tended to create larger suction (flow separated from 

the building) on the upstream opening.  

 

 
Fig. 9. Velocity contours and vectors for configuration 7I: (a) plan view; (b) side view 
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Figure 10 shows the spanwise distribution of airflow inside the building for all six cases, obtained 

by measuring the normalized velocity at five sampling locations with X/H = 0.5.  Configuration 1C 

showed higher wind velocity at sampling locations y2, y3, and y4 in the lower half of the building 

interior. Although location y1 was in the middle between the inlet and outlet of 1C, a weaker wind 

speed with average dimensionless velocity of about 0.01 was observed, compared to 0.08 at location 

y2. This indicates that the entering airflow was diverted towards the centre part rather than the 

lateral part of the building. The velocity profiles for the cases with openings located in the central 

area of the building façade (i.e. 2B, 5E, and 8H) showed their highest peak of dimensionless velocity 

at sampling location y3 in the area below Z/H = 0.4. At this location, the maximum velocity of 0.27 

was exhibited by 5E, followed by 2B and then 8H. They also exhibited almost symmetrical profiles at 

locations y2 and y4, and locations y1 and y5, which indicate that the airflow was evenly distributed 

in the spanwise direction. Apart from that, as expected, configuration 7I exhibited weak velocity at 

all locations, thus justifying the low ventilation rate at the opening in Figure 8. In general, all cases 

showed higher air velocity in the lower half of the building, and the velocity gradually became nearly 

zero in the upper half because the entering airflow was directed downwards in most of the cases. 

Negative values were also observed near the top of the ceiling owing to air moving in the opposite 

direction as the flow circulated inside the building. 

 

     

 
Fig. 10. Spanwise flow distribution inside building for cases with aligned cross openings: (a) location y1; 

(b) location y2; (c) location y3; (d) location y4; (e) location y5; (f) sampling locations 

 

 

3.1.2 Effect of different outlet positions 

 

The effect of different outlet positions was further investigated by comparing the velocity 

profiles at the inlet opening. The velocities obtained at the centre of the inlet opening along the 

height at Z/H = 0.36 to 0.64 (dotted line) are plotted in Figure 11. Configurations 5A and 5B exhibited 

similar profiles since they had nearly identical ventilation rates. The average dimensionless velocity 

of configuration 5D decreased by 4% from those of the first two configurations (5A and 5B), while 

the velocity was attenuated by 12.5% for configuration 5E. Further reduction by up to 64% was 

observed when the outlet was shifted from position in as configuration 5E to a lower level of the 

building (i.e. configurations 5G and 5H).  
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Fig. 11. Normalized velocity profiles at a fixed 

inlet opening (at position 5) but with the 

outlet located at different positions 

 

Figure 12 presents the velocity contours and vectors for three different outlet positions in 

configurations 5B, 5E, and 5H. The flow inside the building and the downstream canyon was 

significantly modified, while it was less pronounced in the upstream canyon. The intensity of air 

velocity in the jet also weakened as the outlet was shifted to the lower part of the leeward façade. 

Figure 13 shows the spanwise distributions of indoor flow sampled at five different locations with 

X/H = 0.5 for all six cases with different outlet positions. The configurations with symmetrical airflow 

were excluded. Generally, higher velocity was observed at all sampling locations with Z/H below 0.2 

because the penetrating flow was directed downwards, while the flow velocity in the upper area for 

all cases was nearly zero. Location y3 showed the highest dimensionless velocity, with a maximum 

value of 0.3 at the point just above the ground (Z/H = 0.04) for configurations 5A and 5B, where the 

outlet was positioned at the upper level of the leeward wall. 

 

 
Fig.  12. Velocity contours and vectors for configurations 

with different outlet positions: (a) 5B; (b) 5E; (c) 5H 
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Fig. 13. Spanwise flow distribution inside a building for cases with different outlet positions: (a) 

location y1; (b) location y2; (c) location y3; (d) location y4; (e) location y5; (f) sampling locations 

 

3.2 Ventilation Rate 

 

The effect of the opening position was first investigated with different positions for the aligned 

cross openings. For inlet located at position ‘5’, the corresponding outlet was shifted among nine 

different positions to investigate the effect of different outlet locations. The normalized ventilation 

rates for all configurations of both aligned and non-aligned openings were obtained by integrating 

the velocity at each opening. Identical ventilation rates were observed when openings were located 

on the lateral side of the building façade (i.e. 1C and 3A, 4F and 6D, 7I and 9G, 5A and 5C, 5D and 5F, 

5G and 5I). These identical values can be explained by the symmetrical pressure distribution on 

building surfaces when the approaching wind is normal to the building front wall (i.e. windward) [18, 

28]. In addition, the flow distribution at an intermediate height of the building showed a symmetrical 

pattern for configurations 4F and 6D. Therefore, the results for configurations 3A, 6D, 9G, 5C, 5F, and 

5I will not be further analysed here. Figure 8 shows the ranking of ventilation performance in terms 

of ventilation rate for the remaining 11 cases and the isolated case conducted using a wind tunnel 

[5] and RNG turbulence model [29]. The ventilation rate exhibited a reduction of nearly 90% from the 

isolated case when the building with lower openings is surrounded by other buildings as in the 

present study. These results correspond to the findings reported by previous studies on the sheltering 

effect by surrounding buildings on wind-induced ventilation [5-6]. In the present study, higher 

ventilation rate was observed when the cross openings were aligned at the upper level of the building 

(e.g. 1C) with approximately 50% reduction from isolated case. The flow rate was decreased by 76% 

when the openings were positioned at the lower level (e.g. 7I). In addition, the effect of different 

outlet positions can also be seen in Figure 14. Configuration 5E was selected for reference since it 

consisted of an aligned configuration of openings that were also located at the centre of the building 

façade. Shifting the outlet to an upper position on the leeward façade slightly increased the 

ventilation rate by 14% from that of the reference case. In contrast, a maximum reduction of 44% 

was observed when the outlet was positioned near the bottom part of the leeward façade. These 

results are also consistent with existing findings on the surface pressure distribution on a building 

façade with a packing density of 25%, where the upper part of the wall tends to have higher pressure 

[18]. Moreover, the range of packing density used in the present study generated a skimming flow 

regime, in which the bulk of the flow did not enter the canyon [30] and the vortex core of the 
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recirculation flow inside the canyon was closer towards the top of the canyon. Therefore, an inlet at 

the upper level of the building tended to receive more air than one at the lower level.  

 

 
Fig. 14. Ranking of ventilation rate 

 

3.3 Limitations of the Present Study 

 

It is important to note the limitations of the present study. These limitations should be addressed 

in future phases of this research. The periodic boundary condition applied to the domain assumes 

that the surrounding buildings had identical opening configurations for all buildings as well as having 

uniform height; however, these settings do not represent a real urban environment. Thus, an 

extensive study on the effect of surrounding buildings’ configurations is also necessary. In the present 

study, only a single wind direction, which is parallel to the opening, was considered, and the 

ventilation rate was estimated based on the mean flow properties while the effect of the fluctuating 

component was neglected. We also not considered the interior wall inside the building. Additionally, 

the buoyancy effect generated by the temperature difference between indoor and outdoor air was 

excluded as the study was essentially focused on ventilation driven by wind force. The various 

surrounding and shape of building conditions, and different interior wall configurations that more 

realistic will be discussed in future work.  

 

4. Conclusions 

 

Utilizing CFD methods, a series of simulations with various opening configuration was performed 

with the RANS RNG model to investigate the effect of different opening positions on cross ventilation 

in a building surrounded by other buildings, such as those found in an urban area. The following 

conclusions can be drawn. 

(1) The opening located in the uppermost of the building provided up to 76% higher ventilation 

than the lower opening for aligned cross openings. On the other hand, shifting the outlet 

position either enhanced or attenuated the ventilation rate. For instance, the ventilation rate 

for an inlet positioned in the central part of the building was increased by nearly 14% when 

outlet position is closer to the top of building. However, the ventilation rate suffered a 

reduction of 44% with lower outlet. 

(2) The structure of the standing vortex inside the canyon affected the airflow direction and the 

intensity of air velocity entering and exiting the building. 

(3) The position of an opening also determined the uniformity of airflow distribution inside the 

building, which is important for a comfortable living environment. 
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In conclusion, the present study explored the fundamental relationship between airflow in 

building arrays and the positions of openings. Notwithstanding the shortcomings, the findings 

contribute to the field of wind-driven cross ventilation in the pursuit of sustainable urban 

development, especially for buildings in large groups.  
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