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In this study, the numerical solutions for an exponentially stretching sheet with radiation 
effects, chemical reaction and a heat sink is obtained for the problem of MHD boundary 
layer flow. By using similarity transformation, the PDEs ruling system is converted into an 
ODEs system. The resulting nonlinear equations governing the flow problem are 
numerically solved by a successive linearization method (SLM) using MATLAB software. 
The significance of this paper is to show and compare the results of solving velocity, 
temperature, and concentration equations in the existence of 𝑀 changes through SLM 
for presenting it as appropriate and accurate method for solving nonlinear differential 
equations. Tables with the numerical data are created for comparison and displayed 
graphically. Analysis and studies of the effects of different parameters are conducted. The 
numerical values for the local skin friction coefficient, local Sherwood number, and local 
Nusselt number are tabulated and explained. The study demonstrates that different 
parameters have a substantial impact on the fluid flow profiles. It was noted that the 
concentration patterns were impacted by the reaction rate parameter. In addition, it was 
found that as the magnetic and radiation parameters increase in value, the local heat 
transfer rate at the surface decreases. 
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1. Introduction 
 

Most cosmic events in science, physics, and geometry occurrences that occur in our everyday 
lives and are described by nonlinear equations. So, it is harder to solve these equations because of 
these nonlinearities. Some of these nonlinear equations can be approximated mathematically and 
analytically solved using techniques like the Homotopy (HAM) analysis method proposed by Liao [1], 
the Homotopy Perturbation (HPM) method discovered by the mathematician He [2], and the 
Adomain decomposition method (ADM) [3]. Some of these equations can be resolved using 
traditional numerical techniques like the Keller box, Runge-Kutta, and finite difference methods.  

Due to their nonlinearity, the majority of equations that explain how nature behaves lack an 
accurate analytical solution. However, numerical and semi-analytical techniques can be used to 
approximate the solutions. However, a novel semi-analytical method for solving non-linear 
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differential equations is developed as a result of non-analytic solutions of numerical results and 
difficulties with every existing semi-analytical method. This innovative mathematical technique, 
known as the "Hybrid Analytical and Numerical Method" or "HAN method," creates an analytical 
expression from the outcomes of a numerical solution. The analytical formula is a polynomial, and 
any method may be used to generate the numerical results. The effects of a few physical 
characteristics have been shown. The applied technique's accuracy and effectiveness have also been 
demonstrated. The explanation of the hybrid analytical and numerical method and its use in solving 
a nonlinear heat and mass transfer issue make up the majority of this paper's uniqueness [4-7]. 

Recent investigations have demonstrated a novel Many non-linear problems in science and 
engineering have been successfully solved using this approach, including MHD flows of non-
Newtonian fluids and transfer over a stretching sheet [8], convective thermal transfer heat to the  

MHD boundary layer with a pressure gradient, and others [9,10]. So, this approach has 
demonstrated extremely high SLM flexibility, accuracy, and efficiency in solving nonlinear equations. 
technique known as the successive linearization method (SLM). 

The boundary layer theory that Ludwig Prandtl put forth in 1904 revolutionized our knowledge 
of fluid mechanics. In his theory of thin airfoils, Prandtl used the boundary layer idea, making it 
feasible to calculate the properties of airfoils in practice [11]. 

Many controlled and natural flows, such as those involved in heating, pumping, and stirring, are 
influenced by magnetic fields. The relationship between fluid movement and magnetic fields is 
known as magnetohydrodynamics (MHD), and the fluid in question must be both an electrical 
conductor and have non-magnetic properties, such as liquid metals, hot ionized gases (plasma), and 
strong electrolytes. Ishak [12], Seini and Makinde [13] and others examined the heat transmission on 
the flow of MHD boundary layer over a stretching plate, they discovered that the fluid flow velocity 
decreases as the magnetic field parameter rises. This is brought on by the existence of the Lorentz 
force, a resistive force that slows down fluid motion [14]. Numerous academics have studied 
magnetohydrodynamics (MHD) and flow in porous media over the past ten years. The usage of flow 
in porous media under the influence of a magnetic field is actually quite beneficial. It is used, among 
other things, to explore the movement of water, oil, or natural gas in reservoirs in petroleum 
engineering, the filtration and purification process in chemical engineering, and the investigation of 
underground water in agricultural engineering. Numerous scholars have researched MHD flow in a 
porous media with different configurations because of the aforementioned applications; the current 
work likewise aims to add to this body of knowledge [15-23]. 

Chemical reactions play a significant role in numerous manufacturing processes, including hot 
rolling, chemical coating of flat plates, and polymer extrusion. It is impossible for there to be pure 
water or air in nature because there may be remote mass present. As a result, those combinations 
could trigger chemical reactions inside the substances. According to Sinha [19], who investigated the 
impacts of chemical reaction past a permeable plate under sloping temperature and the unsteady 
MHD free convective flow, reaction rate increases as chemical reaction parameters are increased.  

For the MHD flow past an exponentially stretching sheet, Chaudhary et al., [14] and Ishak [12] 
consider the radiation impacts. The rate of heat transmission increases as the Prandtl number rises, 
but it decreases as the radiation and magnetic parameters rise. As the radiation parameter grows, 
the temperature rises. It is crucial to conduct research on MHD flow that considers both the effects 
of radiation and chemical reactions, particularly in manufacturing sectors. According to Seini and 
Makinde's [13] study of the MHD boundary layer flow on an exponentially stretching sheet subjected 
to radiation and chemical reaction, the boundary layer's concentration rises as the reaction rate 
parameter grows. The findings show that the heat production and reaction rates have a significant 
impact on the mass and heat transfer rates. 
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The purpose of this study is to apply the findings of Ishak [12], Khalili et al., [24], and Swain et al., 
[25] to a more general issue, such as the impact of viscus fluid dissipation and chemical reaction on 
MHD in porous medium by utilizing SLM technique. In this work, the impacts of various flow 
parameters found in the governing equations are graphically displayed and tabulated. The more 
computationally effective SLM method is used to numerically address the issue. The relevant findings 
are graphically presented and quantitatively discussed. 

This article discusses the governing equations for the heat and mass transfer issues on MHD 
boundary layer flow over a stretching sheet with a heat sink under the influence of chemical reaction 
and radiation. In this research, continuity, momentum, energy, and concentration equations govern 
the boundary layer. The boundary layer issues' governing system of PDEs is converted into a system 
of ODEs using similarity transformation. The system is then solved numerically using the (SLM) 
approach included in the MATLAB program. 
 
2. Mathematical Formulation of the Problem 
2.1 Flow Analysis 
 

Consider a stretched sheet that creates a continuous, two-dimensional flow of an incompressible, 
viscous, and electrically conducting fluid in a quiescent, uniform-temperature environment, as shown 
in Figure1. As is appropriate for MHD flow at low magnetic Reynolds numbers, we assume that a 
variable magnetic field 𝐵(𝑥) is applied normal to the sheet and that the induced magnetic field is 
omitted then (𝐵(𝑥) = 𝐵0) . The following equations govern the flow and heat transfer with radiation 
effects under the standard boundary layer assumption [24,25]: 
 

 
Fig. 1. Physical model of the problem 
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𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2 + 𝐾1(𝐶 − 𝐶∞)           (4) 

 
where (𝑢, 𝑣) are the velocities in the 𝑥- and 𝑦-directions, respectively, 𝑣 the kinematic viscosity, 𝜌 is 
the fluid density, 𝑘 the thermal conductivity, 𝑇 the fluid temperature in the boundary layer, 𝑐𝑝 the 

specific heat, 𝐶 is the boundary layer fluid concentration, 𝐷 is the mass diffusivity coefficient and 𝑞𝑟 
is the radiative heat flux. The boundary conditions are given by [24,25]: 
 

𝑢 = 𝑈𝑤 = 𝑈0𝑒
𝑥

𝐿, 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝑥

2𝐿, 𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐶0𝑒
𝑥

2𝐿 , 𝑎𝑡 𝑦 = 0,   
𝑢 ⟶ 0, 𝑇 ⟶ 𝑇∞, 𝐶 ⟶ 𝐶∞, 𝑎𝑠  𝑦 ⟶ ∞  

(5) 

 
where 𝑈0 is the reference velocity, 𝑇0 the reference temperature and 𝐿 is the reference length. The 
development of justifiable simplifications takes up most of the effort in comprehending fluid 
radiation [22]. One of these simplifications was made by Bataller [23], who presupposed that the 
fluid is in the optically thin limit and, as a result, that it solely absorbs radiation that is emitted by the 
boundaries and does not emit any radiation of its own. The problem becomes challenging for an 
optically thick gas as the gas self-absorption increases. 

However, the problem can be simplified by using the Rosseland approximation which simplifies 
the radiative heat flux as [24]: 
 

 
(6) 

 
where 𝜎 ∗and 𝑘 ∗ are the Stefan-Boltzmann constant and the mean absorption coefficient, 
respectively. This approximation only works for intense absorption, which is for an optically thick 
boundary layer, and is valid at optically far positions from the boundary surface [24,25]. It is believed 
that the temperature variations within the flow allow for a linear expression of the quantity 𝑇4 as a 
function of temperature. Hence, expanding 𝑇4 in a Taylor series about 𝑇∞

 and neglecting higher-
order terms gives 
 
𝑇4 ≈ 4𝑇∞

3 − 3𝑇∞
4              (7) 

 
Using Eq. (5) and Eq. (6), Eq. (3) will become: 
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It results from that: 
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𝑥

2𝐿
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Where 𝐵0 is the constant magnetic field. 

 
2.2 Transformation 
 

The following transformation can be used to convert the momentum and energy equations into 
the equivalent ordinary differential equations: 

𝑞𝑟 = −
4𝜎∗

3𝑘∗
𝜕 𝑇4

𝜕 𝑦
                                                                                                                             (6) 
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𝑢 = 𝑈0𝑒
𝑥

𝐿𝑓′(𝜂), 𝑣 = −√
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𝑥
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𝑈0

2𝐿
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𝑥
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(10) 

 
where 𝑓(𝜂) is the dimensionless stream function, 𝜃(𝜂) is the dimensionless temperature, 𝜙(𝜂)is the 
dimensionless concentration and primes signify differentiation with regard to 𝜂. 𝜂 is the similarity 
variable. Ordinary differential equations that have been altered are: 
 
𝑓′′′ + 𝑓𝑓′′ − 2𝑓′2 − (𝑀 + 𝐵)𝑓′ = 0,                    (11) 
 

(1 +
4

3
𝐾) 𝜃′′ + 𝑃𝑟 (𝑓𝜃′ − 𝑓′𝜃) = 0,                     (12) 

 
𝜙′′ + 𝑆𝑐(𝑓𝜙′ − 𝑓′𝜙 − 𝛾𝜙) = 0                     (13) 
 

where 𝐾 =
4𝜎∗𝑇∞

3
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𝐷
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2𝐿𝐾𝑅

𝑈𝑤
 and 𝑃𝑟 =

𝜌𝑣𝐶𝜌

𝑘
 is the Prandtl number. The modified border conditions are: 

 
𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1   
𝑓′(𝜂) → 0, 𝜃(𝜂) → 0, 𝜙(𝜂) → 0 𝑎𝑠 𝜂 → ∞.  

(14) 

 
3. Solution of the Problem 
3.1 Procedure of computational 
 

Here successive linearization method (SLM) is implemented to obtain the numerical solutions for 
nonlinear systems in Eq. (11) to Eq. (13) corresponding to the boundary condition in Eq. (14) [8,9,26]. 
For SLM solution we select the initial guesses functions 𝑓(𝜂) and 𝜃(𝜂) in the form, 
 

𝑓(𝜂) =  𝑓𝑖  (𝜂) +  ∑ 𝐹𝑚 (𝜂)𝑖−1
𝑚=0  ,   

𝜃(𝜂) =  𝜃𝑖  (𝜂) + ∑ 𝜃𝑚 (𝜂)𝑖−1
𝑚=0 ,  

𝜙(𝜂) =  𝜙𝑖  (𝜂) + ∑ 𝜙𝑚 (𝜂)𝑖−1
𝑚=0   

(15) 

 
here, the functions 𝜃(𝜂), 𝑓𝑖  (𝜂) and 𝜙(𝜂)are representative of unknown functions. 𝐹𝑚 (𝜂), 𝑚 ≥  1, 
𝜃𝑚 (𝜂), 𝑚 ≥  1, 𝜙𝑚 (𝜂), 𝑚 ≥  1 are a successive approximation, which are obtained by recursively 
solving the linear part of the equation that results from substituting Eq. (13) in the governing 
equations. The mean idea of SLM that the assumption of unknown function 𝑓𝑖  (𝜂), 𝜃𝑖  (𝜂) and 
𝜙𝑖  (𝜂)are very small when 𝑖 becomes larger, therefore, the nonlinear terms in 𝑓𝑖 (𝜂), 𝜃𝑖  (𝜂) and their 
derivatives are considered to be smaller and thus neglected. The intimal guess functions𝑓0 (𝜂), 
𝜃0 (𝜂), 𝜙𝑖  (𝜂)which are selected to satisfy the boundary conditions, 
 
𝐹(0) = 0, 𝐹0

′(0) = 1, 𝜃(0) = 1, 𝜙(0) = 1   
𝐹′(𝜂) → 0, 𝜃(𝜂) → 0, 𝜙(𝜂) → 0 𝑎𝑠 𝜂 → ∞  

(16) 

 
which are taken to be in the form, 
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𝐹0(𝜂) = 𝐼 − 𝑒−𝜂 ,    𝐹0
′ = 𝑒−𝜂  

𝐹0(0) = 0, 𝜃 = 𝑒−𝜂 , 𝜙 = 𝑒−𝜂   
(17) 

 
The succeeding solutions 𝑓𝑖 and 𝜃𝑖   are then computed starting from the first guess by solving the 

linearized from equation, which is obtained by inserting Eq. (15) in the governing Eq. (11) to Eq. (13). 
The linearized equations that must be solved are as follows: 
 
𝑓𝑖

′′′ + 𝑎1,𝑖−1 𝑓𝑖
′′ + 𝑎2,𝑖−1𝑓𝑖

′ + 𝑎3,𝑖−1𝑓𝑖 = 𝑟1,𝑖−1                   (18) 
 
𝐴𝜃𝑖

′′ + 𝑏1,𝑖−1𝜃𝑖
′ + 𝑏2,𝑖−1𝜃𝑖 + 𝑎4,𝑖−1𝑓𝑖

′ + 𝑎5,𝑖−1𝑓𝑖 = 𝑟2,𝑖−1,                  (19) 
 

𝜙𝑖
′′ + 𝑆𝑐[𝑎6,𝑖−1𝑓𝑖 + 𝑐1,𝑖−1𝜙𝑖

′ − 𝑎7,𝑖−1𝑓𝑖
′ − 𝑐2,𝑖−1𝜙𝑖 − 𝛾𝜙𝑖] = 𝑟3,𝑖−1,                 (20) 

 
where, 
 

𝑎1,𝑖−1 = ∑ 𝐹𝑚
𝑖−1
𝑚=0 , 𝑎2,𝑖−1 = −4[∑ 𝐹′

𝑚
𝑖−1
𝑚=0 + (𝑀 + 𝐵)], 𝑎3,𝑖−1 = ∑ 𝐹′′

𝑚
𝑖−1
𝑚=0 , 

 

𝑎𝟒,𝑖−1 = 𝑃𝑟 ∑ 𝐹′
𝑚

𝑖−1
𝑚=0 , 𝑎𝟓,𝑖−1 = 𝑃𝑟 ∑ 𝜃′

𝑚
𝑖−1
𝑚=0 , 𝑎6,𝑖−1 = 𝑆𝑐 ∑ 𝜙′

𝑚
𝑖−1
𝑚=0 , 𝑎7,𝑖−1 = 𝑆𝑐 ∑ 𝜙𝑚

𝑖−1
𝑚=0  

 
and, 
 

𝑟1,𝑖−1 = − ∑ 𝐹′′′
𝑚

𝑖−1
𝑚=0 − ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝐹′′

𝑚
𝑖−1
𝑚=0 + 2(∑ 𝐹′

𝑚
𝑖−1
𝑚=0 )

2
+ (𝑀 + 𝐵) ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 , 

 

𝑏1,𝑖−1 = 𝑃𝑟 ∑ 𝐹𝑚
𝑖−1
𝑚=0 , 𝑏2,𝑖−1 = 𝑃𝑟 ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 , 

 

𝑟2,𝑖−1 = −𝐴 ∑ 𝜃′′
𝑚

𝑖−1
𝑚=0 − 𝑃𝑟 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝜃′

𝑚
𝑖−1
𝑚=0 + 𝑃𝑟 ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 ∑ 𝜃𝑚

𝑖−1
𝑚=0 , 

 
and, 
 

𝑐1,𝑖−1 = 𝑆𝑐 ∑ 𝐹𝑚
𝑖−1
𝑚=0 , 𝑐2,𝑖−1 = −𝑆𝑐(∑ 𝐹′

𝑚 + 𝛾)𝑖−1
𝑚=0 , 

 

𝑟3,𝑖−1 = − ∑ 𝜙′′
𝑚

𝑖−1
𝑚=0 − 𝑆𝒄 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝜙′

𝑚
𝑖−1
𝑚=0 + 𝑆𝑐 ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 ∑ 𝜙𝑚

𝑖−1
𝑚=0 + 𝛾𝑆𝑐 ∑ 𝜙𝑚

𝑖−1
𝑚=0 .  

 
The answer for 𝑓𝑖 , 𝜃𝑖  and 𝜙𝑖  has been found when we solve Eq. (8) and Eq. (10) iteratively, and 

finally, after 𝐾 iterations, the result 𝑓(𝜂) and 𝜃(𝜂) may be represented as: 
 
∑ 𝐹𝑚(𝜂), 𝜃(𝜂) = ∑ 𝜃𝑚(𝜂)𝐾

𝑚=0 , 𝜙(𝜂) = ∑ 𝜙𝑚(𝜂)𝐾
𝑚=0 ,𝐾

𝑚=0                   (21) 
 

First, change the domain solution from [0, ∞) to [−1,1] in order to apply SLM. On the Chebyshev 
spectral collection method, SLM is based. This approach is based on the Chebyshev polynomials with 
interval [−1,1]. As a result, utilizing the truncation of the domain technique the issue is resolved in 
the range [0, 𝐿], where 𝐿 is a scaling parameter that is utilized to impose the boundary condition at 
infinity. Thus, this can be acquired by the transition 
 
𝜂

𝐿
=

ξ+1

2
,        − 1 ≤ ξ ≤ 1                       (22) 
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From Gauss-Lobatto collocation points, we can discretize the domain [−1,1] as follows: 
 

ξ = 𝑐𝑜𝑠
𝜋𝑗

𝑁
,   𝐹𝑖 ≈ ∑ 𝐹𝑖(ξ𝑘)𝑇(ξ𝑗),    𝑗 = 0,1, … , 𝑁𝑁

𝑘=0                    (23) 

 

where, 𝑁 is the number of collection points and 𝑇𝑘is the 𝑘th Chebyshev polynomial given by𝑇𝑘(ξ) =
cos [𝑘𝑐𝑜𝑠−1(ξ)]. 

The derivatives of the variable at the collocation points are in the form: 
 
𝑑 𝑟𝐹𝑖

𝑑𝜂𝑟
=  ∑ 𝐷𝑘𝑗

𝑟 𝐹𝑖(𝜉𝑘),    𝑗 = 0,1, … , 𝑁,𝑁
𝑘=𝑜   

𝑑 𝑟𝜃𝑖

𝑑𝜂𝑟 =  ∑ 𝐷𝑘𝑗

𝑟 𝜃𝑖(𝜉𝑘),    𝑗 = 0,1, … , 𝑁,𝑁
𝑘=𝑜   

(24) 

 

where r is the differentiation order and𝐷 =
2

𝐿
𝐷. The matrix of Chebyshev spectral differentiation is 

𝐷.  
We arrive at the matrix equation by substituting Eq. (22) through Eq. (24) into Eq. (18) to Eq. (20). 

 
𝐴𝑖−1𝑋𝑖 = 𝑅𝑖−1,                       (25) 
 
where, 
 

𝐴𝑖−1 = [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

],     𝑋𝑖−1 = [

𝐹𝑖

𝜃𝑖

𝜙𝑖

],     𝑅𝑖−1 = [

𝑟1,𝑖−1

𝑟2,𝑖−1

𝑟3,𝑖−1

],   

𝐴11 = 𝐷3 + 𝑎1,𝑖−1𝐷2 + 𝑎2,𝑖−1𝐷 + 𝑎3,𝑖−1𝐼, 𝐴12 = 0, 𝐴13 = 0  

𝐴21 = 𝑎4,𝑖−1𝐷 + 𝑎5,𝑖−1𝐼  

𝐴22 =  𝐴𝐷2 + 𝑏1,𝑖−1𝐷 + 𝑏2,𝑖−1𝐼  
𝐴23 = 0,  
𝐴31 = 𝑎6𝐼 − 𝑎7𝐷,  
𝐴32 = 0, 𝐴33 = 𝐷2 + 𝑐1𝐷 + 𝑐2𝐼  

(26) 

 

By using the method described above, we can get the solution as 𝑋𝑖 = 𝐴(𝑖−1)
−1𝑅𝑖−1. 

 
3.2 Convergence Analysis 
 

The convergence for numerical of −𝑓′′(0) for different order of approximation when 𝑀 = 1,
𝐵 = 0.1, 𝑃𝑟 = 1 𝑎𝑛𝑑 𝐾 = 1 is shown in Table 1. 
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Table 1 
The convergence for numerical values of −𝑓′′(0) for different 
order of approximation when, 𝑀 = 1, 𝐵 = 0.01   , 𝑃𝑟 = 1, 𝑆𝑐 =
0.22, 𝛾 = 1 𝑎𝑛𝑑 𝐾 = 1 

Order of approximation −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0 1.615101602 0.505885364 1.574608168 
1 1.632142667 0.451872939 0.620492553 
2 1.632261331 0.449949006 0.601321390 
3 1.632261349 0.449947464 0.599997716 
5 1.632261349 0.449947464 0.599997446 
10 1.632261349 0.449947464 0.599997446 
15 1.632261349 0.449947464 0.599997446 
25 1.632261349 0.449947464 0.599997446 
30 1.632261349 0.449947464 0.599997446 
35 1.632261349 0.449947464 0.599997446 
40 1.632261349 0.449947464 0.599997446 
50 1.632261349 0.449947464 0.599997446 

 
4. Results and Discussion 
4.1 Validation of Study 
 

Table 2, where 𝐾 = 1, 𝑃𝑟 = 1, 𝛾 = 1 and 𝑆𝒄 = 0.22, shows the Nusselt number −𝜃  ′(0) values 
for various radiation parameters. The remaining parameters are set to zero. The table illustrates the 
agreement between the results by comparing them to those of Khalili et al., [24]. The values of the 
Skin Friction Coefficient and Local Sherwood Number are shown in Table 2 and Table 5, respectively, 
for various values of the contributing components. The results are in great agreement, as shown in 
the table comparing the results with those of Khalili et al., [24] 
 

Table 2 

Comparison of numerical values of −𝑓  ′′(0) with 
references [24] 
M K Pr Sc γ Khalili et al., [24] Present work 

0 1 1 0.22 1 1.281933 1.281808 
1 1 1 0.22 1 1.629195 1.629177 
2 1 1 0.22 1 1.912633 1.9126203 
4 1 1 0.22 1 2.379381 2.379367 

 
In Table 3 the Nusselt number −𝜃  ′(0) values are shown below for various Prandtl number values 

while the other parameters are set to zero. The comparison between the results obtained and those 
of [12] is provided in the table, and it is demonstrated that the results accord with one another. 
 

Table 3 
Comparison of numerical values of 
−𝜃 ′(0) with Ishak [12] 
K M Pr Ishak [12] Present work 

0 0 1 -0.9548 -0.95478 
0 0 2  -1.4715 -1.47146 
0 0 3 -1.8691 -1.86907 
0 0 5 -2.5001 -2.50013 
0 0 10 -3.6604 -3.66037 
0 1 1 -0.8611 -0.86109 
1 0 1 -0.5312 -0.53118 
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In Table 4 the Nusselt number −𝜃  ′(0) values are shown below for various Prandtl number values 
while the other parameters are set to zero. The comparison between the results obtained and those 
of [25] is provided in the table, and it is demonstrated that the results accord with one another. 
 

Table 4 
Comparison of numerical values of −𝜃  ′(0) with 
Swain et al., [25] 
M B S Pr Kp Swain et al., [25] Present work 

0 0 0 1 100 0.53119 0.53116 
0 0 0 2 100 1.41751 1.41746 
0 0 0 1 100 0.9547 0.95478 

 

In Table 5 the Sherwood number −𝜙 ′(0) values are shown below for various Prandtl number 
values while the other parameters are set to zero where 𝐾 = 1, 𝑃𝑟 = 1, 𝛾 = 1 and 𝑆𝒄 = 0.22.  

The comparison between the results obtained and those of Khalili et al., [24] is provided in the 
table, and it is demonstrated that the results accord with one another. 
 

Table 5 
Comparison of numerical values of −𝜙 ′(0) with 
Khalili et al., [24] 
M K Pr Sc γ Khalili et al., [24] Present work 

0 1 1 0.22 1 0.621791 0.621762 
1 1 1 0.22 1 0.600183 0.600159 
2 1 1 0.22 1 0.586782 0.586776 
4 1 1 0.22 1 0.569903 0.569901 

 
4.2 Results 
 

The effects of magnetic parameter on velocity, temperature and concentration profiles are 
shown in Figure 2, Figure 3 and Figure 4 accordingly. Figure 2 demonstrates how velocity decreases 
as 𝑀 rises. It has been demonstrated that the magnetic parameter 𝑀 lowers fluid velocity. The 
magnetic field's presence, which opposes the flow, slows the fluid down. This is related to the Lorentz 
force, a resistive force that develops as a result of applying a transverse magnetic field to an electric-
conducting fluid. Skin friction coefficient rises as 𝑀 rises (Table 6). As a result, the fluid's velocity is 
increased and decreased by the shear wall tension. The fluid's temperature and concentration then 
rise as 𝑀 increases in Figure 3 and Figure 4. The fluid is heated by the magnetic field that is being 
applied, increasing the temperature. 

The graph in Figure 5 shows that as the permeability parameter grows, the fluid flow resistance 
force decreases, i.e., as the permeability parameter grows, the fluid flow velocity grows. The impact 
of the permeability 𝐵 parameter on temperature profiles is depicted in Figure 6. The temperature 
profile is shown to be decreasing in Figure 6 as a result of an increase in the porosity parameter. 
Figure 7 displays how the permeability 𝐵 parameter affects dimensionless concentration. The 
concentration profile is shown to decline as the permeability 𝐵 parameter increases. 

Figure 8 illustrates how the fluid's temperature is impacted by the Prandtl number. The 
temperature is lowered as Pr increases. Higher Prandtl numbers suggest that the fluid has smaller 
boundary layer structures and lower thermal conductivity [20]. As a result, the thermal barrier layer 
is thinner, allowing heat to escape the sheet more quickly. Table 2 demonstrates that as Pr rises, the 
local Nusselt number rises, which suggests that the rate of heat exchanges rises. As a result, heat 
radiates from the sheet more quickly, and the temperature drops. 
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Figure 9 demonstrates that a decrease in concentration has resulted from an increase in the 
Schmidt number. The mass diffusivity is inversely correlated to the Schmidt number. This explains 
why the boundary layer concentration thins out as Sc increases. 

Figure 10 shows how the radiation parameter 𝐾 affects the temperature profile. When the 
radiation parameter is greater, the temperature drops because the increased thermal radiation 
creates a greater convection moment at the boundary. As demonstrated in Table 6, the local Nusselt 
number falls as 𝐾 rises. The boundary layer's temperature rises as the rate of heat transmission 
decreases. The reaction rate parameter measures how quickly a reactant or a product reacts in a 
certain reaction. Figure 11 illustrates the impact on the concentration profile caused by a change in 
the reaction rate parameter 𝛾, where the concentration drops as the parameter  𝛾 is increased. This 
is due to the fact that the concentration boundary layer thickens with increasing reaction rate. 
 

  
Fig. 2. Velocity profiles for different values of 
M when Pr=1 and K=1 

Fig. 3. Temperature profiles for different 
values of M when Pr=1 and K=1 

  

  
Fig. 4. Concentration profiles for different 
values of M when Pr=1 and K=1 

Fig. 5. Velocity profiles for different values of 
B when Pr =1 and K=1 
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Fig. 6. Temperature profiles for different 
values of B when Pr=1 and K=1 

Fig. 7. Concentration profiles for different 
values of B when Pr=1 and K=1 

  

  
Fig. 8. Temperature with Prandti number 𝑃𝑟 
variation when 𝑀 = 1, 𝑆𝑐 = 0.22 and 𝐾 = 1 

Fig. 9. Concentration profiles for different 
values of 𝑆𝑐 when 𝑃𝑟 = 1, M = 2 and 𝐾 = 1 

  

  
Fig. 10. Temperature profiles for different 
values of K when Pr=1 and M=1 

Fig. 11. Concentration profiles for different 
values of γ when Pr = 1, M=2 and K=1 
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Table 6 
The Skin Friction Coefficient, Nusselt number, and Sherwood 
number for various values of parameters 

M Pr B Sc K 𝛾 |𝑓  ′(0)| −𝜃  ′(0) −𝜙  ′(0) 

0 1 0.01 0.22 1 1 1.285790 0.530097 0.621468 
1       1.632261 0.449947 0.599997 
2      1.915239 0.398416 0.586665 
4      2.381469 0.333404 0.569836 
1  0.01 0.22 1 1 1.632261 0.449947 0.599997 
      1.632261 0.769486 0.599997 
      1.632261 1.025950 0.599997 
      1.632261 1.244854 0.599997 
1 1 0.02 0.22 1 1 1.635338 0.449326 0.599835 
  0.10    1.659748 0.444455 0.598567 
1 1 0.01 0.24 1 1 1.632261 0.449947 0.630134 
   0.62   1.632261 0.449947 1.073205 
1 1 0.01 0.22 2 1 1.632261 0.308319 0.599997 
    3  1.632261 0.236329 0.599997 
1 1 0.01 0.22 1 3 1.632261 0.449947 0.914789 
     5 1.632261 0.449947 1.137956 

 
5. Concluding Remarks 
 

In this study, we investigated the MHD boundary layer flow due to an exponentially stretching 
surface through a porous medium with radiation effect and chemical reaction. The governing 
equations were transformed into a dimensionless form using appropriate scaling parameters, and 
similarity transformations were introduced to reduce the PDEs to a set of ODEs. The transformed 
ODEs were solved numerically using (SLM) method. 

The effects of various parameters on the velocity, temperature, and concentration profiles were 
investigated. It was found that the velocity profile decreases with an increase in the magnetic field 
strength and increases with an increase in the porous medium permeability. The temperature profile 
increases with an increase in the radiation parameter, and the concentration profile decreases with 
an increase in the chemical reaction parameter. The Skin Friction Coefficient, Nusselt number, and 
Sherwood number were analyzed and found to be influenced by the magnetic field strength, porous 
medium permeability, radiation parameter, and chemical reaction parameter. The present results 
were compared with the work of other authors in the field, showing good agreement. This study 
provides valuable insights into the MHD boundary layer flow due to an exponentially stretching 
surface through a porous medium with radiation and chemical reaction effects, which can be 
beneficial for various practical applications. In future we can extend this problem for another class of 
non-Newtonian fluids namely rate type fluids in three dimensional with slip conditions. 
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