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Solid oxide fuel cells (SOFCs) are favorable alternatives to fossil fuels because SOFCs 

have minimal carbon emission and can thus provide clean sustainable energy. They 

also have higher power-generation efficiency than traditional energy sources. 

However, improvements in the power and performance of SOFCs have caused the 

SOFC stack to be subjected to high thermal load and thermal stress, which should be 

minimized to prolong the stability and durability of a fuel stack. This paper presents a 

review on SOFCs from the perspective of thermal stress and its influencing factors. 
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1. Introduction  

 

Global climate change requires that energy should be delivered sustainably, and it should 

produce low CO2 emission; increasing CO2 emission will increase risk toward greenhouse gas 

emission. Solid oxide fuel cell (SOFC) offers high potential deliver energy at high efficiency [1]; this 

option also shows a considerable range of fuel flexibility and utilizes clean technology [2-5]. In 

addition, SOFC can support clean technology perception by waste heat recovery concept through 

gathering waste heat during operation and channeling it to domestic heating facilities [6]. 

Although SOFC delivers energy with remarkable benefits, it still requires system modification to 

improve the performance efficiency and operate it at an economical state by reducing the cost of 

fabrication and operation [7,8]. A challenge with SOFC is to deliver at an increased operating 

temperature (700–1000 ◦C) [9] and at the same time maintain the mechanical stability as SOFC 

consists of the thin ceramic layers; such a layer is highly susceptible mechanical failure when 

operating under rapid cyclic operation [10] 
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During operation, SOFC is subjected to combined effects of a chemical reaction while delivering 

electrical power, temperature variation, and mechanical loading. This combination factors and with 

the condition of SOFC running at increased temperature may induce mechanical stress development 

and decrease the fatigue level, especially when the system operates at high temperature [11]. 

Mechanical stress is among the important factors affecting mechanical instability in SOFC; 

delamination, creep, and stack detachment are examples of mechanical failure occurring in SOFC [12-

14]. However, the thermal stress effect on structural stability should also be considered. 

 

2. Thermal Stress in SOFC  

 

Mechanical stress is mostly induced by structure loading. Failures tend to occur when the loading 

force exceeds the yield point, and the structure undergoes material deformation. Thermal stress 

occurs when a constraint component tends to expand or contract under temperature variation. 

These changes dependence on the value of the thermal expansion coefficient (TEC). 

Therefore, thermal stress development in SOFC, along with mechanical stress during fuel design 

stage, should be considered to minimize the risk of mechanical failure. Few factors are influencing 

the thermal stress development in SOFC; these factors include the difference in TEC between SOFC 

components [15], residual stress during manufactures due to sintering temperature [14,16], reaction 

between sealant and SOFC’s structure [17,18], thermal cycling operation condition [19], and 

temperature gradient material [20,21]. 

 

3. Factors Contributing to Thermal Stress  

 

The discussion on the following part focuses on factors contributing to thermal stress 

development in SOFC. This section is consisted of two parts. Part I would discuss factors affecting 

thermomechanical properties and part II would review the factors influencing thermal stress 

developments in terms of design considerations. 

 

3.1 Effect of TEC 

 

Material properties should be considered when selecting SOFC components because material 

properties will influence thermal stress development. Thermal stress deformation in SOFC is mostly 

generated as a consequence of the mismatch between the TECs of SOFC components. Table 1 

provides a list of TEC values for the anode, cathode, and electrolyte for various working temperature 

conditions. The TEC value for electrolyte is lower than that of an electrode. Hence, the thermal stress 

between the anode and electrolyte is large, which is supported by studies conducted by Mahato et 

al., [22] and Liu et al., [19]. 

 

3.2 Effect of Young’s Modulus Properties 

 

Young’s modulus is a scale to measure the flexibility of the material and commonly used to 

describe material behavior. Thermal stress contributes to structural failure because cracks may 

develop when the material at microstructure tends experiences a material’s propagation Hence, the 

material structure geometry changes during operation. He et al., [23] stated, when Young’s modulus 

an increase during operation of SOFC, affects the residual stress and residual stress contributes to 

thermal stress. Vaida and Kim [24] found that the thermal stress concentration at the cathode (LSM- 
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YSZ) is relatively lower than that at the anode (NiO-YSZ) when operating at increased temperatures; 

such an increase in temperature will decrease the effecting of the Young modulus. 

 

3.3 Effect of Sealing Techniques 

 

Sealants play critical roles in SOFC, especially during stacking. A sealant should adhere at high 

working temperature and minimize the risk of fuel and oxidant leakages. Sealing techniques in SOFC 

are classified into two methods, namely, rigid-bonded or rigid seal [25,26] and compressive seals 

[27,28]. The glass-based material is commonly applied in rigid-bonded technique. Mica-based 

composite is used in the compressive seal. An important requirement in the rigid-bonded seal is that 

the TEC value at the sealant’s contact region should be similar or closely matched, as stated by Jiang 

et al., [18], Puig et al., [26] and Ye et al., [29] in their analysis. 

A constant pressure tightness should be applied in the compressive seal and achieved during 

operation to eliminate the risk of leakages [30-32]. Therefore, the relations between sealants and 

thermal stress are inevitable because SOFC material tends to undergo geometry changes due to long-

term operation cycle, rapid cycle, and operation at increased temperature [33,34]. 

Solutions being developed should reduce stress concentration, which subsequently influences the 

thermal stress distribution when a cooling mechanism is applied between the glass–ceramic sealant 

and fuel component. This result is attributed to that increasing the rate of heat transfer in the system 

lowers the elongation rate of SOFC components [35].  

 

3.4 Influence of Interconnect Material 

 

An interconnect joins individual SOFC components into a stack application. This part ensures 

stack stability and delivers electrical connection from electrochemical reaction toward the external 

circuit current collector. With the ability to withstand high temperature, the TEC match between 

electrodes and electrolytes and chemical and mechanical stabilities during the reaction are among 

important requirements for an interconnect to meet. Ceramic and metallic interconnect are 

commonly used to satisfy these requirements; nevertheless, a metallic alloy interconnect is preferred 

because it can operate at low thermal stress, although its heat conductivity rate is higher than that 

of the ceramic [36]. Lee et al., [37] studied the influence of thermal condition and heat transfer 

characteristics on thermal resistances by simulation using computer numerical analysis. The 

involvement of a metallic interconnect exerts the most remarkable influence on heat, and 

temperature increase resulted from a low thermal conductivity. 

 

3.5 Influence of Gas Flow Orientation  

 

Gas flow orientation plays a crucial role in SOFC design to ensure the stability and efficiency of 

fuel stacking and minimize the thermal stress level. Figure 1 shows the images of gas flow orientation 

for SOFC application; such orientation consists of parallel flow, co-flow, and counter-flow. The gas 

flow orientation influences temperature distribution and the temperature gradient in SOFC.  

The temperature gradient is associated with the movement of energy from active molecules to 

low energy molecules. Hence, a sharp gradient occurs when the temperature differences between 

the inlet and outlet are significantly substantial.  
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Table 1 

Material data for solid oxide fuel cell (SOFC) material 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Gas flow orientation in planar SOFC: a) parallel flow, b) co-flow, and c) counter-flow 

 

Recknagle et al., [46] revealed that gas flow orientation largely influence the temperature 

distribution, and co-flow delivers the most uniform temperature distribution, unlike that of counter-

flow. However, Ahn 2012 [47] used numerical modelling to analyze the thermal fluid characteristics 

in planar SOFC. Analysis showed that the inlet temperature in counter-flow is higher than that at the 

co-flow gas pattern. Additionally, Aguiar et al., [48] discovered that the temperature gradient of 

counter-flow is higher than that of co-flow. Djamel et al., [49] investigated the effect of varying supply 

temperature between fuel and oxidant on the parallel gas flow by using Ni-YSZ as based material for 

anode and YSZ for the electrolyte. They found that although the temperature between fuel and 

oxidant is the same, the maximum temperature of the fuel is the influential factor as it is an 

endothermic chemical reaction, which increases the energy. 

 

4. Conclusion  

 

A significant understanding of the thermal stress development in SOFC is essential as it 

influences the performance and structural stability of fuel when the stress exceeds the allowable 

limits. To minimize the thermal stress concentrations during operation, TEC and Young modulus 

should be considered, during the design because they influence the material properties. Also, the 

sealant flexibility, interconnect, and gas flow orientation should also be taken into consideration 

during the design stage as they also influence the thermal stress in SOFC. In conclusion, the gas flow 

Materials Thermal expansion coefficient 

( � ×  ����) 

Refs 

Electrolyte Anode Cathode 

8YSZ 10   [36,38] 

YSZ 10.4   [39] 

NiO-SDCC  11.1–11.7  [40] 

NI+8YSZ  11.6  [41] 

LSM-YSZ   11-12.4 [36,42–44] 

LSCF-SDCC   3.6 [45] 
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orientation significantly affects thermal stress, but studies on this parameter are limited. Hence, 

there is a need for further investigation. 
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