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The paper presents simulations of a viscous incompressible flow which through 
conduits having a complex section. The finite element method was applied because of 
its adaptation for complex geometries. The solution of chosen system gives a 
distribution of flow velocity profile through the studied section, and from the velocity 
values, others parameters can be deduced such as: the maximal velocity, Reynolds 
number, the volume of considered flow, the friction force to exert on the wall, as well 
as the shear stress. The validation was made with a comparison between obtained 
solutions and results given by analytical solutions with reference to cases of a simple 
section such as the circular section. Developed code and analysis can be used, as 
helpful tool, in many technological and engineering applications related to 
construction and installation of conduits, and in particular when users are interested 
in modifications of conduits section. In this study, special attention has been given to 
effects of section form on the distribution of flow velocity profile, to have results and 
necessary data according to the geometry of the selected conduits which permit to 
determinate the performances of desired system. 
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 Introduction 

 
The viscous incompressible flow phenomena occur and appear in various disciplines in science 

and engineering. The simplest viscous flow problems involve just one fluid in the laminar regime. The 
governing equations, in this case, are those so-called Navier–Stokes’s equations [1-3]. 

Several recent works have investigated a numerical study to understand the effect of section 
form and geometry orientation on fluid displacements and also on heat and mass transfer [4-6]. 

The design and realization of apparatuses and aerodynamic or hydraulic machines require the 
exploitation of vital elements for the connection between various bodies that are conduits and piping. 
All technical fields are, directly or indirectly, concerned by the conduits and their problems [7-9]. 

                                                           
 Corresponding author. 
E-mail address: bensalimen2006@yahoo.fr (Bennoud Salim) 
 

Open 

Access 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 53, Issue 2 (2019) 249-258 

250 
 

The phenomenon of the studied flow is governed by incompressible Navier-Stocks equations. In 
the general case, these equations are complex and nonlinear, but with suitable assumptions 
employed for the present study (such as incompressibility, flow permanence, viscosity, etc), a 
simplified model of equations is obtained, and it is important to note that this model was always used 
by authors [10-15]. The theoretical analysis of this model is offered to support the construction of 
numerical methods, and often computational examples are used to illustrate theoretical results [16-
18]. 

Indeed, the complexity of studied conduits sections induced that the analytical solution does not 
exist, with the exception of some solutions for simple geometries, and obviously our interest is 
directed to search for approximate numerical solutions, by employing the finite element method 
which adapts with any selected section [19-23]. 

In this paper, the finite element method (FEM) is chosen and used to compute primitive variables 
such as velocity and pressure profiles. This special computational method is based on a variational 
formulation of Navier-Stokes equations in appropriate function spaces and also used to determinate 
approximate values in certain finite dimensional subspaces. 

The purpose of this paper is to present a computational solution, using a developed code, to 
obtain more efficient and accurate numerical tools to compute viscous flows, and specially to get 
solutions for cases of flows in conduits with a complex section. 

The results retain the advantages of computational analysis and enable to have necessary data 
to determinate the system performances according to the selected conduits geometry. 
 

 Flows Through Conduits With A Complex Section 
 

The flow in conduits is a fundamental problem in aeronautic, hydraulic as in aerodynamic. One 
of the challenges that must be met to enable the realization of the technologies of scientific and/or 
industrial applications is the transport and pumping of various quantities of fluids [24, 25]. The 
conditions of flow through conduits, with or without heat transfer, depend primarily on geometrical 
and dynamic parameters (dimensions and forms of conduit, pressure, etc). And all flows in the closed 
pipes, conduits and channels are considered as internal flows [9, 12]. 

The governing equations of flow in conduits are functions of properties of conveyed fluids. The 
flow itself generates pressure losses which have a capital influence on the design of conduits. The 
correct design requires also more information on temperatures of use and mechanical properties of 
used materials. 

There are several useful applications of conduits. The distribution and transportation systems of 
fluid in various industries frequently use conduits of a circular or rectangular section. Also, an elliptic 
or others special sections (complex forms) can be used spreading to required standards (see Figure 
1). 
 

 
Fig. 1. Application of circular and non-circular sections for various 
conduits 
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The circular conduits are used as much as possible; the conduits of rectangular section or complex 
form are used when the form of these conduits accomplishes better the requirements of the multiple 
installations (limitation of space, interior design, etc). 
 

 Analysis and Mathematical Modeling 
 

A conduit of finite length l and constant section S is considered and, inside it, a viscous 
incompressible fluid is moving in steady and laminar state (Figure 2). 
 

 
Fig. 2. Problem description 

 
The mathematical model for describing continuous medium of Newtonian viscous incompressible 

flow is expressed by Navier–Stokes equations which are the equations of conservation of mass, 
momentum and energy. 

For isothermal incompressible flows, energy equation can be dropped and only the momentum 
and continuity equations are solved to obtain the velocity and pressure fields. These equations are 
given as 
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where ρ is the fluid density (taken as constant), V is the velocity vector, p is the fluid pressure, μ is 

the fluid viscosity, and FB is the body force, ∇ is the gradient operator; Δ is the Laplace operator and 

(∇.) is the divergence operator. 

The following hypotheses are applied to simplify the above equations: 
The flow is the same one in all the cross sections, the speed is constant all along the fluid thread, the 
movement is uniform and stationary, the flow is two-dimensional and with the revolution symmetry 
it remains identical to him even in all plans passing by the conduit axis and the density ρ is constant. 

The flow is viscous, the speed components (normal and tangential) against wall are null, the heat 
transfers and heating effects due to frictions are negligible, and the nature of conduit surfaces is 
smooth. 

The Navier-Stokes system can be written in short as 
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with the kinematic viscosity parameter υ = μ/ρ. The term ‘(V.Δ) V’ on the right hand side of Eq. 3 is 
known as the convective term. ΔV is known as the diffusion term. In the case of diffusion dominated 
flows the convective term can be dropped. 

The body forces ‘F’ were assumed to act perpendicularly to the flow direction and not appear in 

Eq. 3. Also, the pressure gradient ∇P is taken as a constant value. Finally, Eq. 3 returns to the following 

simple form 
 

t
C PVΔ 



1
 

            (5) 
 
The Eq. 5 is a differential equation of second order called (Poisson’s equation) with a constant 

second term. Considering the presence of friction forces and viscosity to walls, the boundary 
conditions are of Direchlet type, so that, a null velocity on conduit walls is supposed. 
 

 Analytical Solutions for a Conduit with a Circular Section 
 
The analytical solutions of Eq. 5 with associated boundary conditions correspond to simplified 

models of laminar flow, such as the Poiseuille flow which provided exact analytical solutions of this 
equation for conduits having a circular section, these conduits being most current and simplest to 
consider. 

The flow which runs in conduit having a circular section, and for the reason of symmetry, can be 

developed and treated by using the cylindrical system (r, , z). The equation of continuity is given by 
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The velocity profile in conduit becomes a function of the component r only, also the velocity V 

and its derivates V don’t depend of . So (∂/∂θ=0, Vθ=0) for an axisymmetric flow and (Vr=0) for a 
parallel flow. Eq. 6 gives 

 
(∂Vz/∂z=0)             (7) 

 
Assuming all above assumptions and substituting Eq. 7 in Eq. 5, the cylindrical version of the 

differential equation of the momentum equation with constant ρ and μ, with no body forces in the z 
direction, is given by 
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Note that the flow is entirely driven by the pressure gradient which is taken as constant. 

Consequently, velocity profile is given by the following expression 
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where (∂P/∂z= - a, and a>0). 

The velocity distribution is same all along of the conduit for the established mode. In the same 
way, distribution of the pressures can be determinate along of the conduit. 
 

 Mathematical Formulation and Analysis 
5.1 Finite Elements Formulation 
 

The finite elements method FEM for numerical solution of the incompressible Navier-Stokes 
equations will be investigate in this part to get simulations and analysis that allow to determinate 
performances and parameters for conduits with a complex section. 

The discretization by FEM method of the Navier-Stokes problem is based on its variational 
formulation. The considered problem in this formulation is an elliptic problem; of a partial differential 
equation; presented in a specific form. For the present case, it is given as the Poisson equation in the 

arbitrary area Ω of an unspecified border () which is specified by 
 

fW  )(  in Ω                    (10) 
 
where W indicates the unknown factors of the problem (in our case, the velocity), (∆) is the Laplace 
operator and f is the given function which is taken as constant. 

To study this problem mathematically, Galerkin formulation is used to obtain the variational 
formulation of the problem (note that several variational formulations can be used for the same 
problem). 

In order to adapt the problems into a form which is more useful to practical computation, the 
unknown functions can be approximated by so-called nodal shape functions (interpolation functions). 

The interpolation function is an approximate function of the solution (W) for a typical element 
which belongs to the area of study. Hence, the simple and basic linear interpolation is still widely 
used for the incompressible Navier-Stokes equations. An expression for the unknown solution in the 
element (e) is given by 

 


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e

i

e wNw
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where Ni and Wi: are respectively the nodal interpolation functions and the value of potential 
function corresponding to the ith node of the element (e), nn is the number of nodes in the element. 

The elemental contributions of the solution can be calculated and summed into a global 
equations system. The problem (Eq. 10) is equivalent to the linear algebraic system given by 

 
[k]{W}= {F}                     (12) 

 
where [K] is the (N × N) symmetric, positive definite and banded global matrix “stiffness matrix”, and 
(F) and (W) are the (N x 1) source vector “load vector” and the (N × 1) vector of unknowns (N is the 
total number of nodes in the studied domain). 
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The resolution of obtained system, by the finite elements discretization, allows to determinate 
the unknown (W), which is the velocity distribution in each point of the field. 

 
 

5.2 Calculus of Flow Parameters 
 

From the velocity values, various parameters of this flow are calculated. The studied section of 
conduit is presented by the total surface Atotal. To evaluate this surface, the elementary surfaces Aei 
of any meshes must be calculated and summed to obtain it, and summation expression of these 
surfaces elementary is given by 

 





NEL

i

itotal AeA
1                     (13) 

 
The elementary surfaces depend on the mesh type and its form. The characteristic dimension DH 

(hydraulic diameter) is calculated for various geometries of the studied conduits by the following 
expression given as 
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where Pm is the perimeter of meshed section. It will be calculated in the program for each case using 
the border nodes. The maximum velocity Wmax is obtained by numerical comparison between various 
nodal velocities. The mode of flow is laminar, Reynolds number is defined according to hydraulic 
diameter and mean velocity of the flow by the following formula 
 


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e

DW


                 (15) 
 

where  and  are constants of considered fluid. However, others parameters can be calculate such 
as the pressure losses, the friction K. 

 
 Applications and Discussion 

6.1 Model Validation and Performances 
 

The conduit with a circular geometry which has an analytical solution is chosen and validation 
was performed. Table 1 presents a comparison between the analytical values and the numerical 
values obtained by the developed code for a mesh which is realized with 121 nodes and 200 
triangular elements (the line of scan comparison was mentioned on the table). 

The agreement between the analytical solutions and those obtained numerically is observed to 
be very good. 

The obtained results approach towards the analytical solution by an average error of 0.005. The 
solution to calculate velocity field was validated by comparison with analytical results given for 
configurations of a simple geometry. The code validation was made. So, the developed approach 
allows to obtain velocity fields and profiles in various cases. 

Several parameters (number of nodes, number of elements, interpolation function) can affect 
the precision and the reliability of the solution. Different meshes with triangular or quadratic 
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elements can be implicated with a different number of nodes, which gives the possibility to apply 
various interpolation functions forms. 

Table 2 gives results obtained from various applications for different triangular meshes with 
various numbers of nodes (meshes realized with 121, 961 and 3721 nodes). 
 

Table 1  
Evolution of velocity field for a conduit of circular section 

Dp=1 

R=0.2 

µ=1 

COORDONATES: A P P L I C A T I O N S : 

y x num (121) a n a l y t i c e r r o r 

 -0 .2 0 

-0 .1 6 

-0 .12 

-0 .0 8 

-0 .0 4 

0 

0 

0 

0 

0 

0 

0 

0 . 0 0 E + 0 0 

3 . 5 7E - 0 0 3 

6 . 3 5E - 0 0 3 

8 . 3 3E - 0 0 3 

9 . 5 3E - 0 0 3 

9 . 9 2E - 0 0 3 

- 8 . 3 2 E - 1 9 

3 . 6 0 E - 0 0 3 

6 . 4 0 E - 0 0 3 

8 . 4 0 E - 0 0 3 

9 . 6 0 E - 0 0 3 

1 . 0 0 E - 0 0 2 

0 . 0 0 E + 0 0 

0 . 0 3 E - 0 0 3 

0 . 0 5 E - 0 0 3 

0 . 0 7 E - 0 0 3 

0 . 0 7 E - 0 0 3 

0 . 0 8 E - 0 0 3 

 
Table 2 

Influence of the number of the nodes. 

Dp=1 

R=0.2 

µ=1 

COORDONATES: APPLICATIONS: 

y(i) x(i) 1(121) 2(961) 3(3721) analytic 

 -0.2 

-0.16 

-.12 

-0.08 

-0.04 

0 

0 

0 

0 

0 

0 

0 

0.00E+0 

3.57E-003 

6.35E-003 

8.33E-003 

9.53E-003 

9.92E-003 

0.00E+00 

3.60E-003 

6.39E-003 

8.39E-003 

9.59E-003 

9.98E-003 

0.00E+00 

3.60E-003 

6.40E-003 

8.40E-003 

9.60E-003 

1.00E-002 

-8.32E-19 

3.60E-003 

6.40E-003 

8.40E-003 

9.60E-003 

1.00E-002 

 
The approach towards the analytical solution is more fast and precise if the number of used nodes 

is augmented. 
Table 3 gives results obtained from two applications. The first one consists to use triangular mesh 

with 121 nodes and 200 elements, and the second uses quadratic mesh with 121 nodes and 100 
elements. In this case, the interpolation function must be changed according to the number of nodes 
of mesh element and mesh element type itself. 

 

Table 3 

Influence of the interpolation function 

Dp=1 

R=0.2 

µ=1 

COORDONATES: APPLICATIONS: 

y(i) x(i) Element tri Element quadr analytic 

x 
y 

x 

y 
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 -0.2 

-0.16 

-.12 

-0.08 

-0.04 

0 

0 

0 

0 

0 

0 

0 

0.00E+00 

3.57E-003 

6.35E-003 

8.33E-003 

9.53E-003 

9.92E-003 

0.00E+00 

3.60E-003 

6.40E-003 

8.40E-003 

9.60E-003 

1.00E-002 

-8.32E-19 

3.60E-003 

6.40E-003 

8.40E-003 

9.60E-003 

1.00E-002 

 
The approach towards the analytical solution is faster and more precise if a good type of the 

interpolation function is chosen. The analysis illustrates that the number of nodes, the number of 
elements and the interpolation function have an important influence on the determination of 
velocity profile. But this advantage must be controlled and well optimized in order to limit run time 
cost and increase the precision and the reliability of the code results. 

 
6.2 Applications 
 

After the validation and analysis of the applicable model performances, this model can apply for 
various geometries, it can be useful to performed and calculate the velocity field and its distributions. 

Figure 3 presents some meshes output for different geometries and different mesh type. (Figure 
3 (a)) presents an example for triangular meshes (251 nodes and 456 elements) applied to a conduit 
with a section of half-circle and (Figure 3 (b)) presents an example for quadratic meshes (198 nodes 
and 240 elements) applied to a conduit with a complex form.  
 

 
     (a)          (b) 

Fig. 3. Meshes examples 

 
Figure 4 presents some simulations that illustrate the velocity distribution for non circular 

sections. Each case demonstrates the result of solving the viscous incompressible flow problem on a 
chosen conduit section using the developed approach. 

For Figure 4(a), the velocity field distributions are obtained for a non circular conduit with a 
simple section (application for a rectangular geometry 100mm x 200mm with 1116 nodes and 2100 
triangular elements, dp=1, μ=1). And for figure 4b, the velocity field distributions are obtained for a 
conduit with a complex section (application with 441 nodes and 400 quadratic elements, dp=1, μ=1). 

Figure 4(b) shows clearly how the section form can affect the distribution of the velocity field. 
The uniformity of the velocity field observed through simple geometries is directly affected in the 
case of complex section. 

The velocities near the conduit walls are lower. The maximum velocity is at the centre of the 
conduit that present a perfect and total symmetric section (circle, rectangle, elliptic). 

Simulations indicate that the zone of maximum velocity departs from the conduit centerline 
when the conduit section is complex and moves toward largest zones which present higher difference 

x 

y 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 53, Issue 2 (2019) 249-258 

257 
 

between their bounded walls. The velocity distribution becomes unsymmetrical with the dominance 
of effects of walls and viscosity. 

Also, from the velocity values, others parameters can be calculated which enables to analyze the 
influence of some parameters on the flow move that is important to upgrading the system 
performances. 

The numerical examples in the previous figures illustrate the results obtained for the various 
conduit sections, and also enable to check the velocity profile and the properties of the flow on 
different cases for which analytical solutions are not available. 
 

 
Fig. 4. Velocity distribution for non-circular sections 

 
 Conclusion 

 
The comprehension of viscous incompressible flow problems and also their solutions is not 

always obvious, especially when the studied system requires the applicability of complex sections. 
In this paper, a computational methodology to simulate viscous incompressible laminar flows was 

investigated. The description of the numerical approach was accompanied by a theoretical analysis 
to more understand the performance of the selected method. 

The finite element method was implemented through a computational application which makes 
it more effective and reliable. 

The model validation was made for simple two-dimensional cases. Numerical results converge 
quickly towards the analytical solution with an average error of 0.005 that enables to use a 
computational code to carry out simulations for more complex geometries. 

The velocity field is directly affected by the section form, its distribution becomes unsymmetrical 
and the zone of maximum velocity departs from the conduit centerline in the case of complex section. 

Characteristic results of the viscous incompressible flow parameters are given along the chosen 
section once the velocity profile is calculated. 

The model can be easily extended and adapted to study more proprieties of viscous 
incompressible flow trough different conduits. 
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