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Recent developments in the field of fluid dynamics have led to a new interest in stability 
analysis. The numerical solution obtained from the problems of the flow at the stagnation 
point, as well as the heat transfer with MHD and thermal radiation effects over a shrinking 
sheet, is used to carry out a stability analysis. The flow of this problem is considered in 
nanofluids and Buongiorno's model is employed. The boundary layer equation is obtained 
by reducing the governing equations to an ordinary differential equation. Partial 
differential equations are converted to ordinary differential equations using a suitable 
similarity transformation. The bvp4c simulation on Matlab is then used to solve ordinary 
differential equations. According to the numerical data, the dual solutions occur in a 
specific range of α. The parameter α refers to the stretching/shrinking where shrinking 
(less than 0) is the main reason the dual solution exists. The stability analysis is presented 
graphically and in tabular form to prove that there are two solutions to the problem and 
only one of them is stable. As a result, our research shows that the solution is only stable 
in the first solution, but not in the second. 
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1. Introduction 
 

Research on heat transfer problems is important for applications in industries and engineering, 
as reported by Oo et al., [1], Idris et al., [2], Jahan et al., [3], Pasha et al., [4] and Halim and Sidik [5]. 
However, if non-unique solutions occur in calculations, it is important to verify the stability of the 
solutions. There are some considerations that lead to the dual solution of some problems, such as in 
the unsteady case, mixed convection, moving surface and stretching or shrinking surface in boundary 
layer flow. So far, only this condition that affects the dual solution occurs in the literature review, 
and some existences occur only under certain conditions. For example, in certain cases, to gain the 
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dual solution in the stretching sheet, the presence of suction is needed, but a shrinking sheet can 
produce the dual solution without the presence of suction. 

The literature review shows that Merkin [6] has been the first person to thoroughly investigate 
how stable the first solution is, and how unstable the second. This research has also been explored 
in prior studies by Merrill et al., [7], where the lowest eigenvalues for both the first and second 
branches have been plotted for the porous medium problem. This problem exists when there is a 
steady flow on a vertical surface near to a stagnation point. The research conducted by Harris et al., 
[8] for mixed convection problems has discussed the suggestions with detailed elaborations. By 
relaxing an appropriate boundary condition, the range of possible eigenvalues can be investigated. 
Only one condition will be relaxed, and usually, it is chosen from" η → ∞" condition. The replacement 
will be 1-order higher, to be placed under " η = 0" condition and will be equal to 1. The suggestion of 
Harris et al., [8] has been used by the next researchers. Some of these papers can be seen in this 
regard, such as Roşca and Pop [9], Weidman et al., [10], Postelnicu and Pop [11], Ishak [12,13], and 
Ismail et al., [14-17]. 

Physically, the solution's stability can be determined by observing the boundary layer thickness. 
If it is closer to the boundary layer, the solution is stable (first solution), while if it is further from the 
boundary layer, the solution is unstable (second solution). As a mathematician, though, proving by 
mathematical model is a must. Furthermore, even though the second solution is unstable and 
physically insignificant, it is still a solution to the system of differential equations. Therefore, the goal 
of this research article is to conduct a stability analysis of the Nandy and Pop [18] dual solutions. It is 
worth mentioning that the research on stability analysis in thermal radiation has not been thoroughly 
investigated, and as a result, the present work represents a novel approach. 
 
2. Methodology  
 

An electrically conducted incompressible viscous fluid flow at a shrinking surface is considered in 

a steady over stagnation-point flow in two-dimensional. On the surface, a magnetic field 0B
 of 

uniform strength is introduced. The stretching/shrinking velocity is assumed to be ( )wu x cx=
 while 

the external boundary layer velocity is assumed as ( )U x ax= , with a and c being constant. To be 

noted, the stretching sheet is denoted by 0c  , while the shrinking sheet is denoted by 0c  . For 
this problem, the steady two-dimensional equations are [18]. 
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and the conditions at boundary are, 
 

0,v =         ( ) cwu u x x= =
       wT T=

   
w =

   
at      0y =  

( ) a ,u U x x→ =
       

,T T→     w →       as          y →          (5) 

 
where u is the x-direction velocity and v is the y-direction velocity. T  is the fluid temperature , f  

denotes the fluid density, the kinematic viscosity is denoted by  , m  is the thermal diffusivity, ( )U x

denotes the external fluid's velocity,   is the nanoparticle volume fraction, rq  is the radiative heat 

flux, BD  is the Brownian diffusion coefficient,   is the fluid's electrical conductivity, TD  is the 

thermophoresis diffusion coefficient, pc denotes constant pressure specific heat and ( ) / ( ) fc c   

is the ratio of the nanofluid material's effective heat capacity to the heat capacity of an ordinary fluid. 
For thermal radiation, according to the approximation of Rosseland, we obtain [19] 
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where 1k  is the mean absorption coefficient while *  is the Stefan – Boltzmann constant. 
4 3 44 3T T T T  −  is determined based on the assumption that the temperature variation 4T  can be 

enlarged into a Taylor series over T  and omitting higher order terms. Eq. (3) can then be reduced 

to 
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Next, we solve Eq. (1) to Eq. (4) using the following similarity variables in combination with the 

boundary conditions from Eq. (5)  
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where /u y=   , /v x= −   and   is referred to as the stream function. Then, 

 

'( )axfu =
   and   ( )va fv −= .           (9) 

 
Next, we have obtained the ordinary differential equations shown below by replacing Eq. (8) and 

Eq. (9) into Eq. (1), Eq. (2), Eq. (4) and Eq. (7). 
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0S LefS
Nt
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where 2

0 / fM B a = denotes the magnetic parameter, Pr / m = denotes the Prandtl number, 
3

14 /R T k =  denotes the thermal radiation parameter, (( ) / ( c) ) ( ) /p f T wNt c D T T T   = −  

denotes the thermophoresis parameter, (( ) / ( c) ) ( ) /p f B wNb c D    = −
 
denotes the Brownian 

motion parameter and / BLe D=  is represents the Lewis number. After that, the boundary 

conditions (5) are simplified to the following: 
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with   representing the ratio of stretching/shrinking velocity to the velocity of the free stream. The 

skin friction coefficient fC , the local Nusselt number xNu
 and the local Sherwood number xSh
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defined as 
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We obtain the following by applying variables from Eq. (8) 
 

1/2Re (0),x fC f =
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(15) 

 

where Re ( ) /x U x x =  denotes the local Reynolds number. 

 
3. Stability Analysis 
 

Since the existence of a dual solution, there has been an increase in the number of reports that 
acknowledge the importance of stability analysis. Firstly, the problem should be regarded as an 
unsteady problem to commence the stability analysis. Then, Eq. (2) to Eq. (4) come out as  
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where t is defined as time. Based on the work of Weidman et al., [10], it is necessary to introduce a 
time variable with no dimensions, denoted by τ. As a result, for the unsteady problem, we introduced 
a new dimensionless variable,   
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as a result, Eq. (2) to Eq. (4) can be written in the following way 
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the boundary conditions are followed by the following  
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To ascertain the steady flow solution's stability, ( )0
( )f f = , 0( ) ( )   =  and ( )0( )S S  =

satisfy the boundary – value problem (1)-(5) [6-17] 
 

( ) ( )0( , ) ,f f e F    −= +  

( ) ( )0( , ) ,e T      −= +  

( ) ( )0( , ) ,S S e G    −= +                       (24) 

 

where ( , )F    is small relative to 0 ( )f  , ( , )T    is small relative to
 0 ( )  , ( , )G    is small relative to

 

0 ( )S  and   is an is an unidentified eigenvalue. By replacing (24) in (20) - (22), the following result is 

obtained:  
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subsequently, boundary conditions  
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By setting 𝜏 = 0, the steady solutions (10) - (12) obtain the solutions 0
( ) ( )ff  = , 0( ) ( )   =  

and 0( ) ( )S S = . Therefore, 0 ( )F F = , 0 ( )T T =  and 0 ( )G G =
 in (25) - (27) identify the initial 

increment of the solution (24). Then, the equations reduce into  
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and the homogeneous boundary conditions are 
 

0
(0) 0,F =

     0
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         0 (0) 0,T =
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(0) 0G =  

0
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     0 (0) 0,T →
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It is essential to mention that the stability of the steady flow solutions for 0 ( )f  , 0 ( )   and 0 ( )S 
 

is evaluated by the smallest eigenvalue   for a set of parameters with specific values, like M, s  , Pr, 

Nb , Nt , R , and Le. Then, to define the range of possible eigenvalues, we relax a boundary 

condition on 0
( )F  , 0

(0)T  or 0 ( )G 
 [8]. The boundary condition 0

0F →  as  →   has been chosen to 

be relaxed for this study. Following that, we solved the Eq. (29) to Eq. (31) using the update boundary 

condition, which was denoted by 0
(0) 1F  = . 

 
4. Finding and Discussion 
 

Mathematical solutions for the governing ODEs (10) - (12) and boundary conditions (13) are 
obtained by numerically solving them with the bvp4c solver in Matlab. The dual solutions are 
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discovered by making guesses about the numerous initial values for f () , (0)−  and (0)S− , and 

all profiles meet the boundary condition (13). The numerical findings reported in Table 1 are 
consistent with Nandy and Pop's [18] previous work. The solution is unique in this study if 1.0  − , 

a dual solution for 1c   −
 and there is no solution for c 

 where c  denotes the critical 

value of  .  
 

Table 1 

Comparison values of (0)−  when 1.20 = − , Pr 0.71= , 1.0Le =  and 0.1R =   

M Nt Nandy and Pop [18]   Present results 
    Nb = 0.1 0.3 0.5   Nb = 0.1 0.3 0.5 

0.1 0.1 0.154170 0.144231 0.134726  0.1541709 0.1442309 0.1347271 
 0.3 0.145413 0.135998 0.127002  0.1454135 0.1360014 0.1270085 
 0.5 0.137219 0.128307 0.119798  0.1372205 0.1283085 0.1197988 
0.2 0.1 0.176443 0.164952 0.153983  0.1764439 0.1649564 0.1539852 
 0.3 0.166597 0.155712 0.145304  0.1665970 0.1557016 0.1453039 
 0.5 0.157369 0.147035 0.137181  0.1573698 0.1470370 0.1371829 
0.3 0.1 0.193236 0.180578 0.168485  0.1932395 0.1805732 0.1684853 
 0.3 0.182591 0.170563 0.159094  0.1825913 0.1705649 0.1590968 
  0.5 0.172602 0.161184 0.150296   0.1726028 0.1611850 0.1503053 

 
Figure 1 to Figure 3 depict the profile of velocity, temperature, and concentration. The appointed 

value of α resulted in non-unique solutions, as shown in the figures, which is supported by the 
obtained results by Nandy and Pop [18]. For the second solution, the boundary layer is thinner while 
for the first solution, it is thicker. This situation is valid for all profiles. A consequence of this is that it 
is expected that the first solution will be both physically significant and stable, whereas the second 
solution will be both unstable and physically insignificant. Additionally, all profiles demonstrate 
asymptotically satisfying the boundary conditions (13) as ( ) 1f  → , ( ) 0  →  and ( ) 0S  → . 

 

 
Fig. 1. Velocity profiles for selected values of α 
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Fig. 2. Temperature profiles for different values of α 

 

 
Fig. 3. Concentration profiles for selected values of α 

 
The smallest eigenvalue  is shown in Table 2 for various values of α with R = 0, 0.2. As previously 

stated, if the smallest eigenvalue yields a positive result, then the flow will be considered stable. As 
can be seen, the upper branch's   value is real and positive, while the lower branch's   value is 

real and negative. Therefore, the first solution exhibits linear stability, whereas the second solution 
exhibits linear instability. Under this situation, only the upper branch is physically considerable, while 
the lower branch wasn’t.  
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Table 2 
Smallest eigenvalues of   with selected values of α and M = 0.1 

R    Upper Branch Lower Branch 

0 –1.33 0.18422 - 0.17788 
 –1.30 0.50216 - 0.45640 
 –1.25 0.79501 - 0.68089 
 –1.20 1.01066 - 0.82430 
0.2 –1.31 0.42210 - 0.38958 
 –1.29 0.57183 - 0.51265 
 –1.27 0.69177 - 0.60540 
 –1.23 0.88712 - 0.74459 

 
5. Conclusions 
 

The stability analysis is examined for the flow at the stagnation point as well as heat transfer in 
nanofluid with the effect of thermal radiation and magnetic field on the shrinking sheet. This study 
contributed by confirming that, based on the results of a stability analysis, linear stability exists in the 
upper branch whereas linear instability exists in the other branch. This statement is proved by the 
finding that the upper branch has a positive value of  whereas the lower branch has a negative value 

of  .  
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