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Unsteady magnetohydrodynamics (MHD) flow of fractionalized second grade nanofluid 
(Ag-Cu) over a vertical plate is obtained. The model is solved by using CPC fractional 
derivative. The novelty of present study is to generalized the model by using Fourier’s and 
Fick’s laws. The nanofluids are formed by dispersing two different nanoparticles, silver 
(Ag) and copper (Cu), into a based fluid. The governing dimensionless equations for 
velocity, concentration, and temperature profiles are solved using Laplace transform 
method and compared graphically. The effects of different parameters like fractional 
parameter, second grade parameter and magnetic parameter M are discussed through 
numerous graphs. From figures, it is observed that second grade and magnetic field have 
decreasing effect on velocity profile, whereas mass Grashof number have increasing effect 
on velocity of fluid. 
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1. Introduction 
 

Convection flow in the presence of porosity has numerous important applications such as flows 
in soils, solar power collectors, heat transfer correlated with geothermal systems, heat source in the 
field of agricultural storage system, heat transfer in nuclear reactors, heat transfer in aerobic and 
anaerobic reactions, heat evacuation from nuclear fuel detritus, and heat exchangers for porous 
material. Heat and mass transfer occurs mostly in nature due to temperature and concentration 
differences respectively. Magnetohydrodynamics (MHD) is branch of Mechanics which examines the 
movement of electro-conductive fluid in the existence of magnetic field. Today research work in 
Magnetohydrodynamics (MHD) has substantial significance as these flows are absolutely prevailing 
in nature. Hsiao [1] worked on MHD heat transfer thermal extrusion system using non-Newtonian 
Maxwell fluid with radiative and viscous dissipation effects. Chamkha et al., [2] discussed the hall and 
ion slip effects on MHD rotating boundary layer flow of nanofluid. Chamkha et al., [3] analyzed the 
hall and ion slip effects on MHD free convective rotating flow through a porous medium. Ramzan et 

 
* Corresponding author. 
E-mail address: ranahafeez608@gmail.com 
 
https://doi.org/10.37934/arfmts.97.2.103114 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 97, Issue 2 (2022) 103-114 

104 
 

al., [4] analyzed the MHD flow of fractionalized Jeffrey fluid with newtonian heating and thermal 
radiation over a vertical plate. Ahmad et al., [5] compared the generalized form of Jeffrey fluid flow 
acquired by contemplating fractional derivative of singular kernel (Caputo) and non-singular kernel 
(Caputo-Fabrizio). During the last decade, different generalized fractional derivatives have appeared 
in the literature that are derivatives of Caputo, Caputo-Fabrizio, constant proportional Caputo [6-7]. 
Some studies of free convection on an inclined plane in various thermal and mechanical situations 
have recently been presented by mathematicians [8-14]. Some mathematical models of second grade 
fluids are industrial oils, slurry streams, and dilute polymer solutions with different geometry and 
boundary conditions. The solution of unsteady second grade fluid at plate with the assistance of the 
Fourier sine transformation was described by Fetecau et al., [15]. Ahmed et al., [16] has analyzed 
MHD heat transfer into convective boundary layer with a minimal pressure gradient. Convective 
mixed MHD flow studied by Narayana [17], while Chamkha et al., [18] worked Hall and ion slip 
impacts on unsteady MHD convective rotating flow of heat generation/absortion second grade fluid. 
Because of its rising significance, engineering needs to incorporate non-Newtonian fluid. Khan et al., 
[19] presented a fractional flow of the second grade fluid on a vertical surface driven by temperature 
as well as concentration gradients. Chamkha et al., [20] discussed heat transfer analysics of unsteady 
hybrid nanofluid flow with thermal radiation. Seth et al., [21] discussed the MHD convection flow 
over a vertical plate with ramped temperature. Tran et al., [22] studied on mandatory stability of 
fractional derivatives for fractional calculus equations, and the mathematical model used for 
transference of COVID-19 with Caputo fractional derivatives also discussed by Tuan et al., [23]. 

Shateyi et al., [24] analyzed the free convection flow of fluid past an infinite vertical plate using a 
heat generation. Ramzan et al., [25] analyzed the problem of Casson fluid through a channel. Khalid 
et al., in [26] investigated the Casson fluid effect. Kataria et al., [27] worked on the MHD fluid with 
heat and mass transport immersed in a porous medium. Authors in [28,29] discussed the Brinkman 
fluid over a plate. Siyal et al., and Shah et al., [30,31] discussed Casson fluid over a vertical plate. 

In this problem, the model of MHD flow of second grade nanofluid (Ag-Cu) over a plate is 
considered. Firstly, the governing equations have been made non-dimensional and then solved semi-
analytically. The results for velocity profile, temperature profile, and concentration profile are 
obtained and then analyzed graphically. Various graphs are plotted and discussed for different 
parameters, which are used in the flow model.       

  

2. Mathematical Description of The Model 
 

The magnetohydrodynamic flow of second grade nanofluid over a plate is considered. The fluid 
is flowing along 𝑦1

∗-axis. The motion of fluid depends on 𝑥1
∗-axis and time 𝑡1

∗. The plate and fluid have 
concentration 𝐶∞

∗  and temperature 𝑇∞
∗  at constant 𝑡1

∗ = 0 with zero velocity. But for 𝑡1
∗ > 0, the plate 

starts to move in the plane with uniform velocity 𝑈1𝑒𝑎∗𝑡1
∗
. The level of concentration is lowered or 

raised to 𝑡1
∗(𝐶∞

∗ + 𝐶𝑤
∗ )/𝑡0 + 𝐶𝑤

∗  for 𝑡0 ≥ 𝑡1
∗ and 𝐶𝑤

∗  for 𝑡0 ≤ 𝑡1
∗. The temperature of the plate is 

lowered or raised to 𝑡1
∗(𝑇∞

∗ + 𝑇𝑤
∗ )/𝑡0 + 𝑇𝑤

∗  for 𝑡0 ≥ 𝑡1
∗ and 𝑇𝑤

∗  for 𝑡0 ≤ 𝑡1
∗. A uniform magnetic field 

𝛽0 is acting in the transverse direction to the flow. The transversely applied magnetic field and 
magnetic Reynolds number are assumed to be very small so that the induced magnetic field the Hall 
effect are negligible. normally. In view of above assumption and using Boussinesq’s approximation, 
the convection flow of second grade fluid with chemical reaction, and magnetic field through a plate, 
linear momentum equation by using [28,32] is 
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𝜌𝑛𝑓
𝜕𝑢1(𝑥1

∗ ,𝑡1
∗)

𝜕𝑡1
∗ = 𝜇𝑛𝑓(1 +

𝛼1

𝜌

𝜕

𝜕𝑡1
∗)

𝜕2𝑢(𝑥1
∗ ,𝑡1

∗)

𝜕𝑥1
∗ + (𝜌𝛽𝑇∗)𝑛𝑓𝑔(𝑇∗ − 𝑇∞

∗ ) −
𝜎𝑛𝑓𝛽0

2𝑢1(𝑥1
∗ ,𝑡1

∗)

𝜌
 

                             +(𝜌𝛽𝐶∗)𝑛𝑓𝑔(𝐶∗ − 𝐶∞
∗ )                   (1) 

 
Thermal equation is  
 

(𝜌𝑐𝑝)𝑛𝑓
𝜕𝑇∗(𝑥1

∗ ,𝑡∗)

𝜕𝑡1
∗ = −

𝜕𝑞(𝑥1
∗ ,𝑡∗)

𝜕𝑥1
∗            (2) 

 
According to Fourier’s Law, 𝑞1(𝑥1

∗, 𝑡1
∗) is given by  

 

𝑞1(𝑥1
∗, 𝑡1

∗) = −𝐾𝑛𝑓
𝜕𝑇∗(𝑥1

∗ ,𝑡1
∗)

𝜕𝑥1
∗             (3) 

 
Diffusion Eq. is  
 
𝜕𝐶∗(𝑥1

∗ ,𝑡1
∗)

𝜕𝑡1
∗ = −

𝜕𝐽(𝑥1
∗ ,𝑡1

∗)

𝜕𝑥1
⋅              (4) 

 
According to Fick’s Law, 𝐽1(𝑥1

∗, 𝑡1
∗) is given by  

 

𝐽1(𝑥1
∗, 𝑡1

∗) = −𝐷𝑛𝑓
𝜕𝐶∗(𝑥1

∗ ,𝑡1
∗)

𝜕𝑥1
∗             (5) 

 
The conditions for the model [27] are  
 
𝑢1(𝑥1

∗, 𝑡1
∗) = 0,   𝑇∗(𝑥1

∗, 𝑡1
∗) = 𝑇∞,   𝐶∗(𝑥1

∗, 𝑡1
∗) = 𝐶∞

∗ ,   𝑥1
∗ > 0,    𝑡1

∗ = 0,      (6) 
 

𝑢1(0, 𝑡∗) = 𝑈1𝑓(𝑡1
∗),   𝑇(0, 𝑡1

∗) = {
𝑇𝑤

∗ ,  𝑡1
∗ > 𝑡0; 

𝑇𝑤
∗ +

𝑡1
∗(𝑇𝑤

∗ −𝑇∞
∗ )

𝑡0
,  0 < 𝑡1

∗ ≤   𝑡0,
       (7) 

 

             𝐶(0, 𝑡1
∗) = {

𝐶𝑤
∗ ,  𝑡1

∗ > 𝑡0; 

𝐶∞
∗ +

𝑡1
∗(𝐶𝑤−𝐶∞)

𝑡0
,  0 < 𝑡1

∗ ≤   𝑡0,
       (8) 

 
𝑢1(𝑥1

∗, 𝑡1
∗) → 0,   𝑇∗(𝑥1

∗, 𝑡1
∗) → 0,   𝐶∗(𝑥1

∗, 𝑡1
∗) → 0,     𝑥1

∗ → ∞,     𝑡1
∗ > 0      (9)  

 
Dimensionless form of the variables are  
 

𝑥 . =
𝑈𝑥1

∗

𝜈
 ,        𝑡 . =

𝑈2𝑡1
∗

𝜈
,        𝑇 . =

𝑇∗−𝑇∞
∗

𝑇𝑤
∗ −𝑇∞

∗ ,       𝑢. =
𝑢1

𝑈∗
,        

Gr. =
𝜈𝛽𝑇∗(𝑇𝑤

∗ −𝑇∞
∗ )

𝑈3
,       𝐶 . =

𝐶∗−𝐶∞
∗

𝐶𝑤
⋅ −𝐶∞

∗ ,       Gm. =
𝜈𝛽𝐶∗(𝐶𝑤

∗ −𝐶∞
∗ )

𝑈3
                  (10) 

 
Using parameter of Eq. (10) into Eq. (1)-(9), we have  
 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝑎0(1 + 𝑆

𝜕

𝜕𝑡
)

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 − 𝑀0𝑢(𝑥, 𝑡) + Gr0𝑇(𝑥, 𝑡) + Gm0𝐶(𝑥, 𝑡),                (11) 
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where   𝑎0 = ((1 − 𝜙 +
𝜙(𝜌𝑠)

𝜌𝑓
)(1 − 𝜙)2.5)−1,  Gr0 =

Gr

𝜙0
,  Gm0 =

Gm

𝜙0
,  𝑀0 =

𝑀

𝜙0
,  

 
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

1

𝑏0

𝜕𝐴

𝜕𝑥
,                         (12) 

 
with  
 

𝐴(𝑥, 𝑡) = −
𝜕𝑇

𝜕𝑥
,                       (13) 

 

where   𝑏0 =
𝜙1Pr

𝜙2
, Pr =

𝜈𝜌𝑐𝑝

𝐾𝑓
, 𝐴 =

𝑞𝜈

𝑈𝐾𝑛𝑓(𝑇𝑤−𝑇∞)
  

 
𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

1

𝑐0

𝜕𝐵

𝜕𝑥
,                        (14) 

 
with  
 

𝐵(𝑥, 𝑡) = −
𝜕𝐶

𝜕𝑥
,                       (15) 

 

where   𝑐0 =
Sc

1−𝜙
,   Sc =

𝜈

𝐷𝑛𝑓
,   𝐵 =

𝑞𝜈

𝑈𝐷𝑛𝑓(𝐶𝑤−𝐶∞)
,   𝜙0 = 1 − 𝜙 +

𝜙(𝜌𝑠)

𝜌𝑓
,  

                𝜙1 = 1 − 𝜙 +
𝜙(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
,   𝜙2 =

−2𝑘𝑓+𝑘𝑠−2(𝑘𝑓−𝑘𝑠)𝜙

2𝑘𝑓+𝑘𝑠+(𝑘𝑓−𝑘𝑠)𝜙
 

 
3. Generalized Model 
 
Eq. (11) is  
 
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝑎0(1 + 𝑆

𝜕

𝜕𝑡
)

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 − 𝑀0𝑢(𝑥, 𝑡) + Gr0𝑇(𝑥, 𝑡) + Gm0𝐶(𝑥, 𝑡),                (16) 

 
Eq. (13) and Eq. (15) is generalized fractionally by [33,34]  
 

𝐴(𝑥, 𝑡) = −𝐷𝑡
𝛾 𝜕𝑇(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0,                     (17) 

 

𝐵 = −𝐷𝑡
𝛼 𝜕𝐶(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0                     (18) 

 
Put Eq. (17) into Eq. (12) and Eq. (18) into Eq. (14) and making non-dimensional results, we have  
 
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

1

𝑏0
𝐷𝑡

𝛼 𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2 ,                      (19) 

 
𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

1

𝑐0
𝐷𝑡

𝛼 𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2 ,                      (20) 

 
Initial and boundary conditions are  
 
𝑢(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) = 0,       𝑡 = 0,                    (21) 
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𝑢(0, 𝑡) = 𝑓(𝑡), 𝑇(0, 𝑡) = 𝐶(0, 𝑡) = {
1,  𝑡 > 1; 
𝑡,  0 < 𝑡 ≤   1,

                  (22) 

 
𝑢(𝑥, 𝑡) → 0,     𝑇(𝑥, 𝑡) → 0,     𝐶(𝑥, 𝑡) → 0,      𝑥 → ∞,   𝑡 > 0,                 (23) 
 
where Gm, 𝑆, 𝑀, Gr, and 𝑢 represents the mass Grashof number, second grade parameter, magnetic 

field, mass Grashof number, and motion of fluid respectively and 𝐷𝑡
𝛽

𝑢(𝑥, 𝑡) is the CPC derivative of 
𝑢(𝑥, 𝑡) given by  
 

𝐷𝑡
𝛽

𝑢(𝑥, 𝑡) =
1

Γ(1−𝛽)
∫

𝑡

0
[𝐾1(𝛽)𝑢(𝑥, 𝜏) + 𝐾0(𝛽)𝑢′(𝑥, 𝜏)](𝑡 − 𝜏)−𝛽𝑑𝜏                (24) 

 
4. Solution of Problem 
 
Eq. (16), (19), (20) with conditions have been solved semi-analytically via technique of Laplace 
transform can be solved numerically by using Stehfest’s and Tzou’s algorithms [35,36] in case of 
complex expression.. 
 
4.1 Calculation of Temperature 

 
By applying Laplace transform on Eq. (19), we have  
 

𝑞�̅�(𝑥, 𝑞) =
1

𝑏0
[

𝐾1(𝛼)

𝑞
+ 𝐾0(𝛼)]𝑞𝛼 𝜕2�̅�(𝑥,𝑞)

𝜕𝑥2                     (25) 

 
 By applying Laplace transform on Eq. (19), we have with boundary conditions  
 

�̅�(0, 𝑞) =
1−𝑒−𝑞

𝑞2 ,       �̅�(𝑥, 𝑞) → 0,   𝑥 → ∞                    (26) 

 
Put Eq. (26) in Eq. (25) 
 

�̅�(𝑥, 𝑞) = (
1−𝑒−𝑞

𝑞2 )𝑒

−𝑥√
(𝑞𝑏0)

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

,                     (27) 

 
4.2 Calculation of Concentration 

 
By applying Laplace transform on Eq. (20), we have  
 

𝑞𝐶̅(𝑥, 𝑞) =
1

𝑐0
[

𝐾1(𝛼)

𝑞
+ 𝐾0(𝛼)]𝑞𝛼 𝜕2�̅�(𝑥,𝑞)

𝜕𝑥2
                    (28) 

 
with boundary conditions  
 

𝐶̅(0, 𝑞) =
−𝑒−𝑞+1

𝑞2
,       𝐶̅(𝑥, 𝑞) → 0,   𝑥 → ∞                    (29) 

 
Put Eq. (29) in Eq. (28) 
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𝐶̅(𝑥, 𝑞) = (
−𝑒−𝑞+1

𝑞2 )𝑒

−𝑥√
(𝑞𝑐0)

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

,                    (30) 

 
4.3 Calculation of Velocity 

 
By applying Laplace transform on Eq. (16), we have  
 

𝑞�̅�(𝑥, 𝑞) = 𝑎0(1 + 𝑆𝑞)
𝜕2𝑢(𝑥,𝑞)

𝜕𝑥2 − 𝑀0�̅�(𝑥, 𝑞) + Gr0T̅(𝑥, 𝑞) + Gm0𝐶̅(𝑥, 𝑞),                (31) 

 
 with boundary conditions  
 
�̅�(0, 𝑞) = 𝑓(𝑞),       �̅�(𝑥, 𝑞) → 0,   𝑥 → ∞                    (32) 
 
 Putting Eq. (32) in Eq. (31) we have  
 

�̅�(𝑥, 𝑞) =
1

𝑞−𝑎
𝑒

−𝑥√
𝑞+𝑀0

𝑎0[1+𝑆𝑞] +
Gr0

1−𝑒−𝑞

𝑞2

𝑎0[1+𝑆𝑞][
𝑏0𝑞

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

]−[𝑞+𝑚0]
[𝑒

−𝑥√
𝑞+𝑀0

𝑎0[1+𝑆𝑞] − 𝑒

−𝑥
√

(𝑞𝑏0)

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

] +

                    
Gm0

1−𝑒−𝑞

𝑞2

𝑎0[1+𝑆𝑞][
𝑐0𝑞

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

]−[𝑞+𝑚0]
[𝑒

−𝑥√
𝑞+𝑀0

𝑎0[1+𝑆𝑞] − 𝑒

−𝑥√
(𝑞𝑐0)

(
𝐾1(𝛼)

𝑞
+𝐾0(𝛼))𝑞𝛼

]                (33) 

 
5. Results and Discussion 

 

The solution for the impact of second grade nanofluid past over a vertical plate are developed by 
using Laplace transform technique. The effect of numerous parameters used in the governing 
equations of velocity fields have been analyzed in figures. 

The impact of Gm and Gr on fluid velocity 𝑢(𝑥, 𝑡) is illustrate in Figure 1. It is highlighted that fluid 
motion raises as values of Gm increasing. Physically higher the values of Gm increase the 
concentration gradients which make the buoyancy force significant and hence it is examined that 
velocity field is raising. And fluid motion rises up with maximizing the values of Gr, and it represents 
the impact of thermal buoyancy force to viscous force. Therefore maximizing the values of Gr exceed 
the temperature gradient due to which velocity field rises. 

The impact of 𝑀 and Pr on 𝑢(𝑥, 𝑡) is reported in Figure 2. Graph shows that fluid velocity 𝑢(𝑥, 𝑡) 
is reduced with accelerating values of parameter 𝑀. Resistivity becomes dominant with raising 𝑀 
which reduced the speed of fluid. The 𝑢(𝑥, 𝑡) increases with decreasing the values of Pr. As Pr is the 
ratio of momentum diffusivity to the thermal diffusivity. Physics behind this effect is that larger the 
momentum diffusion, slows down the fluid motion. From the graph. Figure 3 represents the effect of 
𝑆 and 𝑡 on 𝑢(𝑥, 𝑡). The 𝑢(𝑥, 𝑡) increases with decreasing the values of 𝑆 and  increases with increasing 
values of time 𝑡. Figure 4 indicates the effect of Sc and 𝜙 on 𝑢(𝑥, 𝑡). The fluid velocity rises by falling 
the magnitude of Sc and 𝜙. Physics behind this fact is that increase in Schmidt number, Kinematic 
viscosity rises which declines the molecular diffusion, therefore, velocity of the fluid falls down and 
it is found that enhancing volume fraction of nanoparticles boosts the viscous effect for the nanofluid 
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consequently it decreases the fluid velocity. Figure 5 indicates the effect of 𝛼 on 𝑢(𝑥, 𝑡) and 𝑇(𝑥, 𝑡). 
It is clear that as 𝛼 increases, the fluid velocity and temperature are increase. Figure 6 indicates the 
impact of Pr and 𝜙 on 𝑇(𝑥, 𝑡). As we increased the value of Pr, heat diffusion is reduced which slow 
down the fluid motion and temperature increases with increasing values of 𝜙 as reported in figure. 
Because thermal conductivity of nanofluid increases with the increasing volume fraction 𝜙 of 
nanoparticles.  The behavior of 𝛼 and Sc on 𝐶(𝑥, 𝑡) are shown in Figure 7. The 𝐶(𝑥, 𝑡) is increases 
with increasing value of 𝛼 and decreases with increasing values of Sc as depicted in graph.  Figure 8 
and 9 show the comparison of present work with Khalid et al., [26]. If we put 𝛽 = 𝛾 = 𝛼 → 1, 𝑆 =
Gm = 0, and in the absence of Casson parameter of Khalid et al., [26] work, the both fluid are 
identical. The velocity distributions overlap which shows the authenticity of inversion algorithms as 
presented in Figure 10. The authenticity of inverse algorithms for temperature and concentration 
distributions as presented in Figure 11. 
 

  
Fig. 1. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameters Gm and Gr at 𝑆 = 2, 𝑀 = 0.3,
Sc = 1.2, Pr = 2.5, t = 1.5 

  

  
Fig. 2. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝑀 and Pr at 𝑆 = 2, Gm = 15, Sc =
1.2, Gr = 15, t = 1.5 
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Fig. 3. Velocity distribution 𝑢(𝑥, 𝑡) for various values of parameter 𝑆 and t at 𝑀 = 0.3, Gm = 15, Sc =
1.2, Gr = 15, Pr = 2.5 

  

  
Fig. 4. Velocity diagram 𝑢(𝑥, 𝑡) for various values of parameters Sc and ϕ at 𝑆 = 2, 𝑀 = 0.3, Gr =
15, Pr = 2.5, t = 1.5,   Gm = 15 

  

  
Fig. 5. Graph of fractional parameter 𝛼 for Velocity and temperature distribution at 𝑆 = 2, Pr =
2.5, Sc = 1.2, Gr = 15, t = 1.5 
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Fig. 6. Temperature distribution 𝑇(𝑥, 𝑡) for various values of parameter Pr and ϕ 

  

  
Fig. 7. Concentration profile 𝐶(𝑥, 𝑡) for various values of parameter 𝛼 and Sc 

  

  
Fig. 8. Comparison of velocity profile for different values of 𝛼 
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Fig. 9. Comparison of Temperature profile Fig. 10. Velocity profile obtained by 

Stehfest’s and Tzou’s algorithm 
  

  
Fig. 11. Temperature and concentration profile obtained by Stehfest’s and Tzou’s algorithm 

 

6. Conclusion 
 

The flow of fractional second grade nanofluid(Ag-Cu) has been taken and solved using Laplace 
transform with solution. The conditions of flow problem are satisfied by the results. Different graphs 
have been plotted for flow parameters and then discussed. The key points of this flow model are 

 

i. With higher Magnetic values, the velocity distribution slows down. 
ii. With decreasing values of 𝛼, the velocity distribution slows down. 

iii. Thermal buoyancy forces accelerate the fluid velocity. 
iv. The fluid velocity decreased for increasing values of 𝑆. 
v. The fluid velocity decreased for increasing values of Pr. 

vi. The fluid velocity decreased for increasing values of 𝜙. 
vii. The Temperature of fluid decays down for larger values of Sc. 

viii. The Temperature of fluid rises up for larger values of 𝜙. 
ix. The concentration level is an increasing function of fractional parameter. 
x. The concentration level is a decreasing function of Sc. 
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