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Mixed convective flow and heat transfer of MHD fluid over a variable thickened elastic 
surface with temperature dependent fluid properties is examined. The formulation is 
based on variable viscosity and thermal conductivity. In addition, velocity slip and 
convective boundary conditions are also taken into account. Obtained governing 
equations are cracked analytically using Optimal Homotopy Analysis method. 
Outcomes have been documented through graphs and tables, attained upshots are 
matched with previous existing results and are found to be in good agreement. Error 
tables and graphs have been plotted to prove the reliability and efficiency of the 
technique OHAM. A significant effect of Convective boundary conditions on flow and 
heat transfer has been noticed. For larger values of Biot number in the range 

0.5 5000    the temperature of the fluid enhances. 
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1. Introduction 
 

A few engineering and modern applications include transport forms which are typically 
administered by mixed convection flows, for instance, heat exchangers, atomic reactors and 
electronic equipment and these procedures come to pass just when the impacts of buoyancy forces 
in forced convection become critical. On account of the flow over a horizontal heated or cooled 
surface, buoyancy impacts are not prominent and thus might be overlooked; in any case, for a vertical 
surface, the buoyancy compel produces critical consequences for the fluid flow and heat transfer 
through it. Contingent upon the forced flow bearing, the buoyancy forces may help or contradict 
(assisting mixed convection or restricting mixed convection) the forced flow, causing an expansion or 
reduction in heat transfer rate. In view of this, Schneider [1] examined the impact of buoyancy forces 
by considering first-order boundary layer theory and the obtained solutions cover the limited range 
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of buoyancy to forced convection parameter which does not include significant buoyant flows. Dey 
[2] extended the work of Schneider [1] to mass transfer. It is essential to note that both Ref. [1] and 
[2] did not explore the nature of the solution in the neighbourhood of separation. Afzal and Hussain 
[3] analyzed the solution beginning from purely free convection dominated to separate flows and 
obtained the dual solutions to the problem of Ref. [1].  Ingham [4] considered the presence of the 
double arrangements of the boundary layer equations of a consistently moving vertical plate with 
temperature conversely corresponding to the separation up the plate. Further, Wang [5] proposed 
that a mixed-convection parameter may replace the conventional Richardson number and 
introduced novel mixed-convection parameter to scale the commitment of the constrained and free 
convection appropriately. Ali and Al-Yousef [6] examined the work of Ingham [4] by considering 
suction or injection. Chen [7-8] registered the influence of the mixed convection on the vertical 
stretching sheet. Of late examinations that attention on the idea of mixed convection flow and heat 
transfer are seen in the literature [9-19]. The convective boundary condition at the boundary wall is 
another essential instrument in the investigation of boundary layer flow of fluid and is imperative in 
forms, for example, in a gas turbine, atomic plants, and warm vitality stockpiling. The pioneering work 
of Aziz [20] has encouraged several researchers to introduce convective boundary condition in their 
work. Aziz [20-21] examined the influence of convective boundary condition on a boundary layer flow 
of the classical Blasius problem over a flat surface. Makinde and Aziz [22] concluded that the thermal 
boundary is an increasing function of Biot number. Several researchers continued the work of Ref. 
[21] with different geometry (Bataller [23], Ishak et al., [24], Yao et al., [25] and Grosan et al., [26]) 

Flow through the stretchable surface with variable thickness has many industrial applications 
such as architectural, mechanical, civil, aeronautical and marine engineering. It additionally helps to 
rot the heaviness of basic components and refine the usage of material. In any case, it is seen that 
little thought has been paid for the course through variable thickened surfaces. Fluid flow over a 
variable thickened surface is investigated by Fang et al., [27]. By applying numerical FDM method 
Khader and Megahed [28] analyzed the flow of a Newtonian fluid through variable thickened 
nonlinear sheet by considering velocity slip. Hayat et al., [29] examined via homotopy technique, the 
UCM fluid flow with Cattaneo-Christov heat flux model over a variable thickened surface.  Recently, 
Prasad et al., [30-33] employed OHAM/Keller box method and described the flow pattern over the 
variable thickened sheet. 

The main objective of the present analysis is to forecast the behaviour of flow and heat transfer 
of MHD mixed convective liquid towards a variable thickened elastic sheet. Slip and convective 
boundary conditions are retained. Besides, the temperature dependent liquid properties, to 
mention, variable viscosity and variable thermal conductivity are also taken into account. The 
subsequent system of equations is solved for series solutions by implementing optimal homotopy 
algorithm (OHAM) [34-35]. Convergence analysis and error analysis of obtained solutions are 
confirmed overtly. Various thermophysical parameters on velocity and temperature fields are 
evaluated and plotted graphically. Skin friction and heat transfer rate are deliberated through 
different flow variables. With certain limiting conditions the present investigation is compared with 
published literature 
 
2. Mathematical Formulation 
 

Two-dimensional, steady incompressible mixed convective boundary layer flow of a viscous MHD 
fluid over a stretchable sheet is addressed. The thickness of the sheet is considered to be varying 

with the thickness  
 1 2

 = A
m

y x b


  where, A is a small constant and is chosen in such a way that 

the sheet is sufficiently thin so that pressure gradient can be avoided along the sheet ( p/ x  = 0)  . 
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The stretchable sheet is kept at a higher temperature wT than the ambient temperature T . A 

uniform magnetic field  0B x  is applied in the y direction normal to the sheet. The induced magnetic 

field is omitted because of the assumed small magnetic Reynolds number. The origin is located at the 
slot, from where the sheet is drawn in the fluid as depicted in Figure 1. Spontaneously two equal and 
opposite forces are applied along x-axis  so as to stretch the sheet. The origin has been fixed at the 
center of the sheet with x-axis along the sheet and y-axis being normal to it. The flow is generated 
due to the stretching of the impermeable variable sheet which is restricted in domain y>0 with a 

velocity  0 0( ) =     where 
m

wU x U x b U  is constant; b is a physical parameter related to stretching 

sheet and m is the velocity exponent parameter. Here, m>0 represents a decrease in the stretching 
sheet thickness due to the acceleration of the sheet whereas, m<0 increases thickness due to the 
deceleration of the sheet and m=1 represents flat sheet that is of uniform thickness. 
 

 
 

Fig. 1. Schematic diagram of the stretching sheet with variable thickness model 
 

Figure 1 explains the physical description of the model. Under these assumptions and with 
Boussinesq approximations, the mass, momentum and energy equations in the presence of variable 
fluid properties are [32] 
 

v
0,

u

x y

 
 

 
              (1) 
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   2

0v ( ) ,
u u u

u T g T T B x u
x y y y

    

      
       

      
       (2) 

 

 vp

T T T
c u k T

x y y y


      
    

      
          (3) 

 

where u and v are the fluid velocity components in the x and y directions respectively.   is the 

constant fluid density, g  is the acceleration due to gravity,   is the coefficient of thermal expansion, 

“+” and “-” sign in the buoyancy term of Eq. (2) refers to buoyancy assisting and buoyancy opposing 

flow, respectively. 
pC  is the specific heat at constant pressure, σ is the electrical conductivity. A 

special form of the magnetic field is considered by many researchers [31] while studying 

magnetohydrodynamics which is defined as    
( 1)/2

0 0

m
B x B x b


  . ( ) and ( )T k T are the 

temperature dependent viscosity and thermal conductivity [33] and are given by 
 

 
 ( ) and ( ) 1

1
T k T k T T

TT T

 





 


 
    

     

        (4) 

 

where T ,  and k  are the constant temperature, viscosity and thermal conductivity of the fluid 

far away from the sheet respectively,   is a small parameter reflecting a thermal property of a fluid, 

 is variable thermal conductivity parameter,    ,
r

wT T T C l x b     where wT  is the sheet 

temperature, C is a constant, l is the characteristic length,   is the thermal conductivity parameter 

and k  is thermal  conductivity of the fluid away from the sheet, r is a wall temperature parameter. 

Variable fluid viscosity ( )T can also be written as  1

ra T T   where, a   and 

 1 .rT T   a  and rT are constants whose values depend on both the reference state and the 

thermal properties of the fluid. Usually, 0a   corresponds to a liquid and 0a   for gasses. Buoyancy 
force assists the flow in the upper half of the region and in the lower half it opposes the flow as shown 
in the Figure 1. axisx  points upwards in the direction of the stretching hot surface for the assisting 
flow whereas for the opposing flow axisx  points vertically downwards in the direction of the 
stretching hot surface. Exactly the reverse phenomenon occurs if the sheet is cooled below the 
ambient temperature. 

Boundary conditions for the problem are 
 

            

   

1

2
0, , v , 0, ,

, 0, , .

m
m

w w

u T
u x y U U x b L x x y k h x T T at y A x b

y y

u x y T x y T as y







  
          

  

  

 (5) 

 
It should be noted that a positive m indicates stretching and a negative value indicates a shrinking 

sheet,    
1

2

m

L x L x b


   is the local molecular mean free path (is always positive) and, 

   
1

2

m

w wh x h x b


   is the local heat transfer coefficient. 
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3. Similarity Transformations 
 

Let the dimensionless similarity variable be 
 

1

0 2
1

 ( )
2

m
Um

y x b







              (6) 

 

the stream function ( , )x y  and the dimensionless temperature distribution    be 

 

   
 

 

1

2
0

2
( , ) ( )  ,  

1

m

w

T T
x y f U x b

m T T
    









  

 
       (7) 

 
Using (7) the velocity components can be written as [35] 
 

 
1

2
0

( ) 1 ( ) 1
, ,  ( )  ( )  

2 1

m

w

df m df m
u v U U x b f

d d m

 
  

 





    
          

     (8) 

 
 It is presumed that 1m   for the validity of the similarity variable. Using Eq. (4),(6) - (8) Eq. (2), (3) 
and (5) reduces to 
 

 
22 2

1

2 2

2
1 0,

( 1)
r

d d f d f m df df
f Mn

d d d m d d
  

    

   
        

   
       (9) 

 

2
(1 ) Pr 0,

1

d d d r df
f

d d d m d

 
 

   

   
     

   
                   (10) 

 

The fluid viscosity parameter r , magnetic parameter Mn , buoyancy parameter   and Prandtl 

number Pr are non dimensional which defined as  
 

   

2

0

2

0 0

2 2
, , =  and Pr =  .

1 1

r
r

w

BT T g C
Mn

T T U m l m U

 
 

 
 

  

 
 

  
 

 
The mixed convection parameter   is independent of x  only if 2 1r m  . On another hand, 

(1)O   for combined convective flow, if  is of a greater order of magnitude than unity, the 

buoyancy forces will be dominant and the flow will essentially be free convective. Further, as r is 

inversely proportional to the temperature difference ( )wT T  , the effect of variable viscosity is 

neglected for larger values of r . On another hand, variable viscosity becomes significant for smaller 

values of r due to the fact that the fluid viscosity changes (decreases with increase in temperature) 

noticeably with temperature. It is important to note that for liquids r < 0 and for gases r > 0. 

The corresponding boundary conditions are  1m   
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 

   

1
( ) , ( ) 1 ( ) and ( ) 1 ( ) at 0

1

0 at .

m
f f f

m

f

          

   


        



   

                (11) 

 
where, 
 

01
 = , ,

2

wU h Am L
A

A k


  

  


    

 
are respectively the wall thickness parameter, velocity slip parameter and Biot number. Here 
 

01
 = =

2

Um
A 




 

 
indicates the plate surface. The following variable transformation has been used in order to assist 
simulations and the solution domain is fixed from 0 to ∞. 

   ( )  =  and ( ) = ( ) = ( )f f f             . Now the Eq. (9), (10) and (11) reduces to 

 

  1 22
1 0,

( 1)
r

m
f ff f Mn f

m
  

 
        


                  (12) 

 

 
 2 2 1

(1 ) Pr 0.
1

m
f f

m
   

       
 

                    (13) 

 

corresponding boundary conditions are  1m    

 

     

   

1
, 1 (0) , ( ) 1 ( ) at 0

1

0 at

m
f f f

m

f

         

   


        



   

                 (14) 

 

where the prime denotes the differentiation with respect to  .  = (0) and ( )= (0)f f        are 

now the shear stress and wall temperature gradient respectively. 

The important physical parameters are local skin friction fxC   and the local Nusselt number xNu   

which are defined as: 
 

2
and

/ 2 ( )

w w
fx x

w w

xq
C Nu

U k T T



  

 
  

 
where, 

 
   

1 1

2 2

and ( )
m m

w w

y A x b y A x b

u T
T q k T

y y
 

 

   

 
  

 
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Using similarity transformations, we get 
 

 
 

     

  
 

 
     

1

2

1

2

1 2

2

1 2

2
2 1) 2 Re 0 ,

1) 2 Re 0 ,

m

x

m

y y A x b

f x

w

y y A x b

x x

w

u
C m f

U

x b T
Nu m

T T









  

 



  


   



                  (15) 

 

where, 
( )

Re = w
x

U x b




 is the local Reynolds number. 

 
4. Semi-analytical Solution: Optimal Homotopy Analysis Method (OHAM) 
 

Optimal homotopy analysis method has been employed to solve the coupled non-linear system 
of Eq. (12) and (13) with boundary conditions (14). In accordance with the boundary conditions, 

consider the base functions as  
{ / 0}

n
e n


  then, the dimensionless velocity ( )f   and temperature 

( )   can be expressed in the series form as follows  

 

   

0 0

( ) and ( )
n n

n n

n n

f a e b e
 

  
 

 

 

    

 

where andn na b  are the coefficients. According to the rule of solution expression and boundary 

conditions, we assume the following studies reported by Liao [34] and Van Gorder [35]. Let initial 
guesses and the linear operators for ( ) and ( )f    be   

 

 
3 2

0 0 3 2

1 1
( ) 1 and ( ) , and .

1 1 1
f

m d d d
f e e L L

m d d d

 




   

    

    
         

     
        (16) 

 

such that 1 2 3 4 5[ ] 0 and [ ] 0fL c c e c e L c e c e   



      where 'ic s ( 1,2,3,4,5)i  are arbitrary 

constants. Auxiliary function as ( ) ( )fH H e 

    . Let us consider so called zeroth order 

deformation equation 
 

0
ˆ ˆ ˆ(1 ) ( , ) ( ) ( ) ( , ), ( , ) ,f f f fq L f q f qH N f q q          

   
                 (17) 

 

0
ˆˆ ˆ(1 ) ( , ) ( ) ( ) ( , ), ( , ) ,q L q qH N q f q              

   
                  (18) 

 
with conditions 
 

 

1ˆ ˆ ˆ ˆ(0, ) , (0, ) 1 (0, ), ( , ) 0;
1

ˆ ˆ ˆ(0, ) 1 (0, ) , ( , ) 0.

m
f q f q f q f q

m

q q

 

    


     



     

                  (19) 
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where, [0,1]q  is an embedding parameter,  , 0f    are the convergence control parameters 

and andfN N
 are non-linear operators defined as 

 

 
 

     
   

 
 
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q f q q q
N f q f q f q

q q qm
f q Mn f q q

m
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  

     
    

  

    
        

   
   

     
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 
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2 2 1ˆ ˆˆ ˆ ˆ ˆ1 ( , ) ( , ) Pr , , , ,

1
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m
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From Eq. (17) - (18), at 0q   we have 
0 0

ˆ ˆ( ,0) ( ) 0 and ( ,0) ( ) 0fL f f L           
  

which 

implies that 0
ˆ( ,0) ( )f f  and 0

ˆ( ,0) ( )     respectively, whereas, at 1q   we have 

ˆ ˆ( ,1), ( ,1) 0fN f     
 

 and ˆˆ( ,1), ( ,1) 0N f     
 

 which implies that ˆ( ,1) ( )f f   and 

ˆ( ,1) ( )    respectively.  Hence, by defining 
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we expand ˆ( , )f q  and ˆ( , )q   by means of Taylor’s series as  
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1 1
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If the series (20) converges at q = 1, we get the homotopy series solution as 
 

0

1

( ) ( ) ( ) andm

m
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
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1
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
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4.1 Optimal Convergence-Control Parameter 
 

It should be noted that ( ) and ( )f    in Eq. (21) contain unknown convergence control 

parameters andf  , which can be used to adjust and control the convergence region and the rate 

of convergence of the homotopy series solution. thm  order deformation equations and the conditions 
are  
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where,        
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4.2 Error Analysis 
 

The error is evaluated and minimized over andf   in order to obtain the optimal value of 

andf  . At thk  order deformation equation, the exact residual error is given by 
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But in practice, the evaluation of ˆ f

kE and ˆkE   is much time consuming so instead of exact residual 

error we use average residual error defined as 
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where, 
t

mE  is the total squared residual error, , 0,1, 2,....l

l
l l M

M
     . Now the error function

f

kE and 
kE    is minimized over andf   to obtain the optimal values. Table 1 lists the values of 
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individual average residual errors by considering the optimal values of 

( 0.955139) and ( 1.065420)fh h  , which has been obtained by minimizing the squared residual 

errors of andf  at the approximation 10k   as shown in Table 2. For andf  CPU consumes 

more and more time as the order of approximation increases and noticeably the average residual 
error reduces monotonically which is recorded in Table 1. Hence the quick convergence of solution 
series is obtained with the assistance of optimal value of andf  . Validation of the present method 

is executed by comparing the present results  ''(0)f  with the results of Fang et al., [27], Khader and 

Megahed [28] and Prasad et al., [33] which are found to be complete agreement (Table 3). This error 
is obtained by evaluating the absolute difference between the present skin friction [27,28,33], and 
thereafter, this difference is divided by the present skin friction and the resultant is multiplied by 
100, to obtain the percentage of the relative error [36,37]. 
 
5. Results and Discussions 
 

The pertinent parameters entering into the fluid are fluid viscosity parameter (𝜃𝑟), the mixed 

convection parameter   , the thermal conductivity parameter (), the velocity power index 

parameter (m) and the Prandtl number (Pr), the velocity slip parameter (β), the magnetic parameter 

 Mn , the wall thickness parameter (α) and Biot number    and these are examined through 

plotting graphs (Figure 2-9) for the horizontal velocity profile '( )f  , the temperature field ( )  . The 

profiles of these graphs tend asymptotically to zero. The skin friction  ''(0)f  and wall temperature 

gradient  '(0) are tabulated in Table 4. 

The impact of r  and α on '( )f   and ( )  is elucidated in Figure 2 (a-b). It is explicit from Figure 

2 (a) that '( )f   decreases for larger values r . This behaviour of velocity profile may be attributed 

to fact that the fluid viscosity depends inversely on the temperature difference between the wall and 

the ambient fluid,    1

r wT T 


   , so, reduction in momentum boundary layer thickness. On 

the other hand, the quiet opposite impact is observed on the temperature profile (see Figure 2(b)).  
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Fig. 2(a). Horizontal velocity profile for different 

values of r  and   with Mn = 1,  = 5, = 0.2, 

 = 0.2,  = 0.2, m= 0.25, Pr = 0.72 

Fig. 2(b). Temperature profile for different values 

of r  and   with Mn = 1,  = 5, = 0.2,  = 0.2, 

 = 0.2, m= 0.25, Pr = 0.72 

 

Figure 3 (a) and 3(b) represents the effect of  on dimensionless velocity and temperature field. 

Due to the enhanced mixed convection parameter   = -1, 0. 0.5, 1, 2  velocity profile increases and 

temperature profile decreases. Here, hotness (assisting flow) and coldness (opposing flow) of the 

fluid purely depends on positive and negative values of  (that is >0 and <0).  
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Fig. 3(a). Horizontal velocity profile for different 

values of   and m  with r = -2,  = 5,  = 0.25, 

= 0.2, Pr = 0.72,  = 0.2, Mn = 1 

Fig. 3(b). Temperature profile for different values 

of   and m  with r = -2,  = 5,  = 0.25,  = 0.2, 

Pr = 0.72,  = 0.2, Mn = 1 

 
Figure 4 (a) illustrates the effect of Mn  on '( ) and ( )f     for different values of α. The upsurge 

in the Magnetic parameter Mn  results in diminished velocity profile, this is due to the reason that 
the fluid is considered to be electrically conducting which is responsible for the transverse magnetic 
field and Lorentz forces, resists the transport phenomena hence velocity profile and consequently, 
the momentum boundary layer thickness decreases. As the Lorentz force resists the transport 
phenomena, friction between the layers increases and hence the temperature profile increases (see 
Figure 4(b)). 

Figure 5 (a)-5(b) exhibit the effect of m on '( ) and ( )f    for different values of α, it is noticed 

that for growing the value of m both velocity and temperature profile decreases consequently, the 
momentum and thermal boundary layer thickness decreases. It is important to note from all the 
above that the '( )f   at any point near the surface decrease as the wall thickness parameter increase 

for m < 1 and becomes thinner for ( )   when m < 1 and a reverse is true for m ≥ 1. 
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Fig. 4(a). Horizontal velocity profile for different 

values of Mn and  with r  = -5,  =5,  =0.2, Pr

=0.2,  =0.72, m =5,  =0.2 

Fig. 4(b). Temperature profile for different value 

Mn and   with r = -5,  =5,  =0.2, Pr =0.2, 

=0.72, m =5,  =0.2 

 

The larger values of   makes a substantial impact on fluid flow which is shown in Figure 6. As a 

result of higher values of Biot number  0.5, 1, 5, 10, 50, 100, 500, 1000, 5000  , temperature 

profile reaches peak and enhancement in the thickness of the thermal boundary layer is noticed. 
From the point of theoretical analysis, the Biot number is the proportion of inner conductive 
resistance from outside convective resistance which defines the relation between convection and 

conduction heat transfer phenomena. However, a smaller value of Biot number  1  demonstrates 

that the conduction is the primary heat transfer strategy, while high estimations of this number 

 1   show that the convection is the principal heat transfer instrument. Figure 7 depicts the effect 

of the slip parameter    on velocity '( )f   for different values m . As the slip parameter increases 

the velocity profile also increases, showing that the skin friction increases at the surface (Table 4). 
Physically, this infers the frictional opposition between the surface and liquid molecule increments, 
therefore, the velocity of the liquid declines. Figure 8 sketched to show the impact on 
Pr 6.2, 5.09, 2, 1, 0.72  on ( )  , it shows that temperature profile decreases with an increase in 

Pr. From the trial considers it has been noticed that at 200C the Prandtl number for air is 0.72, at 3000 
C the Prandtl number for water is 1.09, at 400 C the Prandtl number for ammonia is 2.0 and at 4170 

C the Prandtl number for molten salt is 5.09 [33]. Prandtl number  Pr =     signifies the 

thickness of the thermal boundary layer which depends on whether Pr 1,Pr 1 or Pr 1.   This 

analysis clears that the higher heat transfer rate can be achieved by considering the lower Prandtl 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 56, Issue 1 (2019) 100-123 

113 
 
 

number. The reverse trend can be observed with reference to  (See Figure 9). Figure 10(a-b) 
presents the 3D flow design investigation. The reverse trend can be observed with reference to   
(See Figure 9). Figure 10(a-b) presents the 3D flow design of the thought about the investigation. The 
velocity of the fluid strongly relies upon the initial velocity of the wall can be noted. Furthermore, 
Figure 11(a-b) is plotted to discover the streamline patterns when for different values of velocity 
power index parameter m. It can be seen that application of m causes a disturbance in the flow and 
heat transfer pattern of the fluid.  
 

  

Fig. 5(a). Horizontal velocity profile for different 

values of m and  with r = -5,  =5,  =0.2, Pr = 

0.72,  = 0.2, Mn =1 

Fig. 5(b). Temperature profile for different 

values of m  and  with r = -5,  =5,  = 0.2,

Pr = 0.72,  = 0.2, Mn =1 
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Fig. 6. Temperature profile for different value 

 and   with r  = -5, m = 0.25,   = 0.1,  = 

0.1, Pr = 0.72,  = 0.5, Mn = 0.1 

Fig. 7. Horizontal velocity profile for different  

values of  and m with r  = -5, Mn = 1,  = 5,  

Pr = 0.72, m =10,  = 0.2,  = 0.25,  = 0.2 

 

 

Fig. 8. Temperature profile for different value

Pr and  with r = -5,  = 5,  = 0.2,  = 0.2 

 = 0.2, m = 5, Mn = 1 

Fig. 9. Temperature profile for different value 

and   with r  = -2, m = 5,  = 5,  = 0.2, Pr

=0.72,  = 0.25, Mn = 1 
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Fig. 10(a). 3D plot of with andu x  for 

0.72, 0.2, 5, 0.5, 5, 1.5, 5, 0.2.rPr m Mn              
 

 

 
 

Fig. 10(b). 3D plot of with andu x  for 

0.72, 0.2, 5, 0.5, 5, 1.5, 5, 0.2.rPr m Mn              
 

 
Finally, Residual error graphs have been plotted in Figure 12 (a-c) for ( ) and ( )f     with 

different values of and  . This clearly demonstrates the accuracy and convergence of OHAM. 

These figures show that a tenth-order approximation yields the best accuracy for the present model. 
The influence of various physical parameters on skin friction and Nusselt number are recorded in 
Table 4(a) and 4(b). Both skin friction ''(0)f  and Nusselt number '(0)  escalate for growing values 

of , and   , whereas the opposite trend is observed for Pr and m . With decreasing values of 

, andr Mn  , ''(0)f  increases and '(0) decreases. 
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    x  
 

Fig. 11(a). Streamline pattern for 
Pr 0.72, 0.1, 5, 0.2, 0.1, 5, 0.1, 0.1r Mn               

 

 
     x  
 

Fig. 11(b). Streamline pattern for  
Pr 0.72, 0.1, 5, 0.2, 0.1, 5, 0.1, 0.1r Mn               
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Fig. 12(a). Residual error profile for horizontal 

velocity and temperature with Pr = 0.72,  = 0.1, r

= -1,  = 0.5, Mn = 0.1, m = 10,  = 0.1 

Fig. 12(b). Residual error profile for horizontal 
velocity and temperature with Pr = 0.72,  = 0.1, 

r = -1,  = 0.5, Mn = 0.1, m = 10,  = 0.1 

 

 
Fig. 12(c). Residual error profile for horizontal velocity and 

temperature with Pr = 0.72, = 0.1, r = -1,  = 0.5, Mn = 

0.1, m =10,  = 0.1 
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Table 1 
Individual average residual error with

Pr 0.72, 0.2, 5, 0.5,r     

5, 1, 5, 0.2, 0.2.m Mn         
k  

f

kE
 kE

 
CPU time (secs) 

1 2.2×10-2 2.1×10-2 0.42 

3 3.3×10-4 1.5×10-3 16.16 

5 1.7×10-5 1.7×10-4 93.35 

7 2.5×10-6 1.2×10-5 111.23 

9 3.5×10-8 2.5×10-7 354.23 

11 8.3×10-9 1.5×10-7 562.27 

13 4.5×10-9 7.8×10-8 865.25 

15 6.5×10-10 3.5×10-8 1232.30 

17 1.8×10-10 1.4×10-8 1563.36 

19 3.1×10-11 8.2×10-9 1986.54 

 
Table 2  

Values of convergence control parameters andfh h  and the 

corresponding average residual errors ,f

k k kE E and E   for a different 

order of approximation k  with  

 
 
 
 
 
 
 
 
 

k  fh
 

f

kE
 

h  kE

 
CPU time 
(Secs) 

1 -0.785657 3.0×10-3 -0.199915 6.6×10-3 3.19 
3 -0.828322 7.4×10-5 -1.002630 1.3×10-3 25.48 
5 -0.832214 5.7×10-6 -1.042640 1.6×10-4 110.42 
7 -0.889803 2.2×10-6 -1.056640 2.6×10-5 351.42 
9 -0.955139 8.7×10-7 -1.065420 5.1×10-6 970.99 
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Table 3 

Comparison of results for ''(0)f  when  Mn= 0 and r           

  

Fang et 
al., [27] 
By Shoo. 
Meth. 

Khader and 
Megahed [28] 

when 0   

By Che. Spe. 
Meth. 

Prasad et al.,  [33] Present work with OHAM Relative error with 

Fang et al., 
[27] 
 

Khader  and 
Megahed 
[28] 
 

Prasad et 
al., [33] 
 

 

ℏf 10

fE  CPU Time 

0.5 10 1.0603 1.0603 1.0605077120653874 1.0604 1.5425 1.2546×10-8 245.22 0.00943 0.00943 0.00943 
9 1.0589 1.0588 1.0511040757424492 1.0511 1.8652 5.7854×10-8 258.32 0.74207 0.73256 0.00000 
7 1.0550 1.0551 1.0552402381500168 1.0552 1.4875 8.8956×10-9 452.2 0.01900 0.00947 0.00000 
5 1.0486 1.0486 1.048791366557854 1.0486 1.0253 4.2563×10-7 452.32 0.00000 0.00000 0.00953 
3 1.0359 1.0358 1.035877993886442 1.0357 0.2547 2.3652×10-5 236.14 0.01931 0.00965 0.00965 
2 1.0234 1.0234 1.0230051676018523 1.0230 1.8965 6.4512×10-6 152.65 0.03910 0.03910 0.00000 
1 1.0000 1.0000 1.0 1.0000 1.0356 7.4587×10-9 356.32 0.00000 0.00000 0.00000 
0.5 0.9799 0.9798 0.9791336007879321 0.9792 1.1201 5.2587×10-7 258.26 0.07148 0.06127 0.01021 
0 0.9576 0.9577 0.9571649276940054 0.9571 1.6589 2.2356×10-5 230.39 0.05224 0.06268 0.00000 
-1/3 1.0000 1.0000 0.999835549839111 1.0000 1.6125 1.9852×10-6 298.72 0.00000 0.00000 0.02000 
-1/2 1.1667 1.1666 1.1668932098461453 1.1668 1.2912 1.3971×10-8 329.16 0.00857 0.01714 0.00000 

0.25 10 1.1433 1.1433 1.1439820336033696 1.1428 1.3520 8.7895×10-8 324.58 0.04375 0.04375 0.09625 
9 1.1404 1.1404 1.1402440847765778 1.1403 0.2536 5.7562×10-9 135.87 0.00876 0.00876 0.00876 
7 1.1323 1.1323 1.1329048196291788 1.1330 1.2578 2.9542×10-9 324.68 0.06178 0.06178 0.00882 
5 1.1186 1.1186 1.1181398433389969 1.1181 1.6974 2.1364×10-7 305.24 0.04471 0.04471 0.00000 
3 1.0905 1.0904 1.090832184327589 1.0908 0.9547 4.6425×10-7 362.47 0.02750 0.03667 0.00000 
1 1.0000 1.0000 1.0 1.0000 0.4852 1.8541×10-7 124.25 0.00000 0.00000 0.00000 
0.5 0.9338 0.9337 0.9330216794465643 0.9335 1.5412 7.9828×10-5 278.56 0.03213 0.02142 0.05356 
0 0.7843 0.7843 0.7840615830209784 0.7842 1.2391 7.9965×10-8 158.23 0.01275 0.01275 0.02550 
-1/3 0.5000 0.5000 0.49999454048648743 0.4999 1.2546 5.4458×10-8 147.36 0.02000 0.02000 0.00000 
½ 0.0833 0.08322 0.08330568175024846 0.0833 0.7984 2.2233×10-8 267.35 0.00000 0.09603 0.00000 

 
 
 
 
 
 

 m

''(0)f 
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Table 4(a) 

Values of Skin friction, the Nusselt number for 0.25 and 0.5    with different values of the physical parameters at 10th approximation 

 

 

    m  Pr    


 Mn  
r  

0.25   10

tE  CPU 
time 

0.5   10

tE  CPU 
time (0)f   (0)   (0)f   (0)   

0.2 0.2 0.25 0.72 0.2 5.0 1.0 -10.0 -0.975517 -0.263838 1.235×10-7 253.32 -1.030980 -0.314696 1.258×10-8 214.25 
-7.0 -0.991000 -0.263627 7.815×10-8 789.25 -1.047920 -0.305319 1.235×10-8 365.25 
-5.0 -1.011010 -0.262361 3.542×10-8 546.23 -1.069850 -0.216336 1.254×10-8 785.36 
-2.0 -1.105690 -0.252399 1.445×10-8 258.36 -1.173960 -0.200433 1.236×10-8 415.25 

5.0 0.0 -5.0 -0.843308 -0.854416 5.235×10-8 147.23 -0.795405 -0.833484 4.253×10-8 523.3 
0.5 -0.981190 -0.812557 2.356×10-9 458.36 -0.933456 -0.791419 4.356×10-8 254.3 
1.0 -1.097060 -0.778025 1.235×10-7 854.36 -1.049910 -0.756444 4.587×10-8 335.2 
1.5 -1.196840 -0.749283 8.325×10-8 965.23 -1.150570 -0.727252 6.325×10-8 125.25 

0.1 0.1 0.25 0.1 0.5 0.1 -0.836793 -0.380116 6.325×10-5 874.52 -0.914069 -0.305458 5.326×10-8 445.23 
1.0 -0.835475 -0.285370 4.256×10-8 951.23 -0.916775 -0.285019 8.256×10-8 855.33 
10.0 -0.833802 -0.261358 3.568×10-4 753.25 -0.918271 -0.254592 9.256×10-8 254.36 
50.0 -0.833821 -0.260022 7.235×10-8 852.12 -0.918406 -0.213088 8.256×10-8 452.36 
100 -0.833820 -0.257803 1.253×10-8 365.25 -0.918423 -0.204144 2.365×10-8 154.36 
500 -0.833819 -0.256448 6.325×10-9 458.36 -0.918437 -0.185072 2.658×10-8 854.36 
1000 -0.833819 -0.255511 9.325×10-8 987.25 -0.917731 -0.160456 1.478×10-8 785.36 
5000 -0.833819 -0.248682 4.253×10-7 564.25 -0.917731 -0.120082 3.258×10-8 852.36 

0.2 0.2 10.0 0.1 5.0 1.0 -1.290910 -0.859849 1.235×10-8 213.25 -1.218520 -0.833937 3.698×10-8 369.25 
0.2 -1.304900 -0.819540 5.236×10-2 685.25 -1.448870 -0.794853 2.589×10-8 457.36 
0.3 -2.168918 -0.787125 5.289×10-5 652.36 -1.823684 -0.763249 1.236×10-8 321.5 

5.0 0.72 0.2 -1.097060 -0.778025 7.256×10-8 452.36 -1.049910 -0.756444 4.569×10-8 125.36 
1.0 -1.101800 -0.776090 9.325×10-8 985.36 -1.054310 -0.875238 7.896×10-8 558.36 
5.09 -1.125090 -1.761740 4.253×10-8 214.36 -1.076260 -1.631510 9.998×10-8 986.25 
6.2 -1.125830 -1.758900 9.253×10-8 542.36 -1.077590 -1.729880 8.558×10-8 456.35 

-0.2 0.72 -0.898399 0.516864 5.236×10-5 954.33 -1.106300 0.141974 6.225×10-8 325.36 
-0.1 -0.942342 0.200185 4.256×10-6 225.36 -1.092130 -0.011930 4.285×10-8 125.36 
0.0 -0.970429 0.005143 3.789×10-8 558.36 -1.082810 -0.127024 3.693×10-8 225.36 
1.0 -1.057520 -0.552852 5.874×10-8 985.36 -1.057520 -0.552852 7.589×10-8 365.25 
5.0 -1.097060 -0.778025 6.325×10-8 125.36 -1.049910 -0.756444 3.564×10-8 112.33 
10.0 -1.104900 -0.819540 8.325×10-8 365.32 -1.048870 -0.794853 2.785×10-8 125.36 
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Table 4 (b) 

Values of Skin friction, the Nusselt number for 5 and 10m m   with different values of the physical parameters at 10th approximation 

r  
  

   Pr      Mn  5.0m   10

tE  CPU time 10.0m   10

tE  CPU 
time (0)f   (0)   (0)f   (0)   

-5.0  0.2  5.0  0.2 0.72 0.5 0.2 0.0 -0.795405 -0.833484 2.565×10-8 254.23 -0.804224 -0.872575 6.222×10-8 852.32 
0.5 -0.933456 -0.791419 1.452×10-8 558.25 -0.936344 -0.830488 2.002×10-8 142.35 
1.0 -1.049910 -0.756444 3.256×10-8 663.25 -1.048870 -0.794853 4.065×10-8 356.25 
1.5 -1.150570 -0.727252 7.258×10-8 889.25 -1.146850 -0.764626 8.223×10-8 854.25 

0.25 0.1 1.0 -1.269460 -0.815560 9.665×10-8 778.25 -1.290910 -0.859849 5.457×10-8 654.32 
0.2 -1.297060 -0.778025 5.556×10-8 563.25 -1.404900 -0.819540 2.568×10-8 458.25 
0.3 -1.363224 -0.748001 9.547×10-8 478.25 -2.968918 -0.787125 3.245×10-8 987.45 

0.0 0.2 -1.143170 -0.799674 3.254×10-8 658.25 -1.161670 -0.828367 9.254×10-8 258.14 
0.2 -1.107380 -0.786852 1.475×10-8 956.23 -1.116470 -0.824661 9.546×10-8 102.30 
0.3 -1.088140 -0.777907 3.698×10-8 854.78 -1.093440 -0.814455 4.235×10-8 105.22 
0.5 -1.049910 -0.756444 2.589×10-8 698.25 -1.048870 -0.794853 6.235×10-8 542.32 

0.72 0.5 -1.049910 -0.756444 3.546×10-8 215.35 -1.048870 -0.794853 7.258×10-8 854.25 
1.0 -1.054310 -0.875238 3.896×10-8 425.36 -1.053140 -0.918003 6.325×10-8 326.25 
2.0 -1.064480 -1.174620 6.548×10-8 548.25 -1.062730 -1.221120 1.003×10-8 257.24 
5.0 -1.076260 -1.631510 6.458×10-8 365.24 -1.073260 -1.671960 1.114×10-8 124.35 
6.2 -1.077590 -1.729880 2.587×10-8 124.35 -1.074420 -1.768220 3.445×10-8 546.87 

-2.0 -1.0 0.72 0.25 -1.623460 -0.620910 1.07×10-8 653.24 -1.606310 -0.660658 5.558×10-8 254.24 
0.0 -1.245370 -0.741499 2.365×10-8 856.25 -1.248960 -0.781857 3.446×10-8 125.25 
0.5 -1.092010 -0.788616 8.552×10-8 456.23 -1.103870 -0.828829 3.889×10-8 257.24 
1.0 -0.953553 -0.828163 9.665×10-8 325.84 -0.972772 -0.868215 3.845×10-8 256.34 
2.0 -0.709158 -0.890571 4.587×10-8 658.25 -0.740951 -0.930120 4.589×10-8 147.25 

r  
  Pr  m        Mn  5.0   10

tE  CPU  
time 

10.0   10

tE  CPU 
time 

-5.01 0.2 0.72 5.0 0.2 0.5 0.2 1.0 -1.049910 -0.756444 9.258×10-8 740.25 -1.049930 -0.812900 8.235×10-8 225.24 
1.0 -1.054310 -0.875238 6.254×10-8 854.24 -1.054790 -0.951730 9.254×10-8 114.25 
2.0 -1.064480 -1.174620 5.665×10-8 125.25 -1.066660 -1.317480 3.245×10-8 356.25 
5.09 -1.076260 -1.631510 3.224×10-8 352.14 -1.082280 -1.925690 9.556×10-8 986.25 
6.2 -1.077590 -1.729880 4.227×10-8 114.25 -1.084660 -2.073710 8.457×10-8 142.35 

0.1 0.72 0.25 0.5 0.5 0.1 0.1 -1.095180 -0.822558 2.325×10-7 125.25 -0.959551 -0.862101 1.254×10-8 546.32 
0.2 -1.092010 -0.788616 4.256×10-7 753.25 -0.953553 -0.828163 1.587×10-7 558.20 
0.3 -1.088990 -0.757956 1.025×10-9 258.07 -0.947888 -0.797459 6.254×10-8 856.32 
0.4 -1.086130 -0.730249 1.005×10-8 825.25 -0.942535 -0.769565 4.221×10-8 213.00 
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6. Conclusions 
 
Few of the important findings are: 

  Viscosity parameter reduces the momentum boundary layer thickness enhances the thermal 
boundary layer thickness. 

 Biot number increases the temperature field for larger values which show that the convection 
is the principal heat transfer instrument. 

 The role of wall thickness parameter   is to enhance both momentum and thermal boundary 
layer thickness.  

 The dimensionless velocity at any point near the plate decrease as the wall thickness 
parameter increase for m < 1 and for and temperature distributions reduces for higher values 
of the wall thickness parameter when m < 1 and a reverse is true for m ≥ 1. 

 Mixed convection parameter increases the velocity profile and intern enhances the 
momentum boundary layer thickness but lessens the thermal boundary layer thickness. 
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