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The present paper investigates the impact of velocity slip and thermal slip on the 
peristaltic transport of a Herschel-Bulkley fluid, flowing through a uniform two-
dimensional porous tube under the assumptions of long wavelength and low Reynolds 
number. The mathematical representations of temperature and velocity fields, 
pressure gradient, and stream function have been found through the closed-form 
solutions of the energy and momentum equations. Numerical integration has been 
employed to compute the frictional force and pressure rise. The influence of relevant 
parameters in the problem have been discussed and presented graphically. The results 
reveal the increasing effects of thermal and velocity slip on pressure rise and 
temperature. Also, trapping phenomena of the Herschel-Bulkley fluid is discussed. The 
volume of the bolus is observed to increase along with the velocity slip parameter.  
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1. Introduction 
 

Peristalsis is the fluid flow mechanism in which the fluid is transported through a distensible tube 
by means of progressive waves of expansion and contraction. This mechanism has attracted many 
researchers, owing to its important applications in the fields of engineering science and medicine. 
The motion of chyme through the gastro-intestinal tract, the transport of urine to the urinary bladder, 
the activity of swallowing of food through the esophagus, mixing of the contents in the bile duct, 
blood pump in dialysis are just a few of the examples which use the principles of peristalsis. Latham 
[1] carried out the first investigations on peristaltic transport of urine flow through the ureter. Since 
then, several researchers have carried out numerical, analytical and experimental studies on 
peristalsis. Burns and Parkes [2] used the low Reynolds number assumptions along with the linearized 
boundary conditions to carry out studies on the peristaltic motion in a two-dimensional as well as 
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axisymmetric case. Fung and Yih [3] developed a model to help the characterization of the basics of 
fluid mechanics involved in the process of pumping, which had restrictions on the wave amplitude of 
peristalsis to be small but had no such limitations on the Reynolds number. Shapiro et al., [4] studied 
the fluid mechanics of peristaltic pumping in a flexible tube under the assumptions of low Reynolds 
number and long wavelength. These studies helped throw light on the ureteral reflux and bacterial 
transport from the bladder to the kidney. 

Though all the above investigations aim at understanding the peristaltic motion involved in blood 
flow and other physiological problems, the studies have been conducted by treating the fluids as 
Newtonian. Raju and Devanathan [5] initiated the studies on non-Newtonian fluids by considering 
the power-law model. Inspired by this, several researchers have worked in this direction. Srivastava 
et al., [6] considered the two-layered model of blood, where the core layer was considered to be a 
Casson fluid, consisting of a suspension of erythrocytes, and the peripheral plasma layer as a 
Newtonian fluid. Pandey et al., [7] studied the peristaltic motion of a three-layered power law fluid 
with different viscosities. Several researchers have investigated the fluid flow using various non-
Newtonian models with differing geometries and configurations [8-10]. Blair and Spanner [11] 
observed that at moderate shear rates, blood flow closely obeys Casson’s model. They also reported 
that Casson’s model and the Herschel-Bulkley model for blood does not have much difference over 
the range in which the Casson model is valid (0-1,00,000 sec-1). However, Herschel-Bulkley model is 
valid even in the range over which the Casson model ceases to be valid. Moreover, blood is 
considered to behave both in Newtonian and non-Newtonian ways. Hence, Herschel-Bulkley model 
describes the blood flow more accurately, as Newtonian model as well as shear-thinning and shear-
thickening behavior of blood can also be explained through the model. Vajravelu et al., [12] analysed 
the peristaltic transport of a Herschel-Bulkley fluid through an inclined tube. Manjunatha et al., [13] 
researched the peristaltic transport of a three-layered model with different viscosities. Similar 
studies were carried out by Rajashekhar et al., [14] that explored the two-layered peristaltic flow of 
blood by means of a Herschel-Bulkley fluid flow model. 

While studying the flow of physiological fluids, many researchers have focused on the porous 
medium of transmission over the recent years. This is because the human lungs, stones in the 
gallbladder, blood vessels of small radius, etc. act as natural porous media. Also, within the lumen 
of the coronary artery, fatty cholesterol and blood clots act as a porous medium. This concept was 
first taken into account by Lukashey [15] who considered porous capillary walls in his study on 
peristaltic transport of liquid motion. The impact of porous boundaries of the medium on the 
peristaltic movement of fluid was investigated by Shehawey and Husseny [16]. Their work was 
extended by Nadeem and Akram [17] for a non-Newtonian model by considering a linear Maxwell 
model. Ramachandra and Mishra [18] incorporated the Beavers-Joseph and Saffman boundary 
conditions to investigate the peristaltic flow of a power-law fluid within a porous medium and 
analysed the results for pseudoplastic and dilatant fluids. Hayat et al., [19], in their studies on 
Newtonian fluids exhibiting peristaltic movement within a porous medium under the influence of 
partial slip, observed that the trapped bolus expands with the slip parameter. Khan et al., [20] 
considered the slip conditions at the boundary of a porous medium to study the peristaltic transport 
of a non-Newtonian fluid having variable viscous properties. The MHD flow of a Jeffrey fluid over a 
porous layer was analysed by Sreenadh et al., [21]. Recently, several researchers have studied the 
impact of boundary conditions on different types of fluids [22-25]. 

Regulation of body temperature, an essential function of the human circulatory system, is an 
important factor to be considered while studying the peristaltic motion of physiological fluids. The 
heat in the body which is produced by the skeletal muscles is removed mainly by the convective heat 
transfer of blood. The principles of heat transfer have been employed by several researchers to 
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explore information on how the human body transfers heat. Srinivas and Kothandapani [26] carried 
out studies on Newtonian fluids to analyse the effects of heat transfer during the peristaltic 
transport, through an asymmetric channel. Further, their work was extended by Srinivas and 
Gayathri [27] to study the effects of transfer of heat on the peristaltic motion of a Newtonian fluid 
through a vertical asymmetric channel acting as a porous medium. Studies were carried out by 
Nadeem and Akbar [28] for a Herschel-Bulkley fluid to analyse the heat transfer effects of peristaltic 
transport through an inclined tube. They considered the no-slip thermal boundary conditions and 
obtained the results for Power-law fluids, Newtonian fluids and Bingham fluids as a special case of 
their model. A Newtonian nanofluid flowing past a Darcy-Brinkman porous medium under the effect 
of a uniform external Magnetic field was examined by Wakif et al., [29]. The effects of thermal 
radiation on the convective flow of a fluid in the region of fully developed flow were examined by 
Prasad et al., [30]. Recently, several authors studied the impact of slip, heat transfer and convective 
boundary conditions on classical and biological fluids in different geometries and assumptions [31-
41]. 

Considering the above discussions, the current paper aims to analyse the effects of heat transfer, 
thermal and velocity slips on the peristaltic motion of a Herschel-Bulkley fluid model through an 
inclined porous tube. Closed form solutions of the energy and momentum equations have been 
obtained. The frictional force and pressure rise have been computed through numerical integration. 
The influence of shear stress, Darcy number, angle of inclination, Brinkman number, thermal and 
velocity slip parameters on pressure rise, pressure gradient, frictional force and temperature profile 
have been analysed graphically. The results reveal that, velocity and thermal slip have an increasing 
effect on the pressure rise and temperature. Also, the trapping phenomenon for the Herschel-
Bulkley fluid is discussed. It is observed that the volume of the bolus increases with the velocity slip 
parameter.  
 
2. Mathematical formulation and Closed form solutions 

 
Let us consider a two-dimensional flow of Herschel-Bulkley fluid through a porous tube of radius 

𝑎 inclined at an angle 𝛾 with the horizontal surface (Figure 1). The flow of fluid is considered to be 
axisymmetric. (𝑅, Θ, Z) is the chosen cylindrical coordinate system. A sinusoidal wave train of 
wavelength 𝜆 and amplitude b is taken at both upper and lower walls of the tube. At any axial 
location, the instantaneous radius of the tube is given by  

 

2
( , ) sin ( )R H Z t a b Z ct





 
    

 
           (1) 

 
We assume the length of the tube to be an integral multiple of the wavelength 𝜆 and constant 

pressure difference across the ends of the tube. Due to unsteady flow in the laboratory frame 
(𝑅, Θ, Z), we consider a wave frame (𝑟, 𝜃, 𝑧) moving away from the fixed frame at a constant velocity 
c. The corresponding transformations between these two frames are defined as  

 
2

, , , ( , ) ( )
2

R
r R z Z ct p Z t P z                (2) 

 
where P and p are the pressures and 𝛹and Ψ are the streamlines in the fixed and wave frames 
respectively. Pressure is considered to be uniform at any location around the axis of the tube under 
the assumption of long wavelength approximation. 
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Fig. 1. Geometry of an inclined peristaltic tube with porous wall 

 
Consider the non-dimensional variables as given below [28] 
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where 𝜏0 is the yield shear stress and 𝑤 and 𝑢 are the axial and radial velocities. 

By lubrication approach (neglecting the frictional forces), the governing momentum and energy 
equations can be written in the simplified form as [28]: 
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    (6) 

 
Neglecting the inertial terms (𝑅𝑒 = 0) and considering the long wavelength assumption (𝛿 ≪ 1), 
Eq. (4)-(6) take the form as below 

 

 
1

1 sin
rz

p
r

r r z F




 
  

 
            (7) 

 

0
p

r





               (8) 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 56, Issue 2 (2019) 195-210 

199 

1
rz

w
r Br

r r r r




     
    

     
            (9) 

 

where Brinkman number (𝐵𝑟 = 𝐸𝑐𝑃𝑟) and 𝐹1 =
𝜇𝑐𝑛

𝜌𝑔𝑎𝑛+1. 

The non-dimensional constitutive equation for Herschel-Bulkley fluid is given as follows 
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                    (10) 

 
The corresponding boundary conditions are [10] 
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The expression for velocity obtained, on solving Eq. (7), subject to the boundary conditions 11(a) and 
11(b), is 
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The upper limit for the plug flow region is attained from the condition 
𝜕𝑢

𝜕𝑟
= 0 at 𝑟 = 𝑟𝑝. Using 

this, we get 
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Moreover, 𝜏𝑟𝑧 = 𝜏ℎ at 𝑟 = ℎ [42] gives 𝑃 + 𝑓 =
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. Therefore, 
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The plug flow velocity is obtained by taking 𝑟 = 𝑟𝑝in Eq. (12) 
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                      (15) 

 
Volume flux at any cross-section of the tube is represented by  
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It is worth noting that the results of Nadeem and Akbar [28] can be obtained as a special case of 

the present model by substituting 𝐷𝑎 = 0 in Eq. (16). The dimensionless time-averaged flux is given 
by 
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We have  
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And  
 
𝛹𝑝 = 0 at 𝑟 = 0, 𝛹1 = 𝛹𝑝 at 𝑟 = 𝑟𝑝                        (19) 

 
Integrating Eq. (18) and using the conditions given by Eq. (19), we obtain the stream function as  
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Using Eq. (10) in Eq. (9) and considering the conditions given by Eqs. 11(c) and 11(d), we obtain the 
expression for temperature as  
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3. Pumping Characteristics 
 
The pressure rise (∆𝑃) over one cycle of the wave is given by 
 

1

0

.
p

P dz
z


 


                                                             (22) 

 
The dimensionless frictional force F along the wall over one wave length is 
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4. Results and Discussion 

 
Parametric analysis is carried out to study the peristaltic transport of Herschel-Bulkley fluid 

flowing through a porous tube with inclination. The flow is assumed to be incompressible, laminar 
and steady; and incorporates the effects of heat transfer and thermal slip. The advantage of using 
this model is that the corresponding results can also be obtained and analysed for power-law, 
Newtonian and Bingham fluids. In the present study, the pressure rise (∆𝑃) and frictional force(F) 
are obtained from Eqs. (22) and (23) by using Weddle’s rule through MATLAB. The various pertinent 
parameters involved in the problem are shear stress (𝜏), Darcy number (𝐷𝑎), velocity slip parameter 
(𝛼), fluid behaviour index (𝑛), angle of inclination (𝛾), thermal slip parameter(𝛽) and Brinkman 

number (𝐵𝑟). The influence of each of these parameters is analysed on time-averaged flow rate 𝑄, 
pressure rise, pressure gradient (𝑃), frictional force, temperature(𝜃) and streamlines (𝛹) through 
the graphs plotted in Figures 2-10. The values of the parameters kept constant in our analysis are 

𝜏 = 0.2, 𝐷𝑎 = 0.0002, 𝛼 = 0.2, 𝜀 = 0.2, 𝑛 = 3, 𝛽 = 0.2, 𝛾 =
𝜋

4
 and 𝐵𝑟 = 0.25. 

The variation in ∆𝑃 versus 𝑄 are graphed in Figures 2(a)-2(e). A rise in the values of 𝜏, 𝑛 and 𝛾 
have an increasing effect on ∆𝑃. Also, it is evident that in comparison to a power law fluid, the 
peristaltic pumping for Herschel-Bulkley fluid over the walls of the tube occurs against a greater 
pressure rise; the reason being the plug flow region present in a Herschel-Bulkley fluid. The pumping 
curves for Herschel-Bulkley fluid and Newtonian fluid (𝜏0 = 0 and 𝑛 = 1) intersect with each other 

when 𝑄 = 1. This information helps in equalizing the pumping rate of Newtonian and Herschel-

Bulkley fluid for a given value of 𝑄 by adjusting the peristalsis velocity. Moreover, increase in 𝐷𝑎 
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means an increase in the porosity of the walls, which decreases 𝑄. This behavior is observed in Figure 
2(d).  

 

 
Fig. 2(a). ∆𝑷 versus 𝑄 for varying 𝜏 

 
Fig. 2(b). ∆𝑷 versus 𝑄  for varying 𝑛 

 
Fig. 2(c). ∆𝑷 versus 𝑄 for varying 𝛾 

 
Fig. 2(d). ∆𝑷 versus 𝑄 for varying 𝐷𝑎 

 
Fig. 2(e). ∆𝑷 versus 𝑄 for varying 𝛼 

 
The effect of 𝛼 on ∆𝑃 is opposite to that of 𝐷𝑎. The comparison between the results obtained 

from the present model and Nadeem and Akbar [28] model is shown in Figure 3, where it is clear 
that the results are in good agreement. Figures 4(a)-4(e) show the impact of different parameters 
on F. It can be seen that the behaviour of F is opposite to that of ∆𝑃. Figures 5(a)-5(e) are plotted to 
see the effect on P. As expected, the pressure gradient P is maximum at the narrowest part of the 
tube, that is, 𝑧 = 0.75. Further, for positive values of P, an adverse pressure gradient is registered 
(which opposes the flow) in the range 𝑧 ∈ [0.2, 1.2]. The magnitude of P increases with an increase 
in 𝜏 and n. This behavior is due to the fact that as the shear stress and the shear thickening of the 
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fluid increases, higher pressure gradient is needed across the tube to enable the flow of the fluid. A 
similar behavior is observed for an increase in the values of 𝛼, whereas the opposite trend is 
observed for 𝐷𝑎 and 𝛾.  

 

 
Fig. 3. Validation of the model 

 

 
Fig. 4(a). 𝐹 versus 𝑄 for varying 𝜏 

 
Fig. 4(b). 𝐹 versus 𝑄 for varying 𝑛 

 
Fig. 4(c). 𝐹 versus 𝑄 for varying 𝛾 

 
Fig. 4(d). 𝐹 versus 𝑄 for varying 𝐷𝑎 

 
Fig. 4(e). 𝐹 versus 𝑄 for varying 𝛼 
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Fig. 5(a). 𝑃 for different values of 𝜏 

 
Fig. 5(b). 𝑃 for different values of 𝑛 

 
Fig. 5(c). 𝑃 for different values of 𝛼 

 
Fig. 5(d). 𝑃 for different values of 𝐷𝑎 

 
Fig. 5(e). 𝑃 for different values of 𝛾 

 
The effects of 𝜏, 𝐷𝑎, 𝛼, 𝑛, 𝛾, 𝛽 and 𝐵𝑟 on the temperature profile are sketched in Figures 6(a)-

6(g). Figure 6(a) illustrates the effect of 𝛼 on temperature. Here the magnitude of temperature 
increases with increase in the value of 𝛼. Figure 6(b) portrays the variation of 𝛽 on temperature. 
Here an increase in temperature is observed near the axis of the tube and the effect is negligible 
towards the boundary walls. Figure 6(c) reveals that an increase in the magnitude of temperature is 
because of the higher values of 𝐵𝑟. This is because, 𝐸𝑐 occurs due to the viscous dissipation effects 
and it therefore enhances the temperature. Further, an increase in the value of 𝑃𝑟 decreases the 
value of thermal conductivity and thereby increasing the temperature. However, the opposite 
behaviour is noticed near the walls. Figure 6(d) portrays the variation of 𝐷𝑎 on temperature. Here 
the decay in temperature is observed near the axis of the tube and opposite behavior is noticed near 
the walls. Figure 6(e) is graphed to illustrate the effect of 𝛾 on temperature. An increment in 𝛾 results 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 56, Issue 2 (2019) 195-210 

205 

in an increase in the temperature. Figure 6(f) depicts the variation of temperature due to the 
influence of 𝑛. An increase in the value of 𝑛 results in an increase in the temperature. Figure 6(g) 
shows the effect of 𝜏 on temperature. Here an increment in 𝜏 enhances the temperature. 

 

 
Fig. 6(a). 𝜃 for different values of 𝛼 

 
Fig. 6(b). 𝜃 for different values of 𝛽 

 
Fig. 6(c). 𝜃 for different values of 𝐵𝑟 

 
Fig. 6(d). 𝜃 for different values of 𝐷𝑎 

 
Fig. 6(e). 𝜃 for different values of 𝛾 

 
Fig. 6(f). 𝜃 for different values of 𝑛 

 
Fig. 6(g). 𝜃 for different values of 𝜏 

 
An important phenomenon in peristalsis is trapping. It involves the formation of an inside flowing 

bolus, which is then pushed forward in the tube by the sinusoidal motion of the peristaltic waves. 
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The effects of 𝜶, 𝜺, 𝝉, and 𝑫𝒂 on the trapped bolus is depicted in Figures 7-10. The volume of the 
trapped bolus was seen to increase with increase in 𝜶, 𝜺 and 𝝉 due to which the number of bolus 
formed increases; whereas, the volume of the trapped bolus saw a reduction with increase in 𝑫𝒂, 
thus decreasing the number of bolus formed. 

 

Fig. 7. Streamlines for varying (a) 0.1  , (b) 0.2  , (c) 0.3   and (d) 
0.4.   

 

 
 Fig. 8. Streamlines for varying (a) 0.0001Da  , (b) 0.0002Da  , (c)   

0.0003Da   and (d) 0.0004.Da   
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Fig. 9. Streamlines for varying (a) 0.3  , (b) 0.4  , (c) 0.5   and (d) 

0.6.   

 

 
Fig. 10. Streamlines for varying (a) 0.1  , (b) 0.2  , (c) 0.3   and (d) 

0.4.   

 
5. Conclusions 
 

The present paper deals with the investigation of peristaltic transport of a Herschel-Bulkley fluid 
through an inclined porous tube, taking into account the heat transfer characteristics. The effects of 
thermal and velocity slip conditions have been incorporated in the model. The results of the present 
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model have wide applications in the field of medicine and engineering. The conclusions can be 
summarized as follows 

 
i. In comparison to a power law fluid, the peristaltic pumping for Herschel-Bulkley fluid over the 

walls of the tube occurs against a greater pressure rise. 
ii. An increase in the velocity slip parameter, angle of inclination, shear stress and shear 

thickening of the fluid have an increasing effect on the pressure gradient as well as pressure 
rise. 

iii. The frictional forces behave in an opposite way as compared to the behavior of pressure rise. 
iv. The magnitude of temperature increases with an increase in the values of velocity slip 

parameter, thermal slip parameter, Brinkman number, angle of inclination, shear stress and 
shear thickening of the Herschel-Bulkley fluid. 

v. The volume of the trapped bolus increases for larger values of the velocity slip parameter, 
amplitude ratio and shear stress, and smaller values of Darcy number. 
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