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Computational Fluid Dynamics (CFD) is widely used to investigate heat transfer, fluid 
flow, chemical reaction and mass transfer phenomenon. While solving the Navier-
Stokes equations, the convection term is always prone to numerical instability and 
therefore the discretisation of the convection term requires special attention. The 
performance of various convection schemes had been previously performed on one-
dimensional convection-diffusion problem. Nevertheless, the numerical errors of these 
convection schemes are more pronounced in higher-dimensional problems especially 
those involving pressure term and flow recirculation. In this paper, the performances 
of convection schemes such as first order upwind differencing, second order upwind 
differencing, Quadratic Upstream Interpolation for Convective Kinematics (QUICK) and 
power-law schemes are investigated on the two-dimensional lid-driven flow problem 
in a square cavity. By using commercial CFD software ANSYS Fluent, the consistency, 
efficiency and accuracy of the results due to different convection schemes are 
compared. It is found that although the power-law scheme is the best in terms of 
iterative convergence rate, it is not accurate especially for high Re-flow. Higher order 
scheme such as QUICK is very accurate; however, its convergence rate is the lowest. 

Keywords:  
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1. Introduction 
 

Continuity and Navier-Stokes equations are regarded as the most rudimental governing 
equations in CFD analysis [1]. The non-dimensional governing equations for the steady 
incompressible flow are listed in Eq. (1) to Eq. (2) in tensor form. In fact, the non-linear convective 
term in Eq. (2) is prone to numerical instability [2-5]. For example, Hatton and Turton [6], Nield [7], 
Coelho and Pinho [8] and Foroushani et al., [9] experienced difficulties in investigating the Nusselt 
number correlation at different wall temperatures when strong convection occurs. Improper 
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discretisation of the convection term will lead to unphysical spurious oscillation and inaccurate 
solution. Therefore, formulating an efficient way to discretize the convection term remains as the 
main challenge in modern CFD [10,11]. 

There are three important criteria [5] to be considered while discretizing the convective term: 
conservativeness, boundedness and transportiveness. Conservativeness represents the property in 
which the field value between the control volume should be the same; boundedness signifies the 
criterion for convergence by forming a diagonally dominant matrix; while transportiveness is the 
comparative property between the diffusion and convection effects. 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0              (1) 

 
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[

1

𝑅𝑒
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)]           (2) 

 

where 𝜕(𝑢𝑖𝑢𝑗)/𝜕𝑥𝑗 is the convection term, −𝜕𝑃/𝜕𝑥𝑖  is the pressure term, 𝜕/𝜕𝑥𝑗[1/𝑅𝑒(𝜕𝑢𝑖/𝜕𝑥𝑗 +

𝜕𝑢𝑗/𝜕𝑥𝑖)] is the viscous term, while 𝑅𝑒 is Reynolds number. 

The central differencing scheme is indeed an unbounded scheme whereby it produces unphysical 
noise in the numerical solution when the convection outweighs the diffusion effects [5]. Selection of 
an appropriate convection discretisation scheme is therefore important in achieving a consensus 
between computational efficiency and accuracy. There are some advanced discretisation methods 
such as total variation diminishing [12,13] and stability-controllable second-order difference scheme 
[14], etc.; however, these schemes are not discussed in the current work. 

The performances of convection schemes have been mostly studied for one-dimensional 
convection-diffusion problem [2,5] in which the pressure term and possible counter-flow effect have 
been omitted. The computational efficiencies of the convection schemes could be different for multi-
dimensional problem [15].  

In the current work, we will compare the properties such as computational stability, convergence 
speed and accuracy of the convection schemes such as first order upwind (FOU) scheme, second 
order upwind (SOU) scheme, Quadratic Upstream Interpolation for Convective Kinematics (QUICK) 
scheme and power-law scheme are evaluated on two-dimensional lid-driven flow problem in a 
square cavity. The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm 
implemented in commercial CFD software ANSYS Fluent is used in the current study. 
 
2. Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) Revisited  
 

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm was proposed by 
Patankar and Spalding [16] as a tool for coupling pressure and velocity terms. Instead of solving Eq. 
(1) and Eq. (2) by forming the Pressure Poisson equation when using fractional step method [17], 
SIMPLE algorithm deploys the guessing-and-correction concept for x-velocity, y-velocity and 
pressure. In ANSYS Fluent, Eq. (1) and Eq. (2) are discretized using finite volume method such that 

 

∫
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
𝑑𝐴 = ∫ {−

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[

1

𝑅𝑒
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)]} 𝑑𝐴         (3) 

 
By re-arranging the terms upon discretisation, Eq. (3) becomes 

 
𝑎𝑢𝑖 = ∆𝑃 + ∑(𝑎𝑢𝑖)𝑛𝑏            (4) 
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where a and anb are the coefficients of the targeted and neighboring grids. Eq. (4) is computed based 
on a set of guessed values initially which requires further re-calculation. Meanwhile, in order to 
satisfy the continuity equation, Eq. (4) should be further modified in such a way that:  
 
𝑎𝑢𝑖

′ = ∆𝑃′ + ∑(𝑎𝑢𝑖)𝑛𝑏′            (5) 
 
𝑢𝑖

𝑐 = 𝑢𝑖 + 𝑢𝑖′              (6) 
 
𝑃𝑐 = 𝑃 + 𝑃′              (7) 
 
where 𝑢𝑖’ is the velocity error, 𝑃’ is the pressure error, 𝑢𝑖

𝑐 is the corrected velocity while 𝑃𝑐  is the 
corrected pressure; combining Eq. (4) to Eq. (7) will form 
 
𝑎(𝑢𝑖

𝑐 − 𝑢𝑖) = ∆𝑃′ + ∑ 𝑎(𝑢𝑖
𝑐 − 𝑢𝑖)𝑛𝑏′         (8) 

 
In SIMPLE algorithm, the velocity error of the neighboring grids as in Eq. (5) and Eq. (6) are 

ignored. Then, Eq. (8) is applied into the discretised equation of Eq. (1) in order to obtain the pressure 
error. The process is iterated until convergence is achieved, fulfilling both continuity and momentum 
principles. In order to stabilise the computation, the under-relaxation factor α is included into Eq. (7) 
to form Eq. (10). Hence, upon obtaining the pressure error, both corrected velocity and pressure can 
be now obtained in Eq. (9) and Eq. (10), respectively. 

 
𝑢𝑖

𝑐 = 𝑎−1∆𝑃′ + 𝑢𝑖             (9) 
 
𝑃𝑐 = 𝑃 + 𝛼𝑃′                        (10) 

 
By using the corrected velocity and pressure fields, the computation of Eq. (4) to Eq. (10) is 

repeated until the continuity residual approaches zero. In SIMPLE algorithm, the selection of under-
relaxation factor is important for the numerical stability [18]. The detailed description of SIMPLE 
algorithm can be found in many resources [5,19,20]. 

 
3. Numerical Insights on Discretisation Schemes 
 

In this section, four different convection schemes: FOU, SOU, QUICK and power-law scheme are 
discussed here. The discretisation is done based on the staggered grid as illustrated in Figure 1. Note 
that the indices i and j here refer to the spatial locations instead of tensor form expression. 

The general way of the discretising of convection term in Eq. (3) in two-dimensional domain are 
outlined in Eq. (11.1) – Eq. (11.4) 
 

∫ (𝑢𝑥
𝜕𝑢𝑥

𝜕𝑥
) 𝑑𝑥𝑑𝑦 = (𝑢𝑥)𝑖,𝑗[(𝑢𝑥)𝑒 − (𝑢𝑥)𝑤]∆𝑦               (11.1) 

 

∫ (𝑢𝑦
𝜕𝑢𝑥

𝜕𝑦
) 𝑑𝑥𝑑𝑦 = (𝑢𝑥)𝑖,𝑗[(𝑢𝑥)𝑖+1,𝑗 − (𝑢𝑥)𝑖,𝑗]∆𝑥               (11.2) 

 

∫ (𝑢𝑥
𝜕𝑢𝑦

𝜕𝑥
) 𝑑𝑥𝑑𝑦 = (𝑢𝑥)𝑖,𝑗 [(𝑢𝑦)

𝑖+1,𝑗
− (𝑢𝑥)𝑖,𝑗] ∆𝑦               (11.3) 
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∫ (𝑢𝑦
𝜕𝑢𝑦

𝜕𝑦
) 𝑑𝑥𝑑𝑦 = (𝑢𝑦)

𝑖,𝑗
[(𝑢𝑦)

𝑛
− (𝑢𝑦)

𝑠
] ∆𝑥               (11.4) 

 
where 𝑒, 𝑤, 𝑛 and 𝑠 represent the imaginary velocity value at the east, west, north and south “faces” 
of the control volume respectively. The centroid of the control volume is to store pressure variables 
such as Pi+1,j, Pi-1,j, Pi,j+1 and Pi,j-1 respectively.  

 

 
Fig. 1. Grid formation using 
staggered grid 

 
3.1 First Order Upwind (FOU) Differencing Scheme 
 

FOU differencing scheme is one of the oldest convection discretisation, proposed by Courant et 
al., [21], Torrance [22] and Runchal et al., [23]. The face velocities in Eq. (11.1) and Eq. (11.4) are 
calculated in accordance with Eq. (12.1) to Eq. (12.4). 
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Although FOU is simple, it is prone to false diffusion [20,23] when multi-dimensional problem is 

considered. Therefore, more grid points are necessary for reasonable accuracy. 
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3.2 Second Order Upwind (SOU) Differencing Scheme 
 

SOU differencing scheme was proposed by Warming and Beam [24] and Hodge et al., [25]. The 
face velocity as from Eq. (12.1) to Eq. (12.4) are calculated based on Eq. (13.1) to Eq. (13.4). 
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Monotonic SOU [26] is the variant of SOU designed to reduce the potential oscillation. However, 

the method is not available in ANSYS Fluent and therefore it is not discussed here. Due to its second 
order accuracy which requires more computational stencils, SOU scheme is more accurate than FOU 
scheme [27] at the expense of more complex implementation. This issue has been addressed by 
Kajishima and Taira [17]. 
 
3.3 Quadratic Upstream Interpolation for Convective Kinematics (QUICK) Scheme 

 
QUICK scheme is one of the third-order upwind differencing schemes, put forward by Leonard 

[28]. This scheme involves three consecutive adjacent nodes. Although some variants of QUICK 
scheme had been reported by Leschziner [29], Han et al., [30] and Pollard and Siu [31], these schemes 
are not discussed here. The face values approximated via QUICK scheme can be found using Eq. (14.1) 
to Eq. (14.4). Due to its boundedness, spurious oscillation may still occur. Flux-limiter schemes [32,33] 
can be used to address this problem.  
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3.4 Power-Law Scheme 
 

In power-law scheme [2], the effect of Peclet number (the ratio between convection and diffusion 
effects) is considered. Peclet number Pe for different dimensions are defined as in Eq. (15.1) and Eq. 
(15.2). The subscripts x and y represent the Pe in x- and y- momentum equations, respectively. 
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x

u x
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

Δ
                     (15.1) 

 

y
y

u y
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



Δ
                     (15.2) 

 
where 𝜇 is the dynamic viscosity of the fluid. 

By using Peclet number, the face velocity can now be computed from Eq. (16.1) to Eq. (16.4). 
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where 𝑥𝑥 = |𝑃𝑒𝑥|/(1 − 0.1|𝑃𝑒𝑥|)5 and 𝑥𝑦 = |𝑃𝑒𝑦|/(1 − 0.1|𝑃𝑒𝑦|)
5

. 

 
Power-law scheme is similar to the SOU method, except that the adjacent grid values are 

interpolated exponentially in former scheme. It is important to note that when the Peclet number 
grows larger, power-law is equivalent to FOU since 1/∞ → 0. Meanwhile at zero Peclet number, the 
convection term is negated. 

 
4. Numerical Implementation on Lid-Driven Cavity 
 

The lid-driven flow in a square cavity is simulated here. By using the grid resolution 129 × 129, 
the flow cases of Reynolds numbers 400 and 3200 are simulated. The grid resolution applied is in 
accordance with grid size of the benchmark results computed by Ghia et al., [34]. The velocity and 
pressure field are obtained from different convection schemes are discussed in Section 4.1. Their 
computational performances are discussed in Section 4.2. Dirichlet and Neumann boundary 
conditions are applied for the velocity and pressure fields, respectively. The under-relaxation factor 
is set to 0.3. The maximum iteration set is 10000 to ensure sufficient allowable room prior to 
convergence. 
 
4.1 Flow Fields on Lid-Driven Cavity 
 

At Re = 400, x-velocity is quite low at the centre of the cavity. Meanwhile the y-velocity is high at 
the upper left and upper right regions of the cavity. The pressure is indeed slightly higher at the top 
right corner of the cavity. The flow patterns computed using SOU, QUICK and power-law scheme are 
almost similar in general. When FOU is applied, both the velocity and pressure fields are slightly over-
estimated as shown from Figures 2 - 4. 
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(a) (b) 

  
(c) (d) 

Fig. 2. Computed ux field at Re = 400 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme 
with grid number 129 × 129 

 

  
(a) (b) 
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(c) (d) 

Fig. 3. Computed uy field at Re = 400 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme with 
grid number 129 × 129 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Computed pressure field at Re = 400 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme 
with grid number 129 × 129 
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However, when Re is increased to 3200, the flow patterns computed using FOU and power-law 
schemes are very similar. The observation is applicable for SOU and QUICK scheme. Figures 5 - 7 show 
the ux, uy and pressure fields at Re = 3200. The computational performance of various schemes is 
discussed in the next subtopic. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Computed ux field at Re = 3200 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme 
with grid number 129 × 129 
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(a) (b) 

  
(c) (d) 

Fig. 6. Computed uy field at Re = 3200 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme 
with grid number 129 × 129 

 

  
(a) (b) 
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(c) (d) 

Fig. 7. Computed pressure field at Re = 3200 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law 
scheme with grid number 129 × 129 

 
4.2 Comparison on Computational Performances 
 

The computational performances in terms of convergence speed, stability and accuracy of various 
convection schemes are compared. The convergence curve at Re = 400 and Re = 3200 are illustrated 
respectively in Figure 8 and Figure 9, respectively. Table 1 summarises the number of iterations 
required to achieve convergence. 

From Table 1, at Re = 400, the convergence of FOU and power-law scheme are more rapid than 
those of SOU and QUICK schemes. At Re = 3200, power-law scheme outperforms FOU in terms of 
convergence speed. In fact, in terms of convergence speed, power-law scheme is the best among the 
investigated convection schemes.  

However, at Re = 3200, numerical instability can be observed when SOU and QUICK scheme is 
applied. Chen and Falconer [35] and Li and Tao [36] addressed this issue by introducing a modified 
QUICK scheme. 
 

  
(a) (b) 
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(c) (d) 

Fig. 8. Convergence plot at Re = 400 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme with 
grid number 129 × 129 

 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Convergence plot at Re = 3200 computed by: (a) FOU; (b) SOU; (c) QUICK; (d) power-law scheme with 
grid number 129 × 129 
 

Table 1 
Iteration required for convergence due to 
different convection schemes at different Re 
 FOU SOU QUICK Power-Law 

Re = 400 882 1064 1145 974 
Re = 3200 798 1498 1545 759 
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The numerical accuracy is studied by validating our results computed from 129 × 129 grids with 
the benchmark data reported by Ghia et al., [34], which was obtained stream-vorticity scheme 
[37,38]. Since our results are computed based on the dimensional equations, the obtained velocities 
are normalised before the analysis is made. The numerical accuracy is measured using the standard 
deviation defined as 

 

Standard deviation = 
 

2

computed benchmarku u

n


                   (17) 

 
where n is the number of grid points. 

At both Re = 400, the standard deviation of higher order schemes such as SOU and QUICK are 
relatively small for both x- and y- velocities, as shown in Table 2. FOU is the most inaccurate scheme, 
while the accuracy of power-law scheme is between those of FOU and higher order scheme.  

At Re = 3200, similar performances can be observed, except that SOU scheme outperforms QUICK 
scheme slightly which could be due to the unboundedness of QUICK scheme (numerical wiggles) [35].  

From the illustrations shown in Figures 10 - 13 and Table 2, higher order upwind schemes (SOU 
and QUICK) could produce more accurate result at high Re as more neighbouring points are involved 
during the computation. Power-law is slightly more accurate than FOU; however, its performance in 
capturing flow discontinuity may not be as good as those of higher-order schemes. At very high Re, 
the accuracy of power-law scheme approaches FOU. This finding is in accordance with the finding of 
Leonard and Drummond [39] that at multi-dimensional flow problem with high Pe, cross-wind 
artificial diffusion may appear if QUICK scheme is applied, and this will seriously deteriorate the flow 
accuracy. 
 

 
Fig. 10. Comparison of velocity field of ux at the middle line of the 
x-axis of the lid-driven cavity at Re = 400 
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Fig. 11. Comparison of velocity field of ux at the middle line of the 
x-axis of the lid-driven cavity at Re = 3200 

 

 
Fig. 12. Comparison of velocity field of uy at the middle line of the y-
axis of the lid-driven cavity at Re = 400 

 

 
Fig. 13. Comparison of velocity field of uy at the middle line of the 
y-axis of the lid-driven cavity at Re = 3200 
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Table 2 
Variance for different convection schemes at different 
Re with comparison with the data of Ghia et al., [34] 
 Re FOU SOU QUICK Power-Law 

ux 
400 0.050674 0.031427 0.025919 0.027278 
3200 0.219507 0.193073 0.193439 0.209298 

uy 
400 0.065517 0.045027 0.041246 0.042926 
3200 0.107170 0.018951 0.020092 0.079247 

 
5. Concluding Remarks 
 

The computational performances of FOU, SOU, QUICK and power-law schemes have been 
analysed on two-dimensional lid-driven flow problem in a square cavity at Re = 400 and Re = 3200. 
The advantages and disadvantages of four investigated convection schemes can be summarised as 
follows. 

I. FOU is the simplest in terms of implementation, which converges faster than higher order 
upwind schemes such as SOU and QUICK. It gives the most rapid convergence when Re is high. 
However, it is accurate only when the Re is small. 

II. Higher order schemes (SOU and QUICK) are more complex in terms of implementation and 
they need more iterations to reach convergence. Their convergence curves may fluctuate as 
well. However, they are accurate when the flow is highly convective. Also, they are more 
capable in capturing flow with high gradient. 

III. Power-law is basically a “smoothed” and improved version of FOU by considering the Peclet 
number. However, it inherits most of the features of FOU. It shows good accuracy and 
convergence at low Re flow; however, its accuracy is inferior to those of higher order schemes 
at high Re. 
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