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This article treats analytically, the magnetohydrodynamic flow through non-parallel 
porous walls or between two solid porous plates intersecting at an angle, that can be 
interpreted as a combination between the classical Jeffery Hamel flow added of one 
injection/suction. The governing equations of the problem are converted from 
traditional Navier-Stokes equations of fluid mechanics accompanied by those of 
Maxwell's electromagnetism to ordinary nonlinear differential equations for modeling.  
A semi-analytic solution is developed by using Homotopy Analysis Method (HAM) 
whereas the numerical solution is presented by Runge-Kutta scheme. A comparative 
study between the analytical and numerical solutions is made. The results confirm 
clearly that the two methods coincide closely for different angles (α), Reynolds 
numbers (Re), injection parameter (S) and Hartmann number (Ha). 
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1. Introduction 
 

The incompressible viscous fluid flow between non-parallel walls or through convergent 
divergent channels, mathematically known as Jeffery-Hamel problem, is invented by George Barker 
Jeffery [1] and Georg Hamel [2]. The pioneers initially introduced this type of flow and managed to 
give it a celebrity occupying a primary place in the field of fluid dynamics, constituting a reliable 
mathematical formulation for many mechanical situations. Therefore, has encouraged many 
scientists to conduct extensive research in recent years, because of their use in many industrial and 
natural areas [3-6]. 

The main objective searched in this work is to discover the behavior of an unsteady 
Magnetohydrodynamic fluid flow in convergent-divergent channels; this interest is directly related 
to its practical and industrial utility. The several applications in MHD generators, MHD pumps, 
accelerators, nuclear reactors and flow meters in biomedical engineering, for example in the flow of 
blood in the capillaries [7], in the dialysis of blood in artificial kidney [8], and in many other 
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engineering areas such as the design of filters, in transpiration cooling boundary layer control [9]. 
Gupta [10] studied the heat and mass transfer on a stretching sheet with blowing or suction. Sakiadis 
[11] investigated the boundary layer flow over a stretched surface moving with constant velocity. 
Erickson et al., [12] based on the work of Sakiadis and included blowing or suction at the stretched 
sheet surface on a continuous moving surface with constant velocity and studied its effects on the 
heat and mass transfer in the boundary layer. Nadeem et al., [13] studied the influence of heat and 
mass transfer on Newtonian bio-magnetic fluid of blood flow through a tapered porous artery with 
a stenosis. The simulation of variable viscosity and Jeffrey fluid model for blood flow through a 
tapered artery with a stenosis is presented by Akbar and Nadeem [14]. Akbar and Nadeem [15] 
presented the analytical and numerical analysis of Vogel's model of viscosity on the peristaltic flow 
of Jeffrey fluid. The effect of variable thermal conductivity and the inclined magnetic field on MHD 
plane poiseuille flow in a porous channel with non-uniform plate temperature is investigated by 
Chutia [16]. On the other hand, in this work, the magnetohydrodynamic (MHD) nature of the flow is 
considered, this term was first introduced by Bansal [17], this theory, concerns the inducing current 
in a moving conductive fluid in presence of magnetic field. The interest of the study of such flow, is 
due to its rapidly increasing and extensive applications in various areas of technology and engineering 
as MHD generators, accelerators, pumps, and flow meters, Damping and controlling of electrically 
conducting fluid can be achieved by means of an electromagnetic body force (Lorentz force). For 
these, the MHD is the subject of much research as [18-23]. The mechanics of the fluid through a 
divergent channel in presence of electromagnetic field are detailed by Ganji [24]. Harada et al., [25] 
studied the fundamental characteristics of linear Faraday MHD. In 2005 Anwari et al., [26] bring an 
improvement to the Haraday work numerically and theoretically and put their print in this field.  

In addition, several methods of solving non-linear problems and the effects of MHD for different 
fluids and geometries are investigated by many researchers, such as [27-48]. 

In this paper, we have applied one of the most important methods for highly nonlinear problems, 
the well-known Homotopy Analysis Method (HAM) which was firstly employed by Liao [49-50]. 
Rashidi et al., [51] employed HAM to investigate the free convective heat and mass transfer in a 
steady 2D magnetohydrodynamic fluid flow over a vertical stretching. Domairry et al., [52] studied 
and solved a nonlinear ordinary differential equation through Homotopy Analysis Method (HAM). 
These analytical methods have already been successfully applied to solve the problem of nanofluid 
flow and heat transfer characteristics between two horizontal plates in a rotating system by 
Sheikholeslami et al., [53]. Rashidi et al., [54] used the Homotopy Analysis Method (HAM) to find the 
analytic solutions for the velocity and the temperature distributions, and to study the steady mixed 
convection in two-dimensional stagnation flows of a micro polar fluid around a vertical shrinking 
sheet. Differential equations governing the MHD Jeffery-Hamel flow, and a comparison between the 
results and the numerical solution is provided.  
 
2. Governing Equations 
 

The problem is described from the continuity and the Navier- Stokes equations written in polar 
coordinates format [52,54]. 
 
1

𝑟

𝜕

𝜕𝑟
(𝑟(𝑢𝑟 − 𝑣𝑠𝑖𝑛𝜃)) +

1

𝑟

𝜕

𝜕𝜃
(𝑣𝑐𝑜𝑠𝜃) = 0,                                                                                       (1) 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟) = 2

1

𝑟
𝑣𝑠𝑖𝑛𝜃 ⇒ 𝑟𝑢𝑟 = 2𝑟𝑣𝑠𝑖𝑛𝜃 + 𝑓(𝜃)   ⇒ 𝑢𝑟 = 2𝑣𝑠𝑖𝑛𝜃 +

𝑓(𝜃)

𝑟
, 
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(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃) (𝜕(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝜕𝑟
+

(𝑣𝑐𝑜𝑠𝜃)

𝑟

𝜕(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝜕𝜃
−

(𝑣𝑐𝑜𝑠𝜃)2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐 (

𝜕2(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝜕𝑟2 +
1

𝑟

(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝜕𝑟
+

1

𝑟2

𝜕2(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝜕𝜃2 −
(𝑢𝑟−𝑣𝑠𝑖𝑛𝜃)

𝑟2 −
2𝜕(𝑣𝑐𝑜𝑠𝜃)

𝑟2𝜕𝜃
) −

𝜎𝐵0
2

𝜌𝑟2
(𝑢𝑟 − 𝑣𝑠𝑖𝑛𝜃),                     (2) 

 

(𝑢𝑟 − 𝑣𝑠𝑖𝑛𝜃)
𝜕(𝑣𝑐𝑜𝑠𝜃)

𝜕𝑟
+

(𝑣𝑐𝑜𝑠𝜃)

𝑟

𝜕(𝑣𝑐𝑜𝑠𝜃)

𝜕𝜃
+

(𝑣𝑐𝑜𝑠𝜃)

𝑟
(𝑢𝑟 − 𝑣𝑠𝑖𝑛𝜃) = −

1

𝜌𝑟

𝜕𝑝

𝜕𝜃
 

+𝜐 (
1

𝑟2

𝜕2(𝑣𝑐𝑜𝑠𝜃)

𝜕𝜃2
−

𝑣𝑐𝑜𝑠𝜃

𝑟2
+

2

𝑟2

𝜕(𝑢 − 𝑣𝑠𝑖𝑛𝜃)

𝜕𝜃
), 

  
The flow is assumed to be purely radial emerging from a line source that is if 𝑢 = 𝑢(𝑟, 𝜃) 
 
 From Eq. (1), 
 
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) −

𝑣𝑠𝑖𝑛𝜃

𝑟
−

𝑣𝑠𝑖𝑛𝜃

𝑟
= 0 ⟹ 𝑟𝑢 = 2𝑣𝑟𝑠𝑖𝑛𝜃 + 𝑓(𝜃). 

 

𝑢𝑟 = 2𝑣𝑠𝑖𝑛𝜃 +
𝑓(𝜃)

𝑟
,                                         (3) 

 
Substituting (3) in the momentum Eq. (2) and after calculating all derivatives with respect to f we 
get 
 

(
𝑓

𝑟
+  𝑣𝑠𝑖𝑛𝜃) (−

𝑓

𝑟2
) +

(𝑣𝑐𝑜𝑠𝜃)

𝑟
(𝑣𝑐𝑜𝑠𝜃 +

𝑓′

𝑟
) −

(𝑣𝑐𝑜𝑠𝜃)2

𝑟
= −

1

𝜌

𝜕𝑝

𝜕𝑟
 

+𝜐 (
2𝑓

𝑟3
+

1

𝑟
(−

𝑓

𝑟2
) +

1

𝑟2
(

𝑓′′

𝑟
− 𝑣𝑠𝑖𝑛𝜃) − (

𝑓

𝑟3
+

𝑣𝑠𝑖𝑛𝜃

𝑟2
) +

2

𝑟2
𝑣𝑠𝑖𝑛𝜃) 

−
𝜎𝐵0

2

𝜌𝑟2 (
𝑓′

𝑟
+ 𝑣𝑠𝑖𝑛𝜃),                                                                  (4) 

              

−
(𝑣𝑐𝑜𝑠𝜃)

𝑟
𝑣𝑠𝑖𝑛𝜃 +

(𝑣𝑐𝑜𝑠𝜃)

𝑟
(

𝑓

𝑟
+  𝑣𝑠𝑖𝑛𝜃) = −

1

𝜌𝑟

𝜕𝑝

𝜕𝜃
+ 𝜐 (−

1

𝑟2
𝑣𝑐𝑜𝑠𝜃 −

𝑣𝑐𝑜𝑠𝜃

𝑟2
+

2𝑓′

𝑟3
+

2𝑣𝑐𝑜𝑠𝜃

𝑟2
), 

−
𝑓2

𝑟3
−

𝑓

𝑟2
 𝑣𝑠𝑖𝑛𝜃 +

𝑓′

𝑟2
𝑣𝑐𝑜𝑠𝜃 = −

1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜐

𝑓′′

𝑟3
−

𝜎𝐵0
2

𝜌𝑟2
(

𝑓′

𝑟
+ 𝑣𝑠𝑖𝑛𝜃), 

𝑓

𝑟2  𝑣𝑐𝑜𝑠𝜃 = −
1

𝜌𝑟

𝜕𝑝

𝜕𝜃
+  𝜐 (

2𝑓′

𝑟3 ),                                                                              (5) 

          
1

𝜌

𝜕𝑝

𝜕𝑟
= +

𝑓2

𝑟3
+

𝑓

𝑟2
 𝑣𝑠𝑖𝑛𝜃 −

𝑓′

𝑟2
𝑣𝑐𝑜𝑠𝜃 + 𝜐

𝑓′′

𝑟3
−

𝜎𝐵0
2

𝜌𝑟2
(

𝑓′

𝑟
+ 𝑣𝑠𝑖𝑛𝜃), 

  
1

𝜌

𝜕𝑝

𝜕𝜃
= −

𝑓

𝑟
 𝑣𝑐𝑜𝑠𝜃 +  𝜐 (

2𝑓′

𝑟2 ),             (6) 

          
By eliminating the pressure term between Eq. (6) and (3), after deriving the first equation with 

respect of 𝜃 and the second one with respect of r, we obtain [52] 
 

1

𝜌

𝜕2𝑝

𝜕𝑟𝜕𝜃
= +

2𝑓𝑓′

𝑟3
+

𝑓′

𝑟2
 𝑣𝑠𝑖𝑛𝜃 +

𝑓

𝑟2
 𝑣𝑐𝑜𝑠𝜃 −

𝑓′′

𝑟2
𝑣𝑐𝑜𝑠𝜃 +

𝑓′

𝑟2
𝑣𝑠𝑖𝑛𝜃 + 𝜐

𝑓′′′

𝑟3
−

𝜎𝐵0
2

𝜌𝑟2
(

𝑓′

𝑟
+ 𝑣𝑐𝑜𝑠𝜃), 
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1

𝜌

𝜕2𝑝

𝜕𝑟𝜕𝜃
= +

𝑓

𝑟2  𝑣𝑐𝑜𝑠𝜃 −  𝜐 (
4𝑓′

𝑟3 ),                                          (7) 

       

0 = +
2𝑓𝑓′

𝑟3 +
2𝑓′

𝑟2  𝑣𝑠𝑖𝑛𝜃 −
𝑓′′

𝑟2 𝑣𝑐𝑜𝑠𝜃 + 𝜐 (
𝑓′′′

𝑟3 +
4𝑓′

𝑟3 ) −
𝜎𝐵0

2

𝜌𝑟2 (
𝑓′

𝑟
+ 𝑣𝑐𝑜𝑠𝜃),                (8) 

 

0 = 𝑓′′′ +
2𝑓𝑓′

𝜐
+

2𝑟𝑓′

𝜐
 𝑣𝑠𝑖𝑛𝜃 −

𝑓′′

𝜐
𝑟𝑣𝑐𝑜𝑠𝜃 + 4𝑓′ −

𝜎𝐵0
2

𝜌𝜐
(𝑓′ + 𝑣𝑟𝑐𝑜𝑠𝜃),                            (9) 

 
If Eq. (9) is normalized by the value of the velocity profile at 𝜃 = 0: 
 

𝐹(𝜃) =
𝑓(𝜃)

𝑓(0)
 𝑎𝑛𝑑 𝜂 =

𝜃

𝛼
 , 𝑉 =

𝑣

𝑓(0)
 , 

1

𝛼3
𝑓(0)𝐹′′′ +

2(𝑓(0))2𝐹𝐹′′
′

𝜐𝛼
+

2𝑓(0)𝑟𝐹′

𝜐𝛼
 𝑣𝑠𝑖𝑛(𝛼𝜂) 

−𝑓(0)
𝐹′′

𝜐𝛼2
𝑟𝑣𝑐𝑜𝑠(𝛼𝜂) + 4

1

𝛼
𝑓(0)𝐹′ −

𝜎𝐵0
2

𝜌𝜐
(𝑓(0)

1

𝛼
𝐹′ + 𝑣𝑟𝑐𝑜𝑠(𝛼𝜂)) = 0, 

 𝐹′′′ +
2𝛼2𝑓(0)𝐹𝐹′

𝜐
+

2𝛼2𝑟𝐹′

𝜐
 𝑣𝑠𝑖𝑛(𝛼𝜂) −

𝛼𝐹′′

𝜐
𝑟𝑣𝑐𝑜𝑠(𝛼𝜂) + 4𝛼2𝐹′ −

𝜎𝐵0
2

𝜌𝜐
(𝛼2𝐹′ +

1

𝑓(0)
𝑣𝑟𝛼3 𝑐𝑜𝑠(𝛼𝜂)) = 0,                                        (10) 

                                                                                     

𝑅𝑒 =
𝑓(0)𝛼

𝜐
, 

𝐹′′′ + 2𝛼𝑅𝑒𝐹𝐹′ +  2𝛼𝑆𝐹′𝑠𝑖𝑛(𝛼𝜂) − 𝑆𝛼𝐹′′𝑐𝑜𝑠(𝛼𝜂) + 4𝛼2𝐹′ 

−𝐻𝑎 (𝛼2𝐹′ +
𝑆

𝑅𝑒
𝛼3 𝑐𝑜𝑠(𝛼𝜂)) = 0; 

𝐹′′′ − 𝑆𝛼𝐹′′𝑐𝑜𝑠(𝛼𝜂) + 2𝛼𝑅𝑒𝐹𝐹′ + (2𝛼𝑆𝑠𝑖𝑛(𝛼𝜂) + 4𝛼2 − 𝐻𝑎𝛼2)𝐹′ 

−
𝐻𝑎𝑆

𝑅𝑒
𝛼3 𝑐𝑜𝑠(𝛼𝜂) = 0,                                                             (11) 

  

The boundary conditions are:  𝑓(0) = 1  , 𝑓′(0) = 0 , 𝑓(1) = 0;                  (12)
  
i.Divergent channel : 𝛼 > 0 , 𝑓𝑚𝑎𝑥 > 0; 
ii. Convergent channel : 𝛼 < 0 , 𝑓𝑚𝑎𝑥 < 0.                   (13) 

 
The Hartmann number is  

 

𝐻𝑎 =
𝜎𝐵0

2

𝜌𝜐
,                                     (14) 

 
The Reynolds’s number is 
 

𝑅𝑒 =
𝑓(0)𝛼

𝜐
 ,                                                                                                  (15) 

 
 The injection parameter is  
 

𝑆 =
𝑉𝑅𝛼

𝜐
.                                                                            (16) 
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3. Fundamentals of Homotopy Analysis Method (HAM) 
3.1 Pressure Distribution 
 

In this section,  
 

𝑁[𝜙(𝜂, 𝑞)] =
𝜕3𝜙(𝜂,𝑞)

𝜕𝜂3 + 2𝛼𝑅𝑒𝜙(𝜂, 𝑞)
𝜕∅(𝜂,𝑞)

𝜕𝜂
+ (4𝛼2 − 𝐻𝛼2 + 2𝛼𝑆𝑠𝑖𝑛(𝛼𝜂))

𝜕∅(𝜂,𝑞)

𝜕𝜂
−

𝐻𝑎𝑆

𝑅𝑒
𝛼3𝑐𝑜𝑠(𝛼𝜂) − 𝑆𝛼𝑐𝑜𝑠(𝛼𝜂)

𝜕2𝜙(𝜂,𝑞)

𝜕𝜂2 ,                        (17) 

 
where  𝑞𝜖[0,1] the embedding parameter, ℏ ≠ 0 is a nonzero auxiliary parameter. As the embedding 
parameter increases from 0 to 1, ∅(𝜂, 𝑞) varies from the initial guess 𝑓0(𝜂) to the exact solution 𝑓(𝜂): 
 
∅(𝜂, 0) = 𝑓0(𝜂), ∅(𝜂, 1) = 𝑓(𝜂),                      (18) 
 
Expanding 𝜙(𝜂, 𝑞) in Taylor series with respect to 𝑞, we have: 
 
∅(𝜂, 𝑞) = 𝑓0(𝜂) + ∑ 𝑓𝑚(∞

𝑚=1 𝜂)𝑞𝑚 ,                     (19) 
 
where  
 

𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝜙(𝜂,𝑞)

𝜕𝑞𝑚
]

𝑞=0
.                                             (20) 

 
The auxiliary function 𝐻(𝜂), initial approximation 𝑓0(𝜂) and the auxiliary linear operator L must be 
chosen in such a way that all solutions of the corresponding high-order deformation equations exist 
 

𝐿[𝜙(𝜂, 𝑞)] =
𝜕3𝜙(𝜂,𝑞)

𝜕𝜂3 ,                                                                    (21) 

 
That the L is 
 
𝐿[−0.5𝑐1𝜂2 + 𝑐2𝜂 + 𝑐3] = 0,                                                                                                              (22) 
 

where 1c , 2c  and 3c  are constants. We must guess the initial value of )(f  so that it to satisfy the 

boundary conditions. According to the discussed limitation and under the rule of solution expression 
and initial conditions, the initial guess is 
 
 𝑐1 = 2 , 𝑐2 = 0 , 𝑐3 = 1.                         (23) 
                                                                                                                                                                     
The zero order deformation equation is 
 
(1 − 𝑞)𝐿[𝜙(𝜂, 𝑞) − 𝑓0(𝜂)] = 𝑞ℏ𝐻(𝜂)𝑁[𝜙(𝜂, 𝑞)],                                                (24) 
 

𝜙(0, 𝑞) = 1 , 𝜙(1, 𝑞) = 0 ,
𝜕∅(0,𝑞)

𝜕𝜂
= 0,                               (25) 

                     
The auxiliary function is  
 
𝐻(𝜂) = 1.                                                                                                    (26) 
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4. Application 
 

The Differentiating Eq. (19), m times with respect to the embedding parameter q and then setting 
q=0 and finally dividing them by m! and From Eq. (10), (17). We have the mth-ordre deformation 
equation form>1. 

 

𝑓𝑚(𝜂) = 𝜒𝑚𝑓𝑚−1(𝜂) + ℏ ∭ 𝐻
𝜂

0
(𝜂)𝑅𝑚(𝑓𝑚−1)𝑑𝜂 + 𝑐1𝜂2 + 𝑐2𝜂 + 𝑐3,                              (27) 

 
𝑓𝑚(0) = 0 , 𝑓𝑚(1) = 0 , 𝑓′

𝑚
(0) = 0,                                              (28) 

 
where 
 

 𝑅𝑚(𝑓𝑚−1) = 𝑓′′′𝑚−1(𝜂) + 2𝛼𝑅𝑒 ∑ 𝑓𝑛(𝜂)𝑚−1
𝑛=0 𝑓′𝑚−1−𝑛(𝜂) + ((4 − 𝐻)𝛼2+2𝛼𝑆𝑠𝑖𝑛(𝛼𝜂))𝑓′

𝑚−1
(𝜂) −

𝐻𝑎𝑆

𝑅𝑒
𝛼3𝑐𝑜𝑠(𝛼𝜂) − 𝑆𝛼𝑐𝑜𝑠(𝛼𝜂)𝑓′′(𝜂),                      (29) 

 

𝜒𝑚 = {
0, 𝑚 ≤ 1;
1, 𝑚 > 1.

                                     (30) 

 
We now successively obtain 
 
𝑓0(𝜂) = 1 − 𝜂2 ,                        (31) 

 

f(1) = −
(𝛼3𝐻𝑎 + 8ℎ𝑅𝑒 − 2𝛼ℎ𝑟𝑅𝑒)𝑆𝜂

𝛼2𝑅𝑒
−

1

3
𝛼2ℎ𝜂4 +

1

12
𝛼2ℎ𝐻𝑎𝜂4 −

1

6
𝛼ℎ𝑅𝑒𝜂4 +

1

30
𝛼ℎ𝑅𝑒𝜂6

−
4ℎ𝑟𝑆𝜂𝐶𝑜𝑠[𝛼𝜂]

𝛼2
+ 𝜂2(

𝛼2ℎ

3
−

1

12
𝛼2ℎ𝐻𝑎 + 

2𝛼ℎ𝑅𝑒
15

+
8ℎ𝑟𝑆

𝛼2 −
2ℎ𝑟𝑆

𝛼
+

𝛼𝐻𝑎𝑆

𝑅𝑒
+

4ℎ𝑟𝑆𝑐𝑜𝑠[𝛼]

𝛼2 −
12ℎ𝑟𝑆𝑠𝑖𝑛[𝑎]

𝛼3 +
2ℎ𝑟𝑆𝑠𝑖𝑛[𝛼]

𝛼2 −
𝐻𝑎𝑆𝑠𝑖𝑛[𝛼]

𝑅𝑒
) +

12ℎ𝑟𝑆𝑠𝑖𝑛[𝑎𝜂]

𝛼3 −
2ℎ𝑟𝑆𝑠𝑖𝑛[𝛼𝜂]

𝛼2 +
𝐻𝑎𝑆𝑠𝑖𝑛[𝛼𝜂]

𝑅𝑒
.                                    (32) 

 

The injection parameter is the ratio of inertial to viscous forces. It’s given by 𝑆 =
𝑉𝛼𝑟

𝜐
 where V is the 

injection velocity of the fluid, r is the characteristic length and 𝜐 is the kinematic viscosity.  
 
5. Results and discussion  

 
In this section, Figure 1 shows the MHD Jeffery-Hamel flow in convergent/divergent channel with 

angle 2𝛼. In Figure 2-9 we discuss about the effect of the dimensionless velocity F(𝜂) versus the 
dimensionless angle 𝜂 with various value of parameters Ha, Re, α and S for both case, divergent and 
convergent channel using the analytical and numerical methods. Where the results of the HAM 
method are presented with a dashed line. 
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Fig. 1. Geometry of the problem 

 

Figure 2 and 3 display that it is worth mentioning to point out that the velocity 𝐹(𝜂) increases for 
divergent and convergent channel, when Hartman number increases. The Lorentz force effect is in 
opposite of the momentum’s direction that stabilizes the velocity profile. 
 

 
Fig.  2. Velocity profile variation for various Hartmann number (Ha) in 
converging channel case 
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Fig. 3. Velocity variation profile for various Hartmann numbers in diverging 
channel case 

 

The Figure 4 and 5 show the effects of injection/section parameter S, in the case of the divergent 
channel. The suction has an effect that favors the radial velocity, because the radial component of 
the V velocity takes the same direction of the radial velocity 𝑢, and we can see that the suction 
velocity behaves conversely in the case of convergent channel, due to direction of the radial 
component of V, which is opposite to the flow radial velocity, so it tend to decreases it. 
 

 
Fig. 4. Velocity variation profile for various S in diverging channel case 
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Fig. 5. Velocity variation profile for various S in converging channel case 

 

In Figure 6 and 7, we discuss about the effect of the dimensionless velocity 𝐹(𝜂) versus the 
dimensionless angle 𝜂 with various value of α angle for some given fixed values of Ha, Re and S. We 
can note that the velocity increases with the α angle in the convergent channel and decreases in the 
case of the divergent one. 
 

 
Fig. 6. Velocity variation profile for various inclination angles (𝛼) in 
converging channel case 
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Fig. 7. Velocity variation profile for various inclination angles (𝛼)  in diverging 
channel case 

 

In the Figure 8 and 9, it is worth to mention that the Reynolds number which indicates the relative 
significance of the inertia effect compared to the viscous effect has a contrary behavior in the case 
of a divergent in which velocity profile decrease as Re increase and the convergent case which 
behaves conversely, and it is obvious to advance such a judgment when we see that the velocity 
profile increases as Re increases. 
 

 
Fig. 8. Velocity variation profile for various Reynolds numbers in diverging 
channel case 
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Fig. 9. Velocity variation profile for various Reynolds numbers in 
converging channel case 

 
5. Conclusions 
 

In this paper we have solved, the 3rd-order magnetohydrodynamic Jeffery-Hamel flow with 
injection/suction via an analytical method. To this effect, we chose Homotopy Analysis Method 
(HAM) and compare it with a numerical method (the Runge-Kutta method of order 4) using 
Mathematica software. 

From this investigation, the major outcomes can be summerized as 
i. Homotopy Analysis method is a powerful approach for solving MHD Jeffery-Hamel flow in 

high magnetic field, and it has been successfully applied and it can be observed that there is 
a good agreement between the analytical and numerical results. 

ii. Increasing Reynolds numbers leads to adverse pressure gradient which causes velocity 
reduction near the walls.  And an opposite behavior in the case of convergent channel. 

iii. Increasing Hartmann number will lead to increasingly velocity in the both case (divergent or 
convergent channel). 

iv. Increasing suction/injection parameter S, allow an increasing velocity in divergent channel 
case and an opposite behavior in convergent channel case and it is due to the fact that the 
vertical velocity has a radial component in same direction of fluid flow in the divergent 
channel and acts conversely in the case of convergent one. 
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