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Nowadays, CVFEM has proved to be an effective method for solving real problems in 
CFD. Combining advantages of CVFDMs with those of FEMs results in an improved 
method, able to deal with complexes geometries, and satisfy local and global 
conservation principles. To solve dynamical field, a good scheme is always required for 
discretization of the convective terms. The FLO scheme is opted for in this study, 
because it is extracted as exact solution from a modified equation. The resolution 
procedure used is the SIVA. Coding this procedure is achieved using advanced 
instructions in Fortran 90/95. The presented results, prove a best agreement with 
benchmarks. 
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1. Introduction 
 

Control Volume Finite Element Method (CVFEM) is increasingly used in solving fluid flow and heat 
transfer problems of different complexities. The success reached in merging the two ancient methods 
in CFD problems (i.e. CVFDM and FEM), increased the field of application CVFEM method. The 
physical domain is discretized in three nodes triangular elements; every element is subsequently 
divided in three sub-volumes; this geometrical treatment is achieved by collecting all sub-volumes 
surrounding the considered node to construct the control volume. In addition, other geometrical 
information is required in the phase of discretization of conservation and continuity equations. 
Convective terms present in the momentum equations are very difficult to handle it without specific 
considerations. These convective terms are approximated by interpolation function that responds to 
an element Peclet number and take into account the direction of the element average velocity vector. 
The diffusive terms are interpolated linearly, and there is no reason to use the same scheme used for 
convective ones. The first eminent work that presents the FLO scheme is Baliga and Patankar [1, 2], 
the ideas behind this scheme was proposed in the work of Raithby [3-5].  
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The vast majority of works in the literature propose computing velocities of components and 
pressure in different places in the grid, using staggered in structured grid, using unequal order or 
computing pressure at element centroid in the case of unstructured grid. This difficulty was 
demystified by the work of Rhie and Chow [5], and its adaptation for unstructured grid was proposed 
by Prakash and Patankar [6]. Equal-order method allows using one single mesh and the discretization 
satisfies the mass conservation.  
 
2. Methodology  
2.1 Governing Equations 
 

This work is limited to steady flows of incompressible Newtonian fluids. The governing equations 
of continuity or momentum are given by non-linear partial differential equations expressed in 
Cartesian coordinates system (x, y). 
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Transport Equation for another scalar variable 
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2.2 Numerical Method 
 

The CVFEM used in the discretization process of the aforementioned equations, allows converting 
these equations in system of algebraic equations by integration on control volume surrounding the 
considered node of the calculation domain (Figure 1). 
 
2.2.1 Transport equation of   (general form) 

 
Considering a node from a calculating domain, and by applying all the principles of integration 

inherent to the method in terms of momentum and continuity equations, all contributions are 
aggregated in an element-by-element basis, while including terms related to boundary contributions 
if they exist. 
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The flux J


 is a combination of two existing fluxes in the principal equation, the diffusion flux DJ


and the convection flux CJ


. n


 is normal vector to the surface (one among three), ds  designate its 

length, Figure 2(a). 
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(a) (b) 

  
(c) (d) 

Fig. 1. Discretization of calculation domain and nomenclatures: (a) simple domain decomposed on 
triangular elements; (b) triangular element and its calculated necessary positions; (c) a cell 
designated by an internal node 1 and all its surrounding elements, control volume associate with it; 
(d) elements and control volume associated at node i on the boundary 

 
 

The source term φS  is always expressed under the linear form, PS  and CS  are computed at nodes 

of the calculated domain and their values are assumed to prevail on the portion of the volume 
belonging to the considered node. 
 

CPφ SφSS                 (8) 
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(a) (b) 
Fig. 2. (a) Designation of integration point’s ipi on the faces a three associated unity vectors 

in
  

on the global coordinate system; (b) visualization of local axes system on the element centroid, 

X axe is parallel to m
avV


  

 
 
2.2.2 Interpolation Functions 
2.2.1.1 Diffusion term 
 

In each element, the dependent variable φ  in diffusion term is interpolated linearly. 
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The values of coefficients D
φA , D

φB  and D
φC , can be uniquely expressed in terms of three nodal 

values of x, y and φ  for each element. 

 
2.2.1.2 Convection term 
 

For convection term, the scheme of Saabas and Baliga [2, 7-9], and others are used in this work. 
Strong convection relative to moderate diffusion transport can happen, linear interpolation of the 
advection term lead to unrealistic oscillatory solution or divergence of all the iterative solution 
procedure. 
 

C
φ

C
φ

C
φ

C CYBξAφ                         (10) 

 
 






























 1

XX

XXP
exp

Uρ

Γ
ξ

minmax

maxe

m
av

φ                       (11) 

 
 

φ

minmax
m
av

e
Γ

XXUρ
P


                        (12) 

 
 
 








321min

321max

X,X,XMINX

X,X,XMAXX                        (13) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 1 (2019) 1-12 

5 
 

The new local axes system )Y,X( is oriented parallel to the direction of m
avV


 Figure 2(b). The variable ξ

present in Eq. (11) express exponentials variations in the flow direction. Coefficients C
φA , C

φB and C
φC

are functions of nodal values ofφ , Y and ξ . 
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2.2.1.3 Equation discretization  
 

Now all necessary components are present to apply the integration on the three faces insight the 
element. However, it should be noted at diffusion terms are integrated directly, but advection terms 
are integrated by Simpson mean of 1/3 rule. The final algebraic expression for node i is obtained by 
assembling procedure for all element’s contributions sharing the same node. 
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2.2.1.4 Momentum equations discretization  
 

From the additional existence terms of pressure gradients in momentum equations, a close 
similarity exists between momentum equations and general form equation of transported scalar φ . 

Therefore, for an optimized programming routine, it’s advantageous and rational to implement only 
one general procedure, while adding adequate terms if necessary, such as in Eq. (20). Finally, an 
assembling procedure is conceived for obtaining algebraic equations in compact form Eq. (21). 
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Additional terms 

ij VxP  )/(  represent volume averaged pressure-gradients associated with the 

control volume surrounding node i. 
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The interpolation functions used to approximate components of velocities in the mass-flux terms 

are defined as 
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2.2.1.5 Depression equation  
 

The mass conservation equation for a control-volume surrounding node i can be written as 
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However, it’s important to note that the pressure must be expressed by its interpolation function 

which have a linear form, pressure gradients are exactly the coefficients of the pressure interpolation 
function. 
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Similar to the φ coefficients, here too, interpolation function coefficients are themselves 

functions of considered element nodal pressure. 
After integration on faces insight the element after developing a suitable assembling procedure 

of all other elements surrounding node i, the algebraic equations are obtained and written in its 
compact form as 
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2.2.1.6 Boundary conditions 
 

To obtain final algebraic equations by grouping all above mentioned contributions, boundary 
conditions must be included properly. 
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If the value of dependent variable is specified on a portion of the boundary, then the suitable 
treatment is as 
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If the known transported scalar is a component of velocity, additional operation is carried out, 

the coefficient of pressure gradient becomes null and pseudo-velocity obtain the velocity value. 
For specified flux condition, the total flux of φ  normal to the boundary is given by the expression 
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If outflow condition is considered, the diffusion term is negligible compared to the convection 
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2.2.1.7 Under-relaxation 
 

Following the proposition of Patankar [10], under-relaxation is a very useful to handle the strong 
non-linearity found in discretized equations of Navier-Stokes equations, dependent variables values 
change hugely from iteration to the successive one. The E-factor method is retained in the code 
developed in the context of this work. The values of E proposed are 1 for the components of velocity 
and pressure, and 5 for temperature. 
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2.3 Resolution Algorithm 
 

The acronym SIVA “Sequential Iterative Variable Adjustment” is the solution procedure adopted 
in this work thanks to its very simple implementation. The reader is invited to survey the relevant 
works in literature, to have a firm grasp of steps followed in this algorithm. 
 
3 Results  
3.1 Validation Tests 
3.1.1 Lid driven cavity 
 

This benchmark is an important two-dimensional laminar incompressible fluid flow. The fluid is 
moved by a horizontal velocity on the upper wall, while the other three are subject to the adhesion 
condition. This problem depends on the values of Reynolds number which can give dominance to the 
convection terms when its value is high enough. In addition, there are two singularity located on the 
bottom corners of the cavity, locations where arise secondary recirculation cells in addition to the 
primary cell that dominate the majority of the space of the cavity. The geometry of the problem is as 
shown in Figure 3. 
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Fig. 3. Lid driven cavity Geometry 
and boundary conditions 

 
The results obtained are compared with Ghia et al., [11] and Tran et al., [12] (as shown in Figure 

4). A comparative table is drawn below (Table 1) to show the superiority this work against results 
given by works of Tran et al., [12]. 
 

  
(a1) (b1) 

  

  
(a2) (b2) 
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(a3) (b3) 

 

  
(a4) (b4) 

Fig. 4. Visualization of velocity components u and v (a1), (a2) for Re = 400; (b1) and (b2) for Re = 103. 
Visualization of velocity profiles for u at x=0.5 and v at y=0.5 are given in (a3), (a4) for Re = 400 and in (b3) 
and (b4) for Re = 103 

 
Table 1 
Comparison of Results, Re = 400 
 Grid Umin Vmax Vmin 

Tran et al., 
Present work 

32x32 
-.25841 
-.28096 

.24042 

.25876 
-.37622 
-.39411 

Tran et al., 
Present work 

64x64 
-.30192 
-.30903 

.27823 

.28525 
-.42476 
-.43168 

Tran et al., 
Present work 

129x129 
-.32052 
-.32286 

.29548 

.29824 
-.44475 
-.44743 

Ghia et al., 129x129 -.3273 .3020 -.4499 
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3.1.2 Natural convection 
 

A square cavity side L containing fluid in motion caused by a difference in temperature between 
the two sides right and left one. The two other sides are adiabatic, see Figure 5. This difference in 
temperature levels excites the fluid to circulate into the cavity (as shown in Figure 6). The Boussinesq 
hypothesis is valuable here. The Prandtl number has the value 0.72 and the Rayleigh number varies 
between 103 and 106. Here too, the code built in this work proves its superiority, its results are very 
close to those of DE Vahl Davis [13] than those given by the works of Wan et al., [14] and Veronique 
Feldheim [15]. Table 2 and Table 3 confirm these findings. 

 

 
Fig. 5. Cavity of natural convection and boundary 
conditions 

 
Table 2  
Comparison of results, Ra = 103 and 104 
Ra = 103 Umax Vmax Ra = 104 Umax Vmax 

De Vahl Davis, 1983 3.649 3.697  16.178 19.617 
Wan et al., 2001 (DSC) 3.643 3.686  15.967 19.98 
Wan et al., 2001 (FEM) 3.489 3.686  16.122 19.79 
Veronique Feldheim 
41x41  3.629 3.674 41x41  16.025 19.610 
81x81  3.644 3.689 81x81  16.077 19.703 
161x161  3.649 3.692 161x161  16.098 19.730 
Present Work 
33x33  3.6418 3.6842 33x33  16.056 19.5724 
81x81  3.6483 3.6954 81x81  16.1643 19.5999 
161x161  3.6492 3.6964 161x161  16.1746 19.6348 

 

Table 3 
Comparison of results, Ra = 105 and 106 
Ra = 105 Umax Vmax Ra = 106 Umax Vmax 

De Vahl Davis, 1983 34.73 68.59  64.63 219.36 
Wan et al., 2001 (DSC) 33.51 70.81  65.55 227.24 
Wan et al., 2001 (FEM) 33.39 70.63  65.40 227.11 
Veronique Feldheim 
41x41  33.73 70.09 41x41  65.19 225.06 
81x81  33.52 70.251 81x81  65.397 226.60 
161x161  33.443 70.549 161x161  65.418 226.62 
Present Work 
33x33  33.936 68.679 33x33  60.1161 215.666 
81x81  34.544 68.613 81x81  63.7264 220.660 
161x161  34.633 68.654 161x161  64.4546 220.786 
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(a1) (a2) (a3) 

   
(b1) (b2) (b3) 

   

(c1) (c2) (c3) 

   
(d1) (d2) (d3) 

Fig. 6. The field of velocity components u, v and temperature fields are displayed according to the value of 
the Rayleigh number. For Ra = 103 the results are in Figure (a1), (a2) and (a3). For Ra = 104 the results are in 
Figure (b1), (b2) and (b3). For Ra = 105 the results are in Figure (c1), (c2) and (c3). For Ra = 106 the results are 
in Figure (d1), (d2) and (d3) 
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4. Conclusions 
 

During the elaboration of this work, the aim was Saabas reproduction work [2, 7-9] mentioned in 
many references; the idea is to see the impact of advanced object-oriented programming with 
Fortran 90/95 language on the results quality. 

Despite recent criticisms made in the work of Lamoueux et al., [16], the obtained results show 
superiority compared to those found in the literature. Moreover, the algorithm implementation is 
simple and straightforward, and no need for necessary a velocity components correction or pressure. 
The only existent inconvenient in this solution procedure is the zero-value affectation to the pressure 
gradients coefficients at the boundary where the velocity components are known. 
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