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The present work deals with the temporal instability of three horizontal superposed 
conducting incompressible fluids. The system is stressed upon by uniform tangential 
magnetic fields. These fields admit a presence of free-surface currents. In accordance 
with the importance of the porous media in many applications, the study is carried 
throughout porous media. To avoid the mathematical manipulation, the viscous 
potential theory is utilized. Therefore, the viscosity contributions could be 
demonstrated only on the boundary conditions. The linear stability approach together 
with the normal modes analysis reveal two coupled differential equations, with 
complex coefficients, of the Ince’s type. Away from the symmetric and anti-symmetric 
modes of perturbations, the present study presents a general case of the amplitudes 
of the interface surface waves. To relax the calculations, the matrix approach is used. 
The stability criteria of the resonance as well as the non-resonance modes are, 
theoretically, discussed. The analytical perturbed solutions of the interfaces are 
derived. A set of graphs is depicted to identify the influences of the various parameters 
on the stability picture. A non-dimension analysis is adopted before the numerical 
calculations. It observed that the tangential magnetic fields and the porosity have 
stabilizing effect. In contrast, the streaming has a destabilizing influence. 
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1. Introduction 
 

A magnetic fluid or simply a ferrofluid is a stable colloidal system formed of very small solid 
surfactant-coated ferromagnetic particle in a liquid. The fluid displays a considerable magnetic 
response. This area has a wide attention in many fields, for instance, see Rosensweig [1]. A very 
important area is the interface stability of ferrofluids. Zelazo and Melcher [2] studied the linear 
stability of a ferrofluid on a rigid horizontal plane under a tangential magnetic field, theoretically, as 
well as experimentally. Three experiments are reported which support the theoretical models and 
emphasize the interracial dynamics as well as the stabilizing effects of a tangential magnetic field. 
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They found that the magnetic field has a stabilizing effect on the fluid interface. In addition, they gave 
a detailed attention to waves and instabilities of a flat interface between two ferrofluids that are 
acted upon by an arbitrary directed magnetic field. On the other hand, Cowley and Rosensweig [3] 
found that the normal electric field has a destabilizing influence. They made experiments using a 
magnetizable fluid at the interfaces with air and water and covered a wide domain of density 
differences. They found that the interface took a new format which the elevation had a normal 
hexagonal pattern. Elhefnawy et al., [4] studied the nonlinear stability of two-superposed magnetic 
fluids through porous media under the action of a uniform normal magnetic field. They employed 
the multiple-time scale analysis expansion to achieve the non-linear stability analysis. Their analysis 
resulted in a Ginzburg-Landau equation. Zakaria et al., [5] investigated the stability properties of non-
Newtonian fluid layers. Their system is influenced by an oblique uniform magnetic field. They found 
that the non-Newtonian fluids have a lighter growth rate than the Newtonian ones. Furthermore, the 
phenomenon of the dual role is found of the magnetic permeability. The stability analysis of a plane 
interface that is stressed by a periodic electric field is studied by El-Dib [6]. In the presence or absence 
of the surface charges, El-Dib [6] obtained a Mathieu equation with complex coefficients. He found 
that the surface currents disappear on the interface when the magnetic field becomes unity. 

Inviscid fluids are liquids with zero viscosity. The viscous effects on the motion of fluids were not 
understood before the definition of viscosity that was introduced earlier by Navier in 1822. The 
potential flow helps us to simplify the mathematical manipulation and get a good approximation 
solution. In addition, it represents an idealized flow solution that does not exist in real flows. The 
theory of viscous potential theory was first introduced by Stokes [7]. All his attenuation is paid of 
small amplitude waves on a liquid-gas interface. The problem that was introduced by Stokes was 
solved exactly, later, by using the linearized Navier-Stokes equation, assuming the potential theory 
by Lamb [8]. Later, Funada and Joseph [9] introduced the viscous potential theory to discuss a stability 
problem of stratified gas-liquid flow in a horizontal rectangular channel. Their analysis led to an 
explicit dispersion relation. Awasthi et al., [10] discussed the viscous potential theory on the problem 
of stability of thin sheets of dielectric and viscous liquid. They found that the liquid viscosity has 
gained a stabilizing influence in the stability analysis. On the other hand, air viscosity was found to 
have a destabilizing effect. Moatimid and Hassan [11] investigated the linear electrohydrodynamic 
instability of an interface between two viscous layers. They considered the viscous potential theory 
through their analysis. The effects of the different parameters on the stability picture are depicted 
through a set of figures. They found that the Darcy’s coefficient of the porous layers has a stabilizing 
influence on the stability configuration. Moatimid et al., [12] have studied the viscous theory to 
investigate a nonlinear electrohydrodynamic stability of an interface between two porous layers. 
They obtained a Ginzburg-Landau equation that governs the nonlinear stability analysis. The current 
paper deals with the stability analysis of two-horizontal interfaces imbedded between three viscous 
layers. Therefore, the viscous potential theory will be adopted to overcome the mathematical 
manipulations.   

The porous media of fluids has gained a considerable interest in many engineering applications 
and petroleum production. Bau [13] presented a linear Kelvin-Helmholtz instability of in porous 
media for Darcian and non-Darcian flows. He showed that when the fluids are streaming parallel to 
each other, the interface becomes unstable. Furthermore, he discovered the corresponding 
conditions for marginal stability of the Darcian as well as non-Darcian flows. In both cases, the 
velocities should exceed some critical values for the stability to manifest itself. For excellent reviews 
around porous media, see Nield and Bejan [14]. El-Sayed et al., [15] investigated the linear stability 
of a non-Newtonian liquid jet in a streaming inviscid gas. Their analysis resulted in a transcendental 
dispersion relation. This equation is numerically solved via the Mathematica software. They found 
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that the system is more unstable in the presence of a porous medium. Moatimid and Hassan [16] 
presented the Marangoni convection of viscous liquid. In accordance with the complexity of their 
problem, they obtained a transcendental dispersion relation. By making use of the Mathematica 
software, they gave numerical estimations for the roots of their transcendental relation. Therefore, 
they illustrate the relation between the disturbance growth rate and the variation of the wave 
number. In addition, they found that the existence of the porous structure restricts the flow and, 
hence, has a stabilizing effect. Gamiel et al., [17] presented the temporal stability of streaming 
conducting fluids through porous media under the influence of a uniform normal magnetic field. 
Their linear stability criteria are discussed analytically and numerically by a set of stability pictures. 
Recently, Bhat and Katagi [18] investigated the incompressible viscous fluid between two permeable 
plates. Their analysis is based on the homotopy analysis method and computer extended series 
method. Their examination affirms that the used methods converges the solution for very large 
values of the Reynolds number. 

Many phenomena, in a wide range of sciences and engineering technology, are subjected to 
periodic forces through linear as well as nonlinear differential equations. Generally, these equations 
do not involve a small parameter. Therefore, to obtain a uniformly valid-expansion, the multiple-time 
scales, technique, as presented by Nayfeh [18], fails to obtain an analytical perturbed solution. To 
overcome this difficulty, the Homotopy perturbation approach does not need to the presence of this 
small parameter. Therefore, the Homotopy perturbation method provides a universal technique to 
introduce a perturbative parameter. To the best of our knowledge, the method is first, clearly, 
illustrated by He in 1999 [19]. It has been successfully applied to a wide range of linear as well as 
nonlinear differential equations. Furthermore, it is considered as a combination of the Homotopy in 
topology and classical perturbation techniques. The method provides us, in a convenient way, with 
an analytic or approximate solution in a wide variety of many problems arising in different fields. 
Away from the traditional perturbation methods, the Homotopy perturbation method does not need 
a linearization of the zero-order equation. Therefore, throughout this method, one can put a small 
parameter𝛿𝜖[0,1], where 𝛿 is termed as the embedded Homotopy parameter. It is putted as a 
coefficient of any term of the problem. When 𝛿 = 0, the differential equation takes a simplified form 
at which it may have an analytical exact solution. As 𝛿 increases and eventually take the unity, the 
equation evolves into the required form. At this step, the perturbed solution will approach the 
desired value. El-Dib [20] presented a combination between the Homotopy perturbation and the 
multiple-scale techniques. His modification is very well adapted for nonlinear oscillator problems. In 
addition, he constructed an approximate solution of the wave amplitude equation. Recently, El-Dib 
[21] and Moatimid et al., [22] presented a combination between the homotopy perturbation and the 
multiple time scale techniques to obtain approximate solutions for the delayed Mathieu equation 
and the coupled Mathieu equations. 

The first appearance of the following Ince’s equation 
 

0)()2cos()()2sin()()2cos1(  tyttyttyt        (1) 

 
is due to Whittaker’s paper [23]. Whittaker has presented the special case in which 𝛤=0. Later, more 
details of this special case are reported by Ince [24,25]. The generalized Ince’s equation is presented 
by Moussa [26]. These linear second-order differential equations describe a wide range of many 
physical and engineering phenomena; for instance, pendulum-like systems, vibrations, wave 
propagation, and many other topics in the classical mechanics (see for example Recktenwald, and 
Rand [27]). The current problem may be classified as a branch of the Ince’s equation.  
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Al-Hamdan and Alkarashi [28] presented the stability problem of three horizontal porous fluid 
layers under the action of a uniform tangential magnetic field. They discussed the basic periodic 
streaming between the three fluid layers. Therefore, they obtained two simultaneous Ince’s 
equations with complex coefficients. Unfortunately, their stability analysis must be adjusted. For 
instance, their dispersion relationship represents a quartic equation in the frequency of the surface 
waves with complex coefficients. Therefore, the four complex roots of this equation may not be 
having complex conjugates behavior. It follows that the zero-order solutions are, exactly, unstable. 
So, there is a doubt in their stability analysis. Therefore, the main purpose of the present work is to 
make a correction on the stability analysis of the previous work [28]. For this purpose, the basic 
periodic tangential streaming through three liquids, in the presence of tangential uniform magnetic 
fields, is presented. Because of the instability in the saturated porous media, especially in case of 
plane geometry, may be of special interest in both geophysics and bio-mechanics, the present study 
is performed throughout porous media. The aim is to study the dynamical stabilization of the 
unstable modes. Furthermore, the nature of instabilities that are arising, in accordance with the 
parametric resonance, will be achieved. The stability analysis depends mainly on the multiple- scales 
Homotopy perturbation technique [20]. To the best of our knowledge, this is the first attempt to 
utilize this method to treat the stability analysis of coupled Ince’s equations with complex 
coefficients. To clarify the problem, the plan of this paper is organized as follows: in Section 2, the 
formulation of the problem is presented. The main objective of this work is to investigate the stability 
analysis of the resulted simultaneous Ince’s equations with complex coefficients. Therefore, to avoid 
redundancy of the paper, the details of the solution of the boundary-value problem are excluded. To 
simplify the mathematical calculations, the resulted Ince’s equations are put in a matrix approach. 
The Homotopy perturbation technique of the undisturbed state and the modulated multiple-scales 
Homotopy technique are presented in their subsections. Section 3 is devoted to depicting the 
investigation of the stability of the non-resonance cases. Several harmonic resonances are presented 
in Section 4 and their subsections. The results and discussion are introduced in Section 5. Finally, the 
concluding remarks are presented in Section 6. 
 
2. Methodology 
 

An irrotational motion of a magnetic horizontal fluid sheet of a finite thickness of 2𝑎 and 
embedded between two bounded layers of thicknesses |ℎ − 𝑎| for each of them is considered. Both 
of the three flows are assumed to be conducting and incompressible fluids. The system is influenced 
by uniform tangential magnetic fields. These fields admit a presence of free-surface currents. In 
addition, no volume charges are assumed to be present in the bulk of the fluid layers.  Without any 
loss of generality, the motion is considered in two-dimensions only. It is convenient to work with the 
Cartesian coordinates (𝑥, 𝑦). Figure 1 is a sketch of the system under consideration, where the y-axis 
is taken to be vertically upward, and the x-axis are taken horizontally to be at the center of the middle 
sheet. The upper fluid occupies the region 𝑎 < 𝑦 < ℎ and the middle fluid is contained in the region 
typified by −𝑎 < 𝑦 < 𝑎 , while the range −ℎ < 𝑦 < −𝑎 is occupied by the lower layer. The three 
fluids are basically streaming with periodic velocities as 𝑉𝑗𝑐𝑜𝑠𝛺𝑡, where 𝑗 = 1,2,3. Generally, the 

subscripts, 𝑗 = 1,2,3 refers to quantities in the upper fluid, plane sheet and lower fluid, respectively. 
The system is influenced by a gravitational force that is acting in the negative y-direction. There are 
two interfaces between the fluids and they are assumed to be well defined and initially flat to form 
the planes 𝑦 = −𝑎 and 𝑦 = 𝑎. In fact, sharp interfaces between the three fluids may not exist. In 
addition, there is an ill-defined transition region at which the two fluids intermix. The width of this 
transition zone is usually small compared to the other characteristic length of the motion; hence, for 
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the mathematical analysis, we shall assume that the fluids are separated by sharp interfaces. The two 
interfaces are assumed to be parallel and the flow in each phase is everywhere parallel to each other. 
All fluids are assumed to be of a uniform nature, homogeneous and are all saturated in porous media. 
The structure of the liquids is defined from the following characteristics; density 𝜌, dynamic viscosity 
𝜂, Darcy’s coefficient 𝑉, and porosity 𝜁. 

 

 
Fig. 1. The physical model 

 

2.1 Derivations of the Ince’s Equations 
 

After a small departure from the stationary state, the surface deflections may be expressed as 
follows 
 

);();( 1 txtxy   at ay   and );();( 2 txtxy  at ay   

 
Recently, Rusdi et al., [29] utilized a linear stability analysis is to analyze an eigenvalue problem 

of the perturbed state. Their approach depends mainly on the normal modes analysis together with 
a numerical technique. Therefore, in the light of the normal modes analysis, the surface deflections 
𝜁𝑗(𝑥, 𝑡)may be given by a sinusoidal wave of finite amplitude where, after disturbance, the interface 

is represented by 
 

)2,1();()();( 1   jtxatxy j

j                        (2) 

 
and 
 

)2,1(..)();(  jccettx ikx

jj                        (3) 

 
where 𝛾𝑗(𝑡) is an arbitrary time-dependent function. It determines the behavior of the amplitude of 

the disturbance on the interface. 𝑘 is the wave number which is assumed to be real and positive and 
𝑐. 𝑐. represents the complex conjugate of the preceding term.  

As usual in the problems of linear magnetic stability, e. g. Melcher [30], Chandrasekhar [31] and 
El-Dib [6], after lengthy, but straightforward calculation, one finds the following characteristic 
equations 
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where the coefficients 𝑟𝑗, 𝑝𝑗 , 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 and 𝑞𝑗 involve all parameters of the system at hand. These 

coefficients are well-known from the context. Because they are so long, they are not included in the 
paper. 

Now, we proceed to investigate the stability analysis of the Ince’s Eq. (4). For simplicity, these 
equations may be rewritten in a matrix form. Therefore, they may be written in the following matrix 
form 

 

0)()cos4sin2cos2()()cos2()( 2  tYtQtCitBiAtYtPiRtY                  (5) 

 
where 𝛺 is the frequency of the external magnetic field excitation, 𝑡 is the time, 𝑌 is a real vector 
variable having two dependent variables on 𝑡 which are given by 𝛾1(𝑡) and 𝛾2(𝑡), as in the form 
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For simplicity, these matrices may be expressed as follows 
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where the elements of the above matrices are formed from all parameters of the problem.  
It is worthwhile to note that in the absence of the imaginary coefficients from Eq. (4), one finds the 
well-known damping coupled Mathieu’s equation.  

Since the amplitudes 𝛾1(𝑡) and 𝛾2(𝑡) that appear in the characteristic Eq. (5) are real, one may 
separate the real and imaginary parts to get 

 

0)()cos4()()( 2  tYtQAtYRtY                              (7) 

 
and 
 

  0)(sincos)(cos  tYtCtBtYtP                                                                       (8) 

Differentiating Eq. (8) with respect to time 𝑡, and combining the result with Eq. (7), one finds 
 
 
     ).(sin2cos2)(cos21 tYtPCtBRtYtP    
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  0)(cos4sin2cos2 2  tYtQtBtCA                      (9) 

 
Eq. (9) may be considered as a modified coupled Ince’s equation. In the special case, as the matrices 
𝑃, 𝐵 and 𝐶 becomes zero, it is reduced to the well-known classical Mathieu system. 

 
2.2 Multiple-Scales Homotopy Perturbation Approach 
 

In accordance with He’ approach, Eq. (9) may be divided into two parts as 𝐿(𝑌) and 𝑁(𝑌), where 

 

)()()( tYAtYYL                            (10) 

 
and  
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  )(cos4sin2cos2 2 tYtQtBtC                       (11) 

 

Now, the Homotopy equation may be constructed as 
 

]1,0[,0)()(),(   YNYLYH                  (12) 

 
where 𝛿 is a non-zero small parameter. As in the He's Homotopy perturbation method [19], it is 
obvious that when 𝛿 = 0 Eq. (12) gives the harmonic system 𝐿(𝑌) = 0.  

When 𝛿 → 1, Eq. (12) becomes like the Ince’s system (10). For 0 < 𝛿 < 1, the solution of Eq. (12) 
can be sought in terms of 𝛿, so that the function𝑌(𝑡) could become 𝑌(𝑡, 𝛿) Accordingly, Eq. (12) can 
be rewritten as 
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On applying the homotopy-multiple-scales method [21], we may use the two scales 𝑡𝑜 and 𝜏 such 

that 𝜏 = 𝛿𝑡 Therefore, the second-order differential operator may be expressed in terms of the 
partial derivatives as follows 
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Also, the dependent vector variable 𝑌(𝑡, 𝛿) may be expanded in the form 

...),(),(),( 0100   tYtYtY                       (15) 

where the vector 𝑌𝑛(𝑡0, 𝜏) is an unknown complex vector to be determined. On substituting from 
expansions (14) and (15) into the homotopy Eq. (13), then equate the coefficients of like powers of 
𝛿 to zero, one gets the following set of equations 
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The solution of the system (16) may be written in the following form 
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where 𝛼𝑗(𝑡0, 𝜏) and its complex conjugate 𝛼𝑗(𝑡0, 𝜏) are unknown as constant functions of integration. 

The constant vector 𝜋𝑗 is given by 
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where 𝑎1 and 𝑎2 are the first two elements in the first row of the second-order matrix 𝐴. 𝜔𝑗
2; 𝑗 = 1,2 

are the eigenvalues of the characteristic equation det (𝐴 − 𝜔2𝐼), which gives 
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















          

(21) 

 
At this stage, the analysis reveals two categories; the first category is concerned with the non-

resonance case. Meanwhile, the second one deals with the resonant cases. The second case depends 
on the nature of the external frequency 𝛺 when it approaches the natural frequency 

[𝜔𝑗 , 2𝜔𝑗, (𝜔1 ± 𝜔2)/2 𝑎𝑛𝑑 (𝜔1 ± 𝜔2)]. The following sections are devoted to illustrate these cases 

in more details. 
 

3. The Non-Resonance Case 
 

There are many perturbation problems which may properly be singular, but they are not of the 
boundary-layer type. A large family of such problems has a secular nature. The presence of the 
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secular term resulted in an unbounded solution. Therefore, to obtain a uniformly-valid expansion of 
the perturbed solution, the secular terms must be avoided. The foregoing Eq. (21) reveals the secular 

term. Obviously, this term is represented as a coefficient of the exponential 𝑒±𝑖𝜔𝑗𝑡. The elimination 
of this secular term leads to the following solvability conditions  
 

0)()2()(2   jjjjjj QRii                      (22) 

 
In addition, the complex conjugate of Eq. (22) must be omitted. Let us operate from the right on Eq. 
(22) by the transpose vector 𝜋𝑗

𝑇 and then use the following normalization condition 

 

1
T

jj

T

jj




                         (23) 

 
Eq. (22) is, therefore, then reduced to 
 

0)()()(   jjjj QiR


                      (24) 

 

where jR


 and jQ


 are real constants defined as follows 

 

jjj RSR 
2

1



, ,

1
jj

j

j QSQ 





 where 
T

jj

T

j

jS



                                        (25) 

 
The solution of the system of Eq. (24) may be written as  
 




)(

0)( jj QiR

j e



                        (26) 

 
where 𝛼0 is a real constant that represents the amplitude. The nature of the stability behavior of this 
system requires that the exponential in Eq. (26) should have a negative real part. This can be 
occurring when 
 

0jR


, which implies that 0jjj RS                       (27) 

 
Consequently, the solution at the first-order problem may be formulated as follows 
 

])2cos()2cos()sin(

)cos()sin()cos([2),(

000

00001

tQHtQLtQE

tQGtQKtQFetY

jjjjjjjjj

jjjjjjjjj

R j















     (28) 

 
where 𝐹𝑗, 𝐾𝑗 , 𝐺𝑗 , 𝐸𝑗 , 𝐿𝑗 and 𝐻𝑗are real constant matrices of order (2 × 1). They may be written as 

follows 
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   

   

   
jjjjjj

jjjjjjjjj

jjjjjjjjj

QAHQAL

BAECPAG

BAKCPAF







1212

1212

1212

)2(,)2(

,)()(,)()()(

,)()(,))(()(













               (29) 

 
The complete solution of the zero-order problem is modulated when 𝛿 → 1. Consequently, 𝜏 → 𝑡, 
so, we have 
 

tQetY jj

tR

j
j )cos(2)( 00






                       (30) 

 
Therefore, the approximate solution of the non-resonance case is formulated by substituting from 
Eq. (28) and (30) into Eq. (16), and setting 𝛿 = 1 to obtain  
 

])2cos()2cos()sin(

)cos()sin()cos()(cos[2)( 0

tQHQLtQE

tQGtQKtQFtQetY

jjjjjjjjj

jjjjjjjjjjjj

tR j














          (31) 

 

It should be noted that, as given from the calculations, 𝑅̂𝑗 is independent of the external 

frequency 𝛺. Therefore, the condition that 𝑅̂𝑗 > 0 is necessary for stability requirements. At this 

point of the numerical calculations of the sample of the chosen data, when we have plotted 𝐿𝑜𝑔𝛺 
versus the wave number 𝑘, this condition must be satisfied. 
 
4. Harmonic- Resonance Cases 
 

The inspection of the right-hand side of Eq. (21) reveals other secular terms. These terms depend 

on the nature of the external frequency 𝛺. It approaches the natural frequency [𝜔𝑗, 2𝜔𝑗, (𝜔1 ± 𝜔2)/

2 𝑎𝑛𝑑 (𝜔1 ± 𝜔2)]. The following subsections are devoted to investigating these cases. 

 
4.1 Harmonic-Resonance in Case of 𝛺 Near 𝜔𝑗 

 
Now, the first level of perturbation system as given in Eq. (21) reveals that there is another term 

that may be produced as a secular term. On introducing a detuning parameter 𝜎, such that the 
frequency of the streaming field intensity may approach the frequency of the surface wave as follows 

 

  j                          (32) 

 
therefore, we may write  
 

 ititi jj 2)2( 00                        (33) 

 
The implication of Eq. (33) into the right-hand side of Eq. (21) will convert the coefficient of the 

exponential 𝑒𝑥𝑝[±𝑖(𝜔 − 2𝛺)𝑡0] to 𝑒𝑥𝑝[±(𝑖𝜔𝑡0 + 2𝑖𝜎𝜏)]. Therefore, the secular terms will be rising 
again. At this end, the solvability condition given by Eq. (22) will be modified to become 
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0
2

1
)( 2   i

jjjjjj eQiQiR


                     (34) 

 
In addition, a similar behavior for the complex conjugate of Eq. (34) is obtained. This equation admits 
non-trivial solutions in the following forms 
 




)(
)]()([)(

iR

jijrj
jei





                      (35) 

 
where the functions 𝛼𝑗𝑟(𝜏) and 𝛼𝑗𝑖(𝜏) are real ones. Substituting from Eq. (35) into Eq. (34) and 

separating the real and imaginary parts, we obtain a pair of governing equations in the following 
forms 
 

0)(
2

1
)( 








  jijjr Q


                      (36) 

 
and 
 

0)(
2

3
)( 








  jrjji Q


                      (37) 

 
The solutions of the coupled Eq. (36) and (37) may be written as 
 

 sin
2

1
)( 








 jjr Q


                       (38) 

 
and 
 

 cos)( ji                         (39) 

 
The amplitude functions 𝛼𝑗(𝜏) and 𝛼̅𝑗(𝜏), at this resonance case, may be formulated by substituting 

from Eq. (38) and (39) into Eq. (35) and its complex conjugate, Therefore, one finds 
 




)(
cossin

2

1
)(

iR

jj
jeiQ





















                    (40) 

 
and 
 




)(
cossin

2

1
)(

iR

jj
jeiQ





















                    (41) 

 
Substituting from Eq. (38) and (39) into Eq. (37), one obtains 
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0
2

1

2

32 
















 jj QQ


                       (42) 

 
By using the relations that are given by Eq. (38), (39) and Eq. (32), the zero-order solution is given by 
 

   jjjj

R
ttQetY j 



00

ˆ

00 sin)cos(2cos)sin(2),( 
 

                 (43) 

 
Finally, the complete first-order solution in this case is given by  
 

  
 000

000

ˆ

01

3sin2cos2sincos2

3cos2sin2cossin)2(),(

tLtKtFE

tLtKtFGQetY

jjjj

jjjjj

R j









 

                            (44) 

 
Therefore, the approximate solution, at this resonance case, is formulated by substituting from Eq. 
(43) and (44) into Eq. (15), setting 𝛿 → 1 and using (32), to get 
 

   

 tLtKtFtEet

tLtKtFtGetQtY

jjjjjj

tR

jjjjjj

tR

jj

j

j









3sin2cos2sinsincos2

3cos2sin2coscossin22)(

ˆ

ˆ






        (45)  

 

The final results that are given in Eq. (45) tell us that the stability occurs when 𝑅̂𝑗 > 0. Eq. (42) is a 

quadratic equation. Clearly, the stability criterion requires that the right-hand-side of it must be a 
positive, which implies that 
 

jQ


2

3
  and 

jQ


2

1
                                    (46) 

 
In view of Eq. (32), we conclude that the bounded solution requires  
 

,0ˆ jR  
jj Q



2

3
   and 

jj Q


2

1
                                    (47) 

 
4.2 The Sub-Harmonic Resonance in Case of 𝛺 Near 2𝜔𝑗 

 
The investigation of the first level of perturbation system that is given by Eq. (21) reveals another 
term that may produce a secular one. Introducing another detuning parameter𝜎𝑎, when 𝛺 
approaches 2𝜔𝑗, we may write 

aj  22                                       (48) 

 
Consequently, one finds 
 

 ajj ititi 2)( 00                                     (49) 
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The implication of Eq. (49) into the right-hand side of Eq. (21) will convert the coefficient of the 
exponential 𝑒𝑥𝑝[±𝑖(𝜔 − 𝛺)𝑡0] into 𝑒𝑥𝑝[±(𝑖𝜔𝑡0 − 2𝑖𝜎𝑎𝜏)]. Therefore, the secular term will be rising 
again. At this point, the solvability condition is given by  
 

0)()(
2


 ai

jjjjjjj ePiBQiR


                                 (50) 

 

Similar techniques may be used for the complex conjugate of Eq. (50). The matrices 𝐵̂𝑗 and 𝑃̂𝑗 that 

are given in Eq. (50) are defined as 
 

j

j

j

j

j CPSP 



)

1
(

2

)(






 and 

jj

j

j

j BSB 




2

)( 



                 (51) 

 
To investigate the stability analysis, at the resonance case of 𝛺 as near 2𝜔𝑗, we proceed as in the 

previous section. This analysis leads to obtain a solution of (50) in the form 
 

  


)(
)ˆsinˆˆcosˆ(ˆsin)()( aj iR

jaj eBiQ





                  (52) 

 

where 𝜃 is given by the following characteristic equation 
 

0)ˆ(ˆˆ 222  jaj QB                                      (53) 

 

Clearly, the stability criterion requires that 𝑅̂𝑗 > 0 and 𝜃 should be real. The first condition is the 

same condition as in the non-resonance case and the second condition can be satisfied, whence  
 

jja BQ ˆˆ   and jja BQ ˆˆ                                      (54) 

 
On using the (52), the complete zero order and the first-order solutions are 
 

jja

R tBtQetY   ]sin)ˆsinˆˆcosˆ(cosˆsin)[(2),( 02
1

02
1

00  


               (55) 

 
and 
 

 

 02
3

02
5

02
3

02
3

02
3

02
5

02
3

02
3

01

sinsincossin)ˆsinˆˆcosˆ(2

coscossincosˆsin)(2),(

tHtLtKtFBe

tHtLtKtFQetY

jjjj

R

jjjjja

R



















 

     (56) 

 
Finally, the complete approximate solution, may be formulated in the following form 

 

 tHtLtKtFtBte

tHtLtKtFtQe

ttBtttQetY

jjjj

tR

jjjjjj

tR

jjj

tR













2
3

2
5

2
3

2
3

2
3

2
5

2
3

2
3

2
1

2
1

2
1

2
1

sinsincossin)ˆsinˆˆcosˆ(2

coscossincosˆsin)(2

]sin)ˆsinˆˆcosˆ(cosˆsin)[(2)(

















             (57) 

 
This solution behaves as a damping oscillator, provided that following conditions hold 
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,0ˆ jR  )ˆˆ(2 jjj BQ    and )ˆˆ(2 jjj BQ                                    (58) 

 
where the relation (48) has been employed with (54).  
 
4.3 The Combination of the Super-Harmonic Resonance in Case Of 𝛺 Near (𝜔1 ± 𝜔2)/2 

 
The following calculation considers only the positive sign of 𝜔2. Obviously, in case of the negative 

sign, it may be obtained for replacing the sign of 𝜔2 in the final results. We express the nearness of 
𝛺 to (𝜔1 ± 𝜔2)/2 by introducing another detuning parameter 𝜎𝑏 such that  
 

b  2/)( 21
                                    (59) 

 
Hence, we may write  
 

 bititi 2)2( 0102                                     (60) 

 
and 
 

 bititi 2)2( 0201                                     (61) 

 
At this end, the secular term that appears in Eq. (21) can be avoided by introducing the following two 
solvability conditions 
 

  0)()()(
2

33  

 bi

jjjjj eUiQiRD


                                 (62) 

 
and 
 

  0)()()(
2

333 




 bi

jjjjj eUiQiRD


                                 (63) 

 
where 𝐷 = 𝜕/𝜕𝜏, 𝑈𝑗 = 𝑆𝑗𝑄3−𝑗𝜋3−𝑗 and 𝑈3−𝑗 = 𝑆3−𝑗𝑄𝑗𝜋𝑗. These equations admit a non-trivial 

solution of the following form 
 

   bi

jjj eiM )()()(                                     (64) 

 
where the functions 𝑀𝑗(𝜏)and 𝛤𝑗(𝜏) are real ones. By substituting from Eq. (64) into Eq. (62) and (63) 

and then separating the real and imaginary parts, one obtains the following governing equations 

0)()()()()ˆ( 221111   UQMRD b


                                 (65) 

 

0)()()()()ˆ( 221111   MUMQRD b


                                 (66) 

 

0)()()()()ˆ( 112222   UQMRD b


                                 (67) 

 
and  
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0)()()()()ˆ( 112222   MUMQRD b


                                 (68) 

 
The above system consists of four homogenous first-order differential equations in four unknown 

functions. These functions are 𝑀1(𝜏),𝛤1(𝜏), 𝑀2(𝜏) and 𝛤2(𝜏). For a non-trivial solution, there exists 
at least one repeated equation. Therefore, we have at least two depended functions. Suppose that 
these functions are: 𝛤1(𝜏) and 𝛤2(𝜏), therefore, one finds 
 

       sinˆˆ 2

2

22

1

2

1 RR                                    (69) 

 
and 
 

       sinˆˆ 2

2

22

1

2

2 RR                                    (70) 

 
Substituting from Eq. (66) and (67) into Eq. (62) and (64), from the elementary calculus, one finds 
 

     )sinˆcos(ˆ)( 1

2

2

2

211   RRUQM b


                               (71) 

 
and 
 

     )sinˆcos(ˆ)( 2

2

1

2

122   RRUQM b


                               (72) 

 
It should be noted that the functions 𝑀1(𝜏) and 𝑀2(𝜏) are two independent functions. Now, 
substituting from Eq. (69) to (72) into Eq. (66) and (68), one finds 
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Since 𝑠𝑖𝑛𝛩𝜏 and 𝑐𝑜𝑠𝛩𝜏 are two independent functions, then it follows that their coefficient must 
vanish. This leads to 
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The above four equations may be reduced to 
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The elimination of the parameter 𝛩 between Eq. (79) and (80) yields 
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Eq. (81) is a quadratic equation, in 𝜆. On the other side, the elimination of the parameter 𝜆 between 
Eq. (79) and (78) yields 
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The stability criterion requires that 𝛩2 must be of real and positive. This requires that 
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At the end, the approximate solution, at the present resonance, may be formulated as 
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where the functions 𝑀𝑗(𝜏)and 𝛤𝑗(𝜏) are the final form of Eq. (69) to (72). The final resonance case 

will be presented in the next subsection. 
 
4.4 The Combination of the Harmonic Resonance Case When 𝛺 Near (𝜔1 ± 𝜔2) 
 

This is the final resonance’s case. As before, we will consider only the positive sign. To do this, we 
express the nearness of 𝛺 to (𝜔1 ± 𝜔2)along a detuning parameter 𝜎𝑐, such that 
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On using Eq. (86) and (87) in the right-hand side of Eq. (21), the secular term will be rising again. To 
avoid this secular term, we must have the following solvability conditions 
 

0)(])([
2

333  

 ci

jjjjjj eviuQiRD


                                 (88)  

 
and 
 

0)()]ˆ([
2

333 




 ci

jjjjjj eviuQiRD


                                (89) 

 

where jj
j

j
j BSu 





 3

3
3

2

)(





and   jjj

j

j
j CPSv 


 


 33

3
3

2

)(





. Now, we may consider  

 

   ci

jjj ei )()()(                                     (90) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 2 (2019) 182-206 

199 
 

 
and 
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On substituting from Eq. (90) and (91) into Eq. (88) and (89), and then separating the real and 
imaginary parts, one gets 
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The above system consists of four first-order homogeneous differential equations in the four 

unknown functions. These functions are 𝜔̅1(𝜏), 𝑋1(𝜏), 𝜔̅2(𝜏) and 𝑋2(𝜏). For a non-trivial solution, 
there exists at least one repeated equation. So, we must have at least two depended functions.  From 
this point of view, one may proceed as in the previous section to get the following solutions 
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where the constant argument 𝜑 is given by 
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where, the coefficients are listed as in the following 
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The stability criteria of the transition curve as given by Eq. (100) are the same as that given before by 
the conditions (83). The final approximate solution, at this resonance case, is formulated as 
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     (101)  

 
Finally, the theoretical approach has been completed. The remaining part of this paper is 

concerned with the numerical calculations of some of the transition curves as well as some of the 
perturbed solutions. 
 
5. Results  
 

This section is devoted to depicting a set of figures to illustrate the stability picture. Therefore, 
the influence of some parameters of the problem at hand with the stability diagram is plotted. As 
given in the previous analysis, and in contrast to the mechanisms of the symmetric and antisymmetric 
modes of perturbations, the present study has adapted a general case of the amplitudes of the 
interface surface waves. Therefore, in accordance with the non-resonance as well as the resonance 
cases, some of the perturbed solutions of the surface waves between the three fluids will be graphed.  

Before dealing with the numerical calculations, it is convenient to write the coefficients of 
coupled Ince’s equations that are given in Eq. (4) in an appropriate non-dimension form. This can be 
done in several ways depending mainly on the choice of the characteristics. For this purpose, consider 

that the parameters: ℎ, √ℎ/𝑔 and 𝜂2ℎ, √ℎ/𝑔 refer to the characteristic length, time and mass, 

respectively.  
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In what follows, we shall make a numerical estimation on the stability picture of the surface 
waves that propagate between the three fluids throughout the porous media. The numerical 
calculations show that it is better to compute 𝐿𝑜𝑔𝛺 versus the wave number 𝑘. These calculations 
are made for the non-resonance as well as the resonance cases. As it is previously shown, the stability 

condition for the non-resonance case, and in all resonance cases requires 𝑅̂𝑗 > 0. The given sample 

of choosing data indicated that this condition is automatically satisfied. This means that the stability 
of the system is automatically satisfied only through the non-resonant case. In the following figures, 
the stable regions are characterized by the letter 𝑆, meanwhile, the letter 𝑈 stands for the unstable 
ones.   

Now, the numerical calculations are made for the perturbed solutions where the matrix solution 
𝑌(𝑡) is plotted versus the independent time 𝑡 for choosing sample systems throughout the following 
curves as follows  

Figure 2 is depicted for the system having the following particulars 
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This figure shows the perturbed solution in the non-resonance case that is presented in Eq. (31). 

The figure plotted for the two-perturbed solutions that are given by the distributions 𝛾1(𝑡) and 𝛾2(𝑡). 
This figure indicates that the present analysis ignores the symmetric and anti-symmetric 
perturbations of the surface deflections.  

Similar arguments are depicted in Figure 3 for the perturbed solution in the first resonance case 
as 𝛺 approaches 𝜔𝑗 that is shown in Eq. (45). Simultaneously, similar arguments are drawn in Figure 

4, for the perturbed solution in the second resonance case as 𝛺 approaches 2𝜔𝑗 as shown in Eq. (57). 

In addition, other arguments are plotted in Figure 5, for the perturbed solution in the third resonance 
case as 𝛺 approaches (𝜔1 ± 𝜔2)/2 that shown in Eq. (84).  

Figure 6, displays the perturbed solution in the fourth resonance case as 𝛺 approaches 
(𝜔1 ± 𝜔2), as shown in Eq. (101). Now, it is convenient to graph the influences of some parameters 
on the perturbed solutions. To do this, in Figure 7, we plot a single solution 𝛾1(𝑡), in the resonance 

case, where 𝛺 approaches 𝜔𝑗 for various values of the magnetic field intensity 𝐻0
(1)

. As seen, the 

increase of the values of 𝐻0
(1)

, yields a small amplitude of the resulted wave which shows a stabilizing 

influence of 𝐻0
(1)

. This mechanism is already obtained in the tangential magnetic field in the absence 

of the surface currents as given previously by Zelazo, and Melcher [2], and also, by Cowely and 
Rosensweig [3].  

The influence of the porosity 𝜁2 is depicted in Figure 8 This figure is graphed for the same 
resonances as in Figure 7. It is shown that the increase in the parameter 𝜁2, yields a large amplitude 
of the resulted wave which shows a destabilizing influence for this parameter.  

The influence of streaming 𝑉2 is depicted in Figure 9 for the same previous resonances as in Figure 
8. It is seen that the increasing value of 𝑉2, yields a large amplitude of the resulted wave, which shows 
a destabilizing influence of 𝑉2.  

Figure 10 is plotted a single solution in the resonance case, where 𝛺 approaches 2𝜔𝑗 for a single 

solution 𝛾1(𝑡) for various values of the magnetic permeability parameter 𝜇2. As stated before, it is 
found that this parameter has a stabilizing influence. The influence porosity parameter 𝜁3 in the 
previous resonance, as given in Figure 10, is depicted in Figure 11 for a single solution 𝛾2(𝑡). It is 
found that this parameter has a stabilizing effect. Figure 12 plots a single solution in the resonance 
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case where 𝛺 approaches (𝜔1 ± 𝜔2)/2 for a single solution, 𝛾2(𝑡) for various values of the magnetic 

field intensity parameter 𝐻0
(2)

. As seen before, the parameter 𝐻0
(2)

 has a stabilizing influence.  

It is more convenient to graph the transition curves in the resonance cases. For simplicity, the 
two resonances as 𝛺 approaches 𝜔𝑗 and 𝛺 approaches 2𝜔𝑗are only depicted. These two transition 

curves are given in Eq. (47) and (58). 
Figure 13 is plotted to indicate these two transition curves. As well-known by Nayfeh [18] and 

others, the region between the two curves is an unstable region while the region outside the two 
curves is a stable one. 

 

 
Fig. 2. The perturbed solutions as given in Eq. (31), for 
the non-resonance case 

 
Fig. 3. The perturbed solutions as given in Eq. (45) for 
the first resonance case as 𝛺 approaches  𝜔𝑗  

  

 
Fig. 4. The perturbed solutions as given in Eq. (57) for 
the second resonance case as 𝛺 approaches  2𝜔𝑗  

 
Fig. 5. The perturbed solutions as given in Eq. (84) for 
the third resonance case as 𝛺 approaches (𝜔1 ± 𝜔2)/
2 
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Fig. 6. The perturbed solutions as given in Eq. (101) 
for the fourth resonance case as 𝛺 approaches 
(𝜔1 ± 𝜔2) 

Fig. 7. The variation of the magnetic field intensity 

𝐻0
(1)

 in the resonance case, where 𝛺 approaches  𝜔𝑗  

for a single solution, 𝛾1(𝑡), as given in Eq. (45) 

  

 
Fig. 8. The variation of the porosity 𝜁2 in the 
resonance case, where 𝛺 approaches 𝜔𝑗 for a single 

solution, 𝛾1(𝑡) , as given in Eq. (45) 

 
Fig. 9. The variation of the streaming 𝑉2 in the 
resonance case, where 𝛺 approaches  𝜔𝑗  for a single 

solution, 𝛾1(𝑡), as given in Eq. (45) 

 
Fig. 10. The magnetic permeability parameter 𝜇2 in 
the resonance case, where 𝛺 approaches 2𝜔𝑗for a 

single solution, 𝛾1(𝑡),as given in Eq. (57) 

 
Fig. 11. The porosity parameter 𝜁3 in the resonance 
case, where 𝛺 approaches 2𝜔𝑗  for a single solution, 

𝛾2(𝑡), as given in Eq.(57) 

  



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 59, Issue 2 (2019) 182-206 

204 
 

Fig. 12. The magnetic field intensity parameter 𝐻0
(2)

 

in the resonance case, where 𝛺 approaches (𝜔1 ±
𝜔2)/2 for a single solution, 𝛾2(𝑡)as given in Eq. (84) 

Fig. 13. The two transition curves are given in Eq. (47) 
and (58) 
 

 
6. Conclusions 
 

The present study investigates the stability problem of a horizontal infinite magnetic liquid sheet 
and embedded between two different magnetic fluids. The three magnetic fluids are acted upon by 
a uniform tangential magnetic field. Simultaneously, the system is influenced by a horizontal periodic 
basic streaming. Because of instability in porous media of a plane interface between three fluids, may 
be of great interest in geophysics and bio-mechanics therefore, the three fluids are saturated 
throughout porous media where the porosity parameters are, also, included. In accordance with the 
wide applications of the viscous forces, the current study considers these forces. The viscous 
potential theory is adopted to relax the mathematical manipulation of the analysis. Therefore, the 
viscosity enters, only, through the normal stress conditions. Meanwhile, the fluids are considered as 
the perfect ones elsewhere. Away from the special cases of the symmetric and antisymmetric modes 
of perturbations, the current work provides a general form of the surface wave deflections.  

The boundary-value problem leads to two coupled Ince’s equations. These equations are 
presented throughout an approach of the matrices. The aim of this work is focused on the stability 
analysis of the Ince’s equations. Therefore, to avoid the unjustified length of the paper, all the 
appendices are removed, but they are available under the request of the reader. In this direction, the 
purpose of this work is focused on the Homotopy perturbation and the multiple-time scales 
techniques. Therefore, the analysis does not need a presence of any small parameter in the governing 
equations. For simplicity, the perturbed solutions are obtained up to the first-order. 

The stability analysis reveals the resonance as well as the non-resonance cases, along the 
following concluding remarks 

i. The zero-order perturbed solution is presented in Eq. (30). 
ii. The theoretical calculations showed that the stability conditions in the non-resonant case 

𝑅̂𝑗 > 0 is independent of the external frequency 𝛺. In accordance of the chosen sample, the 

numerical calculations reveal that this condition is automatically satisfied. 
iii. The harmonic resonance as 𝛺 approaches 𝜔𝑗, yields the transition curves that are 

represented in Eq. (47). The perturbed solution in this case is formulated in Eq. (45). 
iv. The harmonic resonance as 𝛺 approaches 2𝜔𝑗, yields the transition curves that are 

represented in Eq. (58). The perturbed solution in this case is formulated in Eq. (57). 
v. Again, the combination super-harmonic resonance as 𝛺 approaches (𝜔1 ± 𝜔2)/2 resulting in 

the perturbed solution in this case is formulated in Eq. (84), and it is the same for the 
transition curves that are represented in Eq. (83) 

vi. The last harmonic resonance as 𝛺 approaches (𝜔1 ± 𝜔2) giving the perturbed solution in this 
case is formulated in Eq. (100). 
 

Finally, numerical calculations are made for some resonance as well as some perturbed solutions. 

The influences of some parameters are indicated numerically. For instance, the parameter 𝜇2, 𝜁3, 𝐻0
(1)

 

and 𝐻0
(2)

 have a stabilizing effect. In contrast, the parameter 𝜁2 and 𝑉2 have a destabilizing influence. 
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