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Stenosis refers to the narrowing of blood vessels caused by atherosclerosis, which can 
lead to serious circulatory problems by obstructing blood flow and mass transfer to 
other organs and tissues in the body. The objective of this investigation is to 
numerically examine the mass transfer of blood flow in a stenosed bifurcated artery 
using COMSOL Multiphysics, based on the finite element method. The study takes into 
account the geometry of a bifurcated artery with stenosis present at the mother and 
daughter arteries. The blood vessel is modeled as a two-dimensional (2D) rigid wall, 
and the blood flow is assumed to follow a non-Newtonian Carreau fluid model, being 
incompressible, laminar, and steady. The continuity equation, momentum equation, 
and mass transfer equation, along with boundary conditions, will be solved using 
COMSOL Multiphysics based on the finite element method. The simulation results 
show that the formation of recirculation zones, as indicated by streamline patterns 
and mass concentration, can significantly impact the severity of stenosis and Reynolds 
numbers. Thus, individuals exposed to such recirculation zones may be at risk of 
developing cardiovascular diseases. 
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1. Introduction 
 

Coronary artery disease (CAD) is a serious and often deadly medical condition that affects the 
heart. Study shows that CAD is one of the leading causes of death in industrialized countries [1]. This 
is because CAD occurs when the coronary arteries, which are the blood vessels that supply oxygen 
and nutrients to the heart muscle, become narrow or blocked. The cause of this narrowing or 
blockage is due to the build-up of fats, cholesterol, and other substances within the walls of the 
coronary arteries [2,3]. This is known as atherosclerosis. This disease may occur from large to medium 
size arteries involving complex interactions between the arterial wall and the blood flow. The 
cholesterol present in the blood is normally in the form of low-density lipoproteins (LDLs) where if it 
started to build up along the arterial wall it is the prime cause of atherosclerosis which leads to 
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stenosis [4]. Plaques, or build-up of material within the arteries, tend to form in areas where there is 
a change in the curvature of the blood vessels, such as at bends, branches, and bifurcations [3]. These 
changes in vessel geometry result in a dynamic and disturbed flow pattern, which contributes to the 
development of stenoses and the progression of atherosclerosis [5]. Additionally, the geometry of 
the arteries and the location of stenoses may play a crucial role in determining the impact of 
hemodynamics on the formation of stenoses [6,7]. 

The non-Newtonian Carreau fluid model is a combination of Newtonian and power law models 
[8]. As a matter of fact, the fluid model can describe both shear thinning and shear thickening 
phenomena. The Carreau model was employed in research studies to investigate and compare 
Newtonian and non-Newtonian behaviors in the common carotid artery with stenoses [9]. They 
found a trend in the difference in luminal concentration as a function of time which is due to the 
diffusion mechanism [10,11]. Moreover, different fluids with varying viscosity properties generate 
eddies or recirculation flow at post-stenotic regions of different sizes. The shear-thinning fluid 
produces the largest eddies, followed by the Newtonian fluid, while the shear-thickening fluid 
generates the smallest eddies [12,13]. As a result, for high shear rate regions and input velocity, the 
Carreau model has been shown to represent wall shear stress (WSS) better than the other models 
[14]. Not only that, but the model is also useful in both Newtonian and non-Newtonian where the 
viscosity depends on the shear rate and excelled from low to high range shear [11-15]. As a result, it 
is reasonable to consider the Carreau model as best suited to represent blood viscosity in the 
bifurcated which is a combination of the larger mother artery and the smaller daughters' artery.  

The primary objective of this research is to investigate the effect of blood flow and mass transport 
in the stenosed bifurcated artery numerically using COMSOL Multiphysics 5.2 based on the FEM 
method. Also, investigating the streamline patterns and mass concentration for different Reynolds 
numbers and stenosis severity can significantly impact the formation of the recirculation zone. 

According to the research studies that have been reviewed and analyzed, this research aims to 
examine the blood flow and mass transfer characteristics in a bifurcated artery with mild stenoses. 
Studies have been done solely on blood flow on the bifurcated artery, however, mass transfer as 
mentioned above plays a crucial role in providing a more accurate analysis. Motivated by all those 
studies mentioned This research attempts to analyze blood flow and mass transport in the stenosed 
bifurcated artery. The fluid flow is considered incompressible, two-dimensional, steady, and laminar 
by using parameters as proposed [2]. The blood is treated as non-Newtonian fluid following the 
Carreau model. The artery is modeled as a rigid wall with no-slip condition. As a numerical 
computation, COMSOL Multiphysics based on the finite element method will be used to solve the 
continuity equation, momentum equation, and mass transfer equation together with the boundary 
conditions. 
 
2. Problem Formulation  
 

To define the computational domain of the bifurcated artery with the presence of stenoses, the 
following assumptions are made: 

i. The artery that forms the bifurcation has a finite length. 
ii. The artery consists of stenosis located in the parent vessel and ostium of bifurcation. 

iii. To avoid any discontinuities or separation zones, curvatures are introduced at the lateral 
junctions and the flow divider of the bifurcation. 
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Fig. 1. Geometry of stenosed arterial bifurcation model 
[3,4,16,17] 

 

2.1 Governing Equations 
 

In this study, the blood in the stenotic bifurcated artery is considered two-dimensional, steady, 
laminar, and incompressible. The blood is treated as non-Newtonian fluid following the Carreau 
model to represent the rheological features of flowing blood in a narrow artery. The artery is modeled 
as a rigid wall with no-slip condition. 

The continuity equation is governed as  
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 
+ =

 
 

 

(1) 

Similarly, the momentum equation in the 𝑥 and 𝑦 direction of the Cartesian plane and the shear 
stress   take the following form in the Carreau fluid model [11,18], 
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The mass equation based on Fick's first law is derived as. 
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Here 𝑢 and 𝑣 are the components of velocity in the 𝑥 and 𝑦 directions, 𝑉⃗  is the flow velocity, 𝑝 is 
the pressure, and 𝜌 is the density. Based on [18], 𝜇∞is the infinite shear rate viscosity, 𝜇0 is the zero 
shear rate viscosity, Γ is the time constant, n is the power law index, and 𝜏 is the shear stress. 𝐷 is 
denoted as mass diffusivity or the diffusion coefficient, as it depends on the mixture's components, 
temperature, and more. Whereas, 𝐶 is denoted as the concentration of the component in a mixture. 
 

2.2 Dimensionless Formulation of the Problem 
 

The solution procedure involves the non-dimensionalization method to solve this problem of 
blood flow and mass transport in the bifurcated artery. The following non-dimensionless quantities 
are introduced below, 
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where 𝑈0 is the reference velocity which represents the average mean inflow velocity, L is the 
reference length which refers to the length of the inlet, and 𝐶0.refers to the reference concentration 
[12]. The equation introducing the dimensionless variables with the symbol (*) denotes the 
dimensionless form to show the differences. However, the symbol (*) can be dropped to represent 
the dimensionless governing equations. 

Eq. (1)-(3) and Eq. (7) after dropping the stars, 
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By employing the non-dimensionalization procedure, the non-dimensional parameters such as 
Reynolds number, Re, and Schmidt number Sc are obtained as, 
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 2.3 Boundary Conditions 
 
At the inlet, a parabolic velocity profile is imposed, where a fully developed velocity profile is 

taken place as follows[5,19]: 
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Next, no-slip conditions along the walls of the artery: 
 

( )( , ) 0, , 0.u x y v x y= =  (15) 

Then, at the outlet, a traction-free condition is applied with no tangential and normal forces as 
follows: 
 

( ). 0p − +I n = ,  (16) 

 

where  is the stress tensor, n  is a unit outward normal vector with the pressure point constraint
0p =  applied at 0x =  and 0.0075y = .  

The condition for mass concentration along the axis of symmetry is proposed as follows, 
 

( ),
0 0.

C x y
on y

y


= =


 

 

(17) 

The inlet mass concentration of the solute is assumed to be constant, whereas the outlet boundary 

of the artery of finite length max
x is considered to have zero concentration gradient, which can be 

expressed non-dimensionally as, 
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A Dirichlet boundary condition of zero concentration on the arterial wall is defined as 
 

( ), 0 ,C x y =  (19) 

This shows, Eq. (19) effectively ignores the connection between mass transport in the blood and mass 
transport in the arterial wall, i.e., zero concentration on the wall is suitable when the fluid-side mass 
transport resistance dominates the wall-side opposition, as shown by [20]. Except at the inlet, where 
the solute's initial mass concentration has been considered zero. 
 

( ), 0 0.C x y for x=   (20) 

3. Computational Mesh and Model Validation 
 

The governing equations subjected to the boundary conditions mentioned above are solved using 
the commercial software package COMSOL Multiphysics 5.2. All computations are performed on a 
computer running 64-bit Windows 10 with a speed of 2667MHz and 7.89GB of RAM. Several mesh 
refinement attempts were conducted to ensure the results were not dependent on the mesh 
parameters. The number of domain elements and the maximum velocity were computed using 
COMSOL Multiphysics, as shown in Table 1. 
 

Table 1 
Mesh Parameters and Total Domain Elements 
Software  Parameter Domain Element Maximum Velocity (m/s) 

Present Study, COMSOL Mesh 1 2385 0.13074 
Mesh 2 4118 0.13280 
Mesh 3 7212 0.13429 
Mesh 4 16933 0.13542 

 

Mesh 4 with domain element 16933 is selected to obtain more accurate and satisfactory results. 
The mesh results obtained are consistent with [19]. Using the same parameters [19,21], Figure 2 
matches with previous researchers; thus, accurate and satisfactory results can be achieved to solve 
the problem. 

Based on the mesh dependency test illustrated in Table 1, Figure 2, and Figure 3, the maximum 
velocity for all mesh is almost similar, with small differences of approximately 0.00011 m/s. Based on 
the graph in Figure 2, Mesh 1 and Mesh 2 are distorted and do not have a smooth curve. However, 
Mesh 3 and Mesh 4 produce smoother and constant curves. Therefore, Mesh 4 with domain element 
16933 is selected to obtain more accurate and satisfactory results. 
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Fig. 2. Axial velocity profiles with different numbers of domain elements at 𝑥=0.02 m 

 

  
(a) Mesh 1 (b) Mesh 2 

  
(c) Mesh 3 (d) Mesh 4 

Fig. 3. Different unstructured triangular mesh 

 
The geometry is constructed based on the model proposed by [11,22,23] for validation purposes. 

Let (𝑥, 𝑦) be the coordinates of a material point, then 
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where the outer wall 𝑅1(𝑥) and inner wall geometry 𝑅2(𝑥), respectively. The radii of curvature for 
the lateral and offset of the lateral junction are denoted by 𝑟0 and 𝑟′0 respectively. The length of 
stenosis at a distance from the origin is indicated by 𝑙0. The location of the onset and offset of the 
lateral junction is denoted by 𝑥1 and 𝑥2 respectively. The apex is indicated as 𝑥3 and 𝜏𝑚 represents 

the maximum height of stenosis occurring at 𝑑 +
𝑙0

6
 and 𝑑 +

5𝑙0

6
 while 𝛽 denoted as half of the 

bifurcation angle. The given values can specify the parameters involved in the above Eq. (21) and Eq. 
(22). 
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where q is considered a small number between the range 0.0001 0.0005q   chosen for the 

compatibility of the geometry and  
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The dimensional data for validation purposes is used following [11,22], 
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Figure 4 shows the result of the velocity profile obtained from COMSOL Multiphysics 5.2 at 𝑥 
=0.0125m, which is at the maximum constriction. Figure 4 is compared with [19] for validation 
purposes, and the results are produced similarly. To achieve the outcome in COMSOL. Reynold's 
number was set to 285. 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 110, Issue 2 (2023) 79-94 

87 
 

 
Fig. 4. Axial velocity profiles with different numbers of domain elements at 𝑥=0.0125 m 

 
Mesh 4 with domain element 17269 is selected to obtain more accurate and satisfactory results. 

The mesh results obtained are consistent with [19]. Using the same parameters [19,24], Figure 4 
matches with previous researchers; thus, accurate and satisfactory results can be achieved for this 
problem. 
 
4. Results and Discussion 
 

By applying COMSOL Multiphysics based on the FEM method, velocity profiles at the mother and 
daughter artery and mass concentration are analyzed by differing Reynolds numbers and the severity 
of the stenosis. To have a thorough quantitative analysis of the effects of non-Newtonian Carreau 
blood rheology on the stenotic bifurcated artery flow streamlines, axial velocity, and mass 
concentration are performed.  
 

4.1 Axial Velocity Profile for Different Reynolds Numbers 
 

Figure 5 shows the velocity profile of the bifurcated artery with Reynolds numbers of Re=300 and 
Re=500 at the position of x=0.03m nearby to the central passage of the bifurcated artery. Based on 
Figure 5, the velocity profile increases significantly as the artery narrows. In Figure 5, as the Reynold 
number increases, the velocity of the artery increases. The velocity profile of the lower Reynolds 
number Re=300 is lower and flatter than the velocity profile at Re=500. This is due to the increased 
inertial force due to the higher flow rate when the Reynold number increases [25]. With a lower 
Reynolds number, the blood moves slowly along the axial direction near the central axis of the vessel. 
Comparatively, the findings of the velocity profile are consistent with [11].  
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Fig. 5. Axial blood flow velocity with Reynolds number, Re=300 and Re=500 at 𝑥=0.03 m 

 
4.2 Mass Concentration for Different Reynolds Numbers 
 

Figure 6 illustrates the concentration C, transfer in the artery with Reynolds number of Re=300 
and Re=500. The mass concentration at each axial position converges to zero according to the wall 
conditions. It can be observed that the flow of mass concentration increases from the wall and 
remains constant at one throughout the artery and decreases to zero towards the wall. The flow 
velocity increases as the flow get accelerated toward the throat of stenosis leading to an increase in 
solute concentration. It can be seen from Figure 6 that the mass concentration at Re=500 increases 
drastically and decreases slowly compared to the mass concentration at Re=300. It also noted that 
the accumulation of mass concentration from the wall to the center of stenosis is much higher with 
a higher Reynolds number value. To summarize, the narrowness of the artery and the impact of 
Reynolds numbers affect the velocity, leading to an increase or decrease in mass concentration. 
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Fig. 6. Mass concentration with Reynolds number, Re=300 and Re=500 at 𝑥=0.03 m 

 
 

4.3 Streamline Pattern for Different Severity of Stenosis 
 

The impact of stenosis on blood flow is further shown in Figure 7(a), (b), (c), and Figure 8, which 
illustrate the streamline pattern and axial velocity for occlusions of 20%, 40%, and 60% at the parent 
artery that extends into the upper wall of the bifurcation. The degree of stenosis was calculated using 
the formula presented below based on [19], 
 

Percentage of the severity of stenosis 1 100,stenosis

normal

D

D
= − 
  

  
  

 

 

where 
stenosis

D and normal
D represents the diameter of the artery at the most severe site and the 

diameter of the normal healthy artery, respectively. 
The simulation results of velocity magnitude, streamline, and velocity surface of the blood flow 

of 20%, 40%, and 60% are shown in Figure 7. Figure 7(a) shows streamline behavior with 20% severity 
which is still normal undisrupted flow. On the other hand, in Figure 7(b), the stenosis with 40% 
severity, the maximum velocity increases, continuing with the appearance of a recirculation zone at 
the offset of the stenosis. This also can be seen in Figure 7(c), the maximum velocity of 60% stenosis 
severity is at the narrow artery with a larger recirculation zone at the post-stenotic region. It is clear 
from the results shown in Figure 7(c), the reversal flow caused by the vortex crosses the edge of 
stenosis, as it is unable to follow the curved shape of stenosis and change direction at the same time. 
This increases the potential for the development of atherosclerosis. 
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(a) 

 
(b) 

 
(c) 

Fig. 7. Streamline pattern of different severity of stenosis (a) 
20%, (b) 40%, and (c) 60% 

 
It has been noted in all scenarios that the axial velocity in the stenosis region increases as the 

area reduction increases. It is notable from Figure 8 that axial velocity differs significantly with 
increasing severity in the daughter artery, where the stenosis is extended. This also aligns with the 
results [9,13] where the steep velocity profile was noted at the bifurcation regions and reversal flow 
at the outer region of the carotid artery. Hence, with a sudden increase in area reduction, a drastic 
change in values and velocity peaks at the stenosis can be seen. With 40% and 60% severity of 
stenosis, the trendline of velocity differs slightly as towards the wall surface, the fluid velocity 
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decreases gradually, rises back, and then decreases to zero. This is due to the occurrence of backflow 
and an increase in separation flow [18]. In addition, this phenomenon is due to the development of 
platelet deposition triggered by the formation of separation flow, then leads to the complication of 
intimal thickening formation [19]. This results in a twisting effect on the blood flow, with the strength 
of the twisting effect becoming more pronounced further downstream shown in Figure 8. In 
summary, increased velocity has the potential to elevate wall shear stress, which can lead to potential 
damage to the endothelial cells lining the blood vessel wall. Consequently, this can contribute to an 
increased risk of stenosis development [13]. 
 

 
Fig. 8. Axial velocity profiles with different stenosis severity at 𝑥=0.035 m 

 
4.4 Mass Concentration for Different Severity of Stenosis 
 

Figure 9 illustrates the concentration C, transfer in the daughter artery with different severity of 
stenosis consisting of 20%, 40%, and 60% of occlusion area at x=0.035m. Based on Figure 9, as the 
occlusion area increases, the mass concentration increases and decreases faster due to the 
narrowness of the artery, which can be seen at 60% and 40% stenosis severity. The flow velocity 
increases as the flow accelerates toward the daughter artery leading to an increase in solute 
concentration. At the recirculation zone, a low mass transfer occurs as the region possesses a low-
velocity flow and weak recirculation zone, leading to an increase in mass concentration throughout 
the artery and reducing towards the wall. 

It can be seen from Figure 9 that with higher severity, such as 40% and 60% stenosis, the trendline 
from the artery wall, the mass concentration increases slowly, and it is distorted. Then, towards the 
artery's center, the mass concentration increases drastically to the value of one. It is noted that the 
behavior of the concentration at the post-stenotic region gets distorted, which could be due to the 
separation of flow. The formation of flow reversal and recirculation zones can increase the risk of 
cardiovascular diseases. The post-stenotic zones are areas where the blood flow slows down, which 
is particularly concerning for individuals who have atherosclerosis. The stagnant blood in these zones 
can increase the likelihood of developing complications related to this condition [16,25]. To 
summarize, the narrowness of the artery or the severity of stenosis affects the velocity, leading to an 
increase or decrease in mass concentration.  
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Fig. 9. Mass concentration of different severity of stenosis at 𝑥=0.035 m 

 
5. Conclusions 
 

This study focused on blood flow analysis in a stenosed bifurcated artery using the Carreau fluid 
model. This is important because the flow patterns of blood and the mechanical properties of blood 
vessels are related to the development of atherosclerosis. Using the Carreau fluid model, the study 
evaluated the changes in velocity distribution and mass concentration with different Reynolds 
numbers and different severity of stenosis in the bifurcated artery. The main findings of the present 
study can be concluded as follows: 

 
i. The stenosis region showed an increase in axial velocity and a peak in the magnitude of 

fluid properties. 
ii. The magnitude of fluid properties increased as the area reduction increased. 

iii. The Reynolds number increases, and the velocity magnitude increases. Thus, with a slight 
decrease in viscous force with high Re, an increase in velocity streamline with the 
viscoelastic nature of blood could occur, leading to difficulty in the flow of mass 
concentration. 

iv. As the stenosis is more severe, the mass concentration increases. This is due to the 
narrowness and the severity of stenosis, leading to an increase in velocity and, 
subsequently, mass concentration. 
 

These studies provide valuable information for medical practitioners seeking to understand blood 
flow under stenosis in bifurcated arteries. Thus, with knowledge or understanding of the behavior of 
mass transfer in arterial blood flow, the treatment of stenotic arteries can be improved, or the 
likelihood of stenosis occurring after surgery can be reduced. However, it is acknowledged that future 
studies should consider more anatomically realistic models to understand further the impact of 
three-dimensional flow patterns on mass transport. The second suggestion is that since blood 
pressure is favorably influenced by hematocrit, further research should be done to determine how 
other factors, such as nutrition, smoking, excess weight, and other cardiovascular factors, affect 
stenosed arteries. 
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