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This study aims to investigate the feasibility of using a feedwater heaters system with 
coal-fired power plant. Furthermore, the influence evaluation of the different coal 
consumption on the coal-fired power plants in terms of power output and thermal 
efficiency improvements. As well, this study focuses on the effect of different feedwater 
heaters' numbers which caused the highest exergy destruction of the coal-fired power 
plants. For different values of the coal consumption, a parametric study was conducted 
to determine the efficiency of the coal-fired power plant. The results show that, when 
the coal consumption increases the power output will increases too. The slight decreases 
in the efficiencies are due to the small differences in how the mass flow rates of different 
streams increase. The exergy destruction was increased by about 16% when the 
consumption of fuel increases by 40 kg/s. It was observed that operating the coal-fired 
power plant at high coal consumption leads to reduce the effective ness of the feedwater 
heaters and increases the power output. 
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1. Introduction 
 

The increase in the global economy comes with increases in fossil fuel prices. There has been a 
continuous demand for energy, especially the demand for electricity in recent decades [1-11]. Today, 
fossil fuels remain the major source of energy for electricity generation but as per the International 
Agency of Energy, it has been predicted that gas-fuelled combined cycle’s power plants will 
contribute majorly to fuel sources by the year 2030 [1,12-21]. One of the major indicators of 
development and improved standard of living among communities is the level of energy consumption 
as increases in population, industrialization, and urbanization results in increased energy utilization 
[22-32]. Currently, more than 80% of global electricity production is contributed by thermal power 
plants (TPPs) while the remaining 20% comes from different energy sources such as wind, solar, 
hydraulic, nuclear, biomass, geothermal, etc. The growth of the economy of any nation is directly 
influenced by the cost and availability of electricity [33-40]. These days, electricity remains a part of 
normal life; it is so important that electricity consumption per capita is considered today an economic 
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development index and a measure of the standard of living of a country. Therefore, it is evident that 
the level of prosperity of a country is directly dependent on the level of emphasis it places on the 
continuous development of electrical power, as well as energy and exergy efficiency analysis [41]. 

Today, power is mainly sourced globally from the burning of fossil fuels such as natural gas and 
coal [42]. Fossil fuels such as coal, oil, and natural gas are considered the most important energy 
sources because of their cost and availability [43-59]. The increasing demand for electricity drives the 
need for more efficient coal-fired power plants [60]. During power generation, the energy losses 
during the process are of greater concern as it affects the process's net efficiency. Consequently, 
several studies have been performed on thermal power plants, focusing on the alternative ways of 
designing and operating the plant to achieve better net efficiency. Thermal power plant analysis is a 
wide concept that involves the efficient use of energy resources. Before now, the analysis of power 
plant energy efficiency is dependent on the First Law of Thermodynamics [61]; however, these days, 
the Second Law analysis is the basis for exergy loss determination; this analysis aims at studying the 
quality of the energy generated in a system from a wider perspective (this technique is normally 
referred to as exergy analysis). 

This research attempts the development of an integrated model for the analysis and 
improvement of the overall performance of the coal-fired power plants based on the coal-burning 
amounts. The exergy analysis is a methodology for assessment of component performance and 
involves examining the exergy at different feedwater heaters. 
 
2. Methodology 
 

In the present study, Unit 1 of Manjung Coal Fired power plant located in Malaysia is considered 
for investigation. The process flow diagram (PFD) of this power plant is illustrated in Figure 1. This 
figure does not show the boiler and economizer sections. To analyze the complete cycle of the 
powerplant, the continuity, energy and exergy equations governing various components of the cycle 
are developed and resolved using Engineering Equation Solver (EES) software. The continuity 
equations are invoked to find the distribution of feed water and steam throughout the cycle. 

Table 1 summarizes the energy equations and efficiencies/effectiveness of various components 
of the thermal cycle; while Table 2 summarizes the exergy supply, exergy destruction and exergy 
efficiency of those components. 
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Fig. 1. Process flow diagram of the considered power plant 
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 Table 1 
 Energy equations and efficiencies/effectiveness of various components of the thermal cycle 
Component Name Energy Equation Energy Efficiency 
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Table 2 
Exergy supply, destruction and efficiency of various components of the thermal cycle 
Component 
Name 

Exergy Supply Exergy Destruction Exergy Efficiency 
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In this investigation, Unit 1 of Manjung Coal Fired Power plant located in Malaysia is considered 

for analysis. This unit produces 700 MW nominally; while according to the acquired data, its actual 
output is around 590 MW. To have a solid ground for comparison and analysis, a baseline case is 
assumed. Solving the governing equations developed, different parameters of the powerplant are 
evaluated for the baseline case. Table 3 presents the actual input data for the mass flow rates of the 
water and steam flows of the baseline case which are furnished to the computational code. The mass 
flow rates of other lines are calculated using the continuity equations. Table 4 shows the pressure 
and temperature data giving to the code. These data are collected from the instruments of the 
powerplant. 
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Table 3 
The input data for the mass flow rates of water/steam 
in the power plant 
State Mass flow rate [kg/s] 

1 480.50 
2 16.71 
6 20.20 
7 26.60 
10 2.33 
11 2.33 
12 3.34 
13 3.34 
46 26.82 

 
Table 4 
The input data for the pressure and temperature of the water/steam flows in 
different stations of the powerplant 

 
State Pressure[bar] Temperature [℃]  State Pressure[bar] Temperature [℃] 

1 148.1 539.8  27 0.23 NA 
2 43 362  28 20 82.2 
3 33 321  29 18 NA 
4 28.2 534.3  30 1.1 NA 
5 8.3 351.5  31 1.1 NA 
6 18 464  32 16 NA 
7 3.8 262.4  33 3.8 NA 
8 3.8 262.4  34 8.3 345.3 
9 3.8 262.4  35 8.3 NA 
10 1.1 146.3  36 33 NA 
11 1.1 146.3  37 155.7 300 
12 0.59 91  38 155.7 NA 
13 0.23 102  39 175.2 NA 
14 0.073 NA  40 173.2 NA 
15 0.59 91  41 170.2 NA 
16 0.23 102  42 167.2 NA 
17 0.073 NA  43 164.2 NA 
18 0.073 NA  44 18 NA 
19 27 NA  45 18 NA 
20 26 NA  46 33 NA 
21 25 41.4  47 33 NA 
22 23 NA  48 33 NA 
23 21 NA  49 43 NA 
24 0.23 NA  50 43 NA 
25 0.59 NA  51 160.3 256.8 
26 0.59 NA     

 
The effectiveness of various closed boiler feed water heaters at the baseline case are calculated 

and presented in Table 5. The data will be used in the predictive mode to anticipate the behavior of 
the boiler feed water heaters when the mass flow rates are varied. From this table, it is clear that the 
best thermal performance of the heaters belongs to heater #6 while the worst performance is for 
heaters #2 and #3. This can be attributed to the structure of the heaters. 
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Table 5 
The effectiveness of closed boiler feed water heaters 
Boiler feed water heater No. Effectiveness 

1 0.84 
2 0.77 
3 0.77 
4 0.81 
6 0.87 
7 0.81 
8 0.79 

 
To find the properties of steam leaving different stages of the turbines, we need to know the 

isentropic efficiencies of the stages. For this purpose, for the baseline case, the isentropic efficiencies 
of various expansion stages of the turbines are evaluated and presented in Table 6. 
 

Table 6 
Isentropic efficiencies of various expansion stages through the 
turbines 
Stage number Isentropic efficiency 

HP2 0.84 
HP3 0.89 
IP5 0.95 
IP6 0.92 
IP7 0.92 
IP8 0.92 
LP10, LP11 0.85 
LP12, LP15 0.89 
LP13, LP16 0.74 
LP14, LP17 0.84 

 
Table 7 gives the main parameters of the thermal cycle and powerplant. Using this table, we can 

be assured that the code works properly and we can rely on the results. As is seen from this table, 
the net power delivered by the cycle is 590 MW which is close to the data acquired from the 
powerplant. The thermal efficiency of the cycle is 43.71%, the efficiency of boiler is about 69.67% 
and the efficiency of the powerplant is 30.45%. To achieve these data, according to the data of the 
powerplant, it is assumed that 7618 Ton/day (88.17 kg/s) coal with CV of 21982 kJ.kg is consumed. 
 

Table 7 
Main parameters of the thermal cycle and powerplant 
Parameter Value 

Heat transfer rate of the condenser, QCond. 759.811 MW 
Power consumed by the boiler feed pump, WBFP 16.964 MW 
Power generated by the high pressure turbine, WHPT 184.283 MW 
Power generated by the intermediate pressure turbine, WIPT 226.293 MW 
Power generated by the low pressure turbine, WLPT 196.964 MW 
Net power generated by the thermal cycle, Wnet 590.234 MW 
Heat rate of the thermal cycle, HRCycle 2.288 
Heat transfer rate of the boiler, QBoiler 1220 MW 
Heat transfer rate of the economizer, QEco. 130.006 MW 
Thermal efficiency of the cycle, 𝜂𝑡ℎ,𝑐𝑦𝑐𝑙𝑒  43.71% 

Efficiency of the boiler, 𝜂𝐵𝑜𝑖𝑙𝑒𝑟 69.67% 
Efficiency of the powerplant, 𝜂𝑝𝑝 30.45% 
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The supplied and destroyed exergies to/at different turbine stages and various heaters of the 
thermal cycle at the baseline case are presented in Table 8. Also, included in this table is the total 
supplied exergy to the cycle as well as the total destroyed exergy throughout the cycle. 
 

Table 8 
The supplied and destroyed exergies to/at various components of the thermal cycle 
Component Supplied exergy rate [kW] Destroyed exergy rate [kW] 

HPT 195630 11347 
IPT 232740 6447 
LPT 234366 37402 
FWH #1 3706 1312 
FWH #2 5203 1330 
FWH #3 5440 1041 
FWH #4 18500 4057 
FWH #5 57703 3255 
FWH #6 11545 1364 
FWH #7 11618 870.4 
FWH #8 7421 480.1 
Total cycle 744410 154176 

 
Table 9 represents the second law efficiencies of various turbines and feed water heaters of the 

cycle for the baseline case. In fact, this table shows the strong and weak points of the power plant. 
Going through the table it is seen that IPT has the best performance regarding the second law of 
thermodynamics; while, LPT performs as the weakest. For the feed water heaters, we see that FWH 
#1 has the worst condition while heaters #5 and #8 have the best second law efficiencies. The low 
second law efficiency of first feed water heater is contributed to this fact that the extracted steam 
entering this heater is saturated steam having less thermal potential in heating the feed water 
stream. 

Table 9 
Second law efficiencies of the turbines, the FWH’s of the 
cycle and total cycle 
Component Second law efficiency [%] 

HPT 94.2 
IPT 97.23 
LPT 84.04 
FWH #1 64.59 
FWH #2 74.44 
FWH #3 80.86 
FWH #4 78.07 
FWH #5 94.36 
FWH #6 88.19 
FWH #7 92.51 
FWH #8 93.53 
Total cycle 79.29 

 
3. Results and Discussion 
3.1 Main Steam Mass Flow Rate 
 

To see the effect of main steam mass flow rate (at the exit of the superheater) on different 
parameters of the cycle, five distinct mass flow rates are considered; that is, 360, 420, 480.5, 540 and 
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600 kg/s. In fact, the mass flow rate of 480.5 kg/s is the baseline mass flow rate, while two lower and 
two higher mass flow rates are also considered to examine its impact on the cycle. 

Figure 2 illustrates the variations of the mass flow rates of the bled steam of turbines for heating 
different feed water heaters at the aforementioned main steam mass flow rates. From this figure, it 
is seen that the steam extracted for feed water heaters #4 and #5 have the highest mass flow rates, 
while the least amount of steam is bled for feed water heaters #1 and #2. It needs notice that feed 
water heaters #1, #2, #6, #7 and #8 are in pair; that is, there are two heaters #1 in parallel and so on. 
Considering this matter, the least amount of steam invoked by the feed water heaters, is the steam 
devoted to feed water heater #3. 
 

 
Fig. 2. Effect of the mass flow rate of the main steam on 
the mass flow rate of the steam extracted for various 
feed water heaters 

 
The other important notion of this figure is that heaters #4 and #5 are most sensible to the 

variations of the mass flow rate of the main steam. When this mass flow rate increases, the flow rate 
of water going through all the way down to the condenser will increase. However, as the mass flow 
rate of the feed water stream through the heaters ramps up, the required steam for compensating 
this increased energy requirement would also rise. This matter is reflected in this graph. 

The variations of the effectiveness of feed water heaters versus the main steam mass flow rate is 
plotted in Figure 3. It is observed that by increasing the main steam mass flow rate, the effectiveness 
of the heaters reduces. This is due to the fact that at higher mass flow rates, the velocity of the fluids 
grows which hinders the perfect contact between the fluids and the heat transfer surfaces. This 
happens for both of the in-tube and shell-side streams. This issue is more pronounced in feed water 
heater #3 which accommodates the highest increase in the mass flow rate of the extracted steam 
(referring to Figure 2). That is, the more growth in the streams mass flow rate leads to steeper fall in 
the heater effectiveness. 
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Fig. 3. Variations of FWH’s effectiveness with the mass 
flow rate of the main steam 

 
The impact of the change in the mass flow rate of the main steam on the thermal and second law 

efficiencies of the cycle as well as the efficiency of the powerplant is slight as is seen in Figure 4. In 
fact, as there are little deviations in increments of different streams, the aforementioned efficiencies 
vary slightly. Otherwise, we expect that the efficiencies do not vary with the change in the main steam 
mass flow rate. Although it is not conceivable from the figure, all of the efficiencies decrease with 
the increase of the main steam mass flow rate. The maximum variations of thermal efficiency, 
powerplant efficiency and second law efficiency are 0.04, 0.03 and 0.07%, respectively. 
 

 
Fig. 4. The effect of mass flow rate of the main steam on different 
efficiencies of the cycle and powerplant 
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Presented in Table 10 are the coal consumption rate, the values of the heat rate of the cycle and 
net power delivered by the cycle at different mass flow rates of the main steam. It is seen that the 
fuel consumption rate and the net power of the cycle are proportional to the mass flow rate of steam 
provided by the boiler, expectedly; however, the effect of this mass flow rate on the heat rate is 
negligible. This is in agreement with what we have seen in Figure 4. 
 

Table 10 
The effect of steam mass flow rate produced in boiler on the Heat Rate of the cycle, net 
power delivered by the cycle and mass flow rate of coal consumed in the boiler 
Steam Mass Flow Rate 
[kg/s] 

𝑚̇𝐶𝑜𝑎𝑙  [kg/s] HRcycle 𝑊̇𝑛𝑒𝑡 [MW] 

360 66.01 2.287 442.138 
420 77.04 2.287 515.873 
480.5 88.17 2.288 590.234 
540 99.12 2.288 663.377 
600 110.20 2.289 737.145 

 
The exergy efficiencies of the high, intermediate and low pressure turbines are calculated at 

different values of the main steam mass flow rates, Figure 5. Here again, it is observed that the 
variations are slight. However, it needs caution that the turbines should be capable of 
accommodating these amounts of mass flow rates. In fact, when less steam passes through the 
turbine, the powerplant will work in partial load; and when higher flow rates of steam passes, the 
system will work in overload. The latter needs more detailed examination prior to put in practice. 
 

 
Fig. 5. Effect of the main steam mass flow rate on the second 
law efficiencies of different turbines 

 
The variations of the second law efficiencies of various feed water heaters versus the mass flow 

rate of the main steam are depicted in Figure 6. From this figure, it is evident that the highest exergy 
efficiency belongs to heater #5 which is a direct type heater. As the heat transfer occurs more 
perfectly in this heat exchanger, its exergy efficiency is higher than its peers. Moreover, it is seen that 
among the closed type heat exchangers, heaters #1 and #8 have the lowest and highest exergy 
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efficiencies, respectively. This can be reasoned by this fact that these heaters have the largest and 
smallest temperature differences between the streams. Also, it is notable that the exergy efficiency 
of the heaters is not sensitive to the main steam mass flow rate. 
 

 
Fig. 6. Effect of the main steam mass flow rate on the exergy 
efficiencies of the heaters 

 
3.2 Coal Consumption Rate 
 

The variations of the effectiveness of feed water heaters versus the coal consumption rate is 
plotted in Figure 7. It is observed that by increasing the coal consumption rate, the effectiveness of 
the heaters is reduced. This is due to the fact that at higher coal consumption rates, more steam will 
be produced (while the state of the produced superheated steam is fixed). Similar to what has been 
observed in Figure 3, this issue leads to lower values of heater effectiveness. 

The impact of change in the coal consumption rate on the thermal and second law efficiencies of 
the cycle as well as the efficiency of the powerplant is negligible as is seen in Figure 8. The slight 
changes in the efficiencies are due to the small differences in how the mass flow rates of different 
streams increase. 

From Table 11 it is observable when more coal is burnt in the boiler, more power is delivered by 
the powerplant. This is totally expectable as burning more fuel means producing more steam. Also, 
it is seen that the heat rate of the cycle is not so sensitive to the coal consumption rate. 

The variations of the second law efficiencies of various feed water heaters versus the coal 
consumption rate are presented in Figure 9. From this figure, it is evident that the exergy efficiency 
of the heaters is not sensitive to the coal consumption rate. 
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Fig. 7. Variations of FWH’s effectiveness with the coal 
consumption rate 

 

 
Fig. 8. Variations of the efficiencies of the cycle and powerplant 
with the coal consumption rate 

 
Table 11 
The effect of coal consumption rate on the Heat Rate and net power 
delivered by the cycle 
𝑚̇𝐶𝑜𝑎𝑙  [kg/s] HRcycle 𝑊̇𝑛𝑒𝑡 [MW] 

70 2.287 468.800 
80 2.287 535.640 
88.17 2.288 590.234 
100 2.288 669.264 
110 2.289 736.052 
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Fig. 9. Variations of exergy efficiency of the FWH’s with the 
coal consumption rate 

 
5. Conclusions 
 

To analyze the coal-fired power plant, a computational code was developed. The most important 
findings of this study are stated under the following subsections. 

 
i. By increasing the main steam mass flow rate, the effectiveness of the heaters reduces. 

ii. The net power of the cycle is linearly proportional to the mass flow rate of the steam 
generated in the boiler. 

iii. Increasing the mass flow rate intensifies the exergy destruction of different components 
of the power plant. 

iv. The mass flow rate of superheated steam has slight impact on the exergy efficiencies of 
various equipment of the cycle. 

v. By increasing the coal consumption rate, the effectiveness of the heaters is reduced. 
vi. Increasing the fuel consumption rate will increase the exergy destruction at the main 

components of the thermal cycle in the range of 52 ~ 68%. 
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